1. Collins, S., Kobs, C. M. & Luddeni, M. C. (2015) The Tall al-Hammam Excavations, Volume 1: An Introduction to Tall al-Hammam: Seven Seasons (2005–2011) of Ceramics and Eight Seasons (2005–2012) of Artifacts from Tall al-Hammam. Penn State Press
2. Silvia, P. J. (2015) The Middle Bronze Age civilization-ending destruction of the Middle Ghor. Ph.D. thesis, Trinity Southwest University
3. Collins, S., Byers, G. A. & Kobs, C. M. (2019) The Tall al-Hammam Excavation Project, Season Fourteen 2019 Report: Excavation, Interpretations, and Insights. Department of Antiquities of Jordan, Amman
4. Collins, S., Byers, G. A. & Kobs, C. M. (2015) The Tall al-Ḥammām Excavation Project, Season Ten 2015 Report: Excavation, Interpretations, and Insights. Department of Antiquities of Jordan, Amman
5. Collins, S., Byers, G. A. & Kobs, C. M. (2016) The Tall al-Ḥammām Excavation Project, Season Eleven 2016 Report: Excavation, Interpretations, and Insights. Department of Antiquities of Jordan, Amman
6. Collins, S., Byers, G. A. & Kobs, C. M. (2017) The Tall al-Ḥammām Excavation Project, Season Twelve 2017 Report: Excavation, Interpretations, and Insights. Department of Antiquities of Jordan, Amman
7. Collins, S., Byers, G. A. & Kobs, C. M. (2018) The Tall al-Ḥammām Excavation Project, Season Thirteen 2018 Report: Excavation, Interpretations, and Insights. Department of Antiquities of Jordan, Amman
8.
Galli, P. (1999) Active tectonics along the Wadi Araba-Jordan Valley transform fault. Journal of Geophysical Research: Solid Earth 104, 2777–2796
9. Abed, A. M. (2017) An overview of the geology and evolution of Wadi Mujib. Journal of Natural History 4, 6–28
10. Neev, D. & Emery, K. O. (1995) The Destruction of Sodom, Gomorrah, and Jericho: Geological, climatological, and archaeological background. Oxford University Press
11. Frumkin, A. & Elitzur, Y. (2002) Historic Dead Sea level fluctuations calibrated with geological and archaeological evidence. Quaternary Research 57, 334–342
12. Kagan, E. J., Langgut, D., Boaretto, E., Neumann, F. H. & Stein, M. (2015) Dead Sea levels during the Bronze and Iron ages. Radiocarbon 57, 237–252
13. Hennessy, J. B. (1969) Preliminary report on a first season of excavations at Teleilat Ghassul. Levant 1, 1–24
14. Flanagan, J. W. & McCreery, D. W. (1990) First Preliminary Report of the 1989 Tell Nimrin Project. ADAJ 34, 131–152
15. Marchetti, N., Nigro, L. & Sarie, I. (1998) Preliminary report on the first season of excavations of the Italian–Palestinian expedition at Tell es-Sultan/Jericho, April–May 1997. Palestine Exploration Quarterly 130, 121–144
16. Collins, S. et al. (2009) Tall al-Ḥammām: Preliminary report on four seasons of excavation (2006–2009). ADAJ 53, 385–414
17. Moore, A. M. T. et al. (2020) Evidence of cosmic impact at Abu Hureyra, Syria at the Younger Dryas onset (~12.8 ka): High-temperature melting at >2200 °C. Scientific Reports
18. Ramsey, B. C. (2009) Bayesian analysis of radiocarbon dates. Radiocarbon 51, 337–360
19. Ramsey, B. C. (1997) Probability and dating. Radiocarbon 40, 461–474
20.
Reimer, P. J. et al. (2020) The IntCal20 northern hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon 62, 725–757
21. Telford, R. J., Heegaard, E. & Birks, H. J. B. (2004) All age–depth models are wrong: but how badly? Quaternary Science Reviews 23, 1–5
22. Kennett, J. P. et al. (2015) Bayesian chronological analyses consistent with synchronous age of 12,835–12,735 Cal B.P. for Younger Dryas boundary on four continents. PNAS 112, E4344–4353
23. Schiffer, M. B. (1986) Radiocarbon dating and the “old wood” problem: the case of the Hohokam chronology. Journal of Archaeological Science 13, 13–30
24. Kenyon, K. M. (1952) Excavations at Jericho, 1952. Palestine Exploration Quarterly 84, 62–82
25. Nigro, L. (2020) The Italian-Palestinian expedition to tell es-Sultan, Ancient Jericho (1997–2015): Archaeology and valorisation of material and immaterial heritage. Archaeopress
26. Marchetti, N. (2000) A century of excavations on the Spring Hill at Tell es-Sultan, ancient Jericho: A reconstruction of its stratigraphy. University of Rome; Palestinian Dept. of Antiquities
27. Kenyon, K. M. (1981) Excavations at Jericho, Vol. 3: The architecture and stratigraphy of the Tell. British School of Archaeology in Jerusalem
28. Flanagan, J. W., McCreery, D. W., Yāsīn, H. A. N. & Kehrberg, I. (1996) Tall Nimrin: Preliminary report on the 1995 excavation and geological survey. ADAJ 40, 271–292
29. Carlisle, D. B. & Braman, D. R. (1991) Nanometre-size diamonds in the Cretaceous/Tertiary boundary clay of Alberta. Nature 352, 708–709
30. Hough, R. M., Gilmour, I. & Pillinger, C. T. (1999) Carbon isotope study of impact diamonds in Chicxulub ejecta. In Large Meteorite Impacts and Planetary Evolution II, 215–222
31. Kinzie, C. R. et al. (2014) Nanodiamond-rich layer across three continents consistent with major cosmic impact at 12,800 cal BP. Journal of Geology 122, 475–506
32. Schoell, M. & Carlson, R. M. (1999) Diamondoids and oil are not forever. Nature 399, 15–16
33. Bruce, L. F. et al. (2011) Luminescence of diamonds from metamorphic rocks. American Mineralogist 96, 14–22
34. De Araujo, P. L. B., Mansoori, G. A. & De Araujo, E. S. (2012) Diamondoids: Occurrence in fossil fuels, applications in petroleum exploration and fouling in petroleum production. International Journal of Oil, Gas and Coal Technology 5, 316–367
35. Omotoyinbo, J. A. & Oluwole, O. (2008) Working properties of selected refractory clay deposits in southwestern Nigeria
36. Haccuria, E. et al. (2016) Selected phase equilibria studies in the Al₂O₃–CaO–SiO₂ system. Journal of the American Ceramic Society 99, 691–704
37. Kletetschka, G. & Wieczorek, M. A. (2017) Fundamental relations of mineral-specific magnetic carriers for paleointensity determination. Physics of the Earth and Planetary Interiors 272, 44–49
38. Klokočník, J. et al. (2020) Support for two subglacial impact craters in northwest Greenland from gravity data. Tectonophysics
39. Kletetschka, G., Kohout, T. & Wasilewski, P. J. (2003) Magnetic remanence in the Murchison meteorite. Meteoritics & Planetary Science 38, 399–405
40. Kletetschka, G. et al. (2020) Electric discharge evidence in Chicxulub ejecta. Scientific Reports 10, 1–11
41. Kletetschka, G. et al. (2018) Cosmic-impact event in lake sediments from Central Europe. Journal of Geology 126, 561–575
42. Wasilewski, P. & Kletetschka, G. (1999) Lodestone: Nature’s only permanent magnet. Geophysical Research Letters 26, 2275–2278
43. Osinski, G. R. et al. (2008) The Dakhleh Glass: Product of an impact airburst or cratering event? Meteoritics & Planetary Science 43, 2089–2106
44. Piperno, D. R. (2006) Phytoliths: A comprehensive guide for archaeologists and paleoecologists. AltaMira Press
45. Yost, C. (2008) Phytolith analysis of feature fill samples from the el Dornajo site, Ecuador. Paleo Research Institute
46. Humphreys, G. S. et al. (2008) Some effects of fire on the regolith. In Advances in Regolith, 216–220
47. Bunch, T. E. (1966) Shock-induced microstructures and solid-state transformations in explosion craters. Ph.D. thesis, University of Pittsburgh
48. Leroux, H., Reimold, W. U. & Doukhan, J.-C. (1994) Shock metamorphism in quartz from the Vredefort dome. Tectonophysics 230, 223–239
49. Stöffler, D. & Langenhorst, F. (1994) Shock metamorphism of quartz in nature and experiment. Meteoritics 29, 155–181
50. French, B. M. (1998) Traces of catastrophe: A handbook of shock-metamorphic effects in terrestrial meteorite impact structures. Lunar and Planetary Institute
51. Feignon, J. G., Ferrière, L., Leroux, H. & Koeberl, C. (2020) Characterization of shocked quartz grains from Chicxulub peak ring granites and shock pressure estimates. Meteoritics & Planetary Science 55, 2206–2223.
52. Koeberl, C. (1997) Impact cratering: the mineralogical and geochemical evidence. Oklahoma Geological Survey Circular 100, 30–54.
53. Voorn, M. (2010) A new way to confirm meteorite impact produced planar features in quartz: Combining Universal Stage and Electron Backscatter Diffraction techniques.
54. Langenhorst, F. (2002) Shock metamorphism of some minerals: Basic introduction and microstructural observations. Bulletin of the Czech Geological Survey 77, 265–282.
55. Huber, M. S., Ferriere, L., Losiak, A. & Koeberl, C. (2011) ANIE: A mathematical algorithm for automated indexing of planar deformation features in quartz grains. Meteoritics & Planetary Science 46, 1418–1424. https://doi.org/10.1111/j.1945-5100.2011.01234.x
56. Trepmann, C. A. & Spray, J. G. (2006) Shock-induced crystal-plastic deformation and post-shock annealing of quartz: Microstructural evidence from crystalline target rocks of the Charlevoix impact structure, Canada. European Journal of Mineralogy 18, 161–173.
57. Carter, N. L. (1965) Basal quartz deformation lamellae; A criterion for recognition of impactites. American Journal of Science 263, 786–806.
58. Poelchau, M. (n.d.) A Look at Unindexed PDFs: How high should the value be for shocked rocks? In Lunar and Planetary Science Conference, abstract 2473.
59. Hamers, M. & Drury, M. (2011) Scanning electron microscope-cathodoluminescence (SEM-CL) imaging of planar deformation features and tectonic deformation lamellae in quartz. Meteoritics & Planetary Science 46, 1814–1831.
60. Hamers, M., Pennock, G. & Drury, M. (2017) Scanning electron microscope cathodoluminescence imaging of subgrain boundaries, twins and planar deformation features in quartz. Physics and Chemistry of Minerals 44, 263–275.
61. Hamers, M. F. (2013) Identifying shock microstructures in quartz from terrestrial impacts: New scanning electron microscopy methods. UU Department of Earth Sciences.
62. Gieré, R. et al. (2015) Lightning-induced shock lamellae in quartz. American Mineralogist 100, 1645–1648.
63. Gratz, A. J., Fisler, D. K. & Bohor, B. F. (1996) Distinguishing shocked from tectonically deformed quartz by the use of the SEM and chemical etching. Earth and Planetary Science Letters 142, 513–521.
64. Eby, G. N. et al. (2015) Trinitite redux: Mineralogy and petrology. American Mineralogist 100, 427–441.
65. Florenskiy, K. (1965) Preliminary results from the 1961 combined Tunguska meteorite expedition. Meteoritica XXIII, 3–37.
66. Scarlett, H. A. (2020) Nuclear Weapons Testing (Past). Los Alamos National Laboratory, Los Alamos, NM.
67. Vannucchi, P., Morgan, J. P., Della Lunga, D., Andronicos, C. L. & Morgan, W. J. (2015) Direct evidence of ancient shock metamorphism at the site of the 1908 Tunguska event. Earth and Planetary Science Letters 409, 168–174.
68. Lussier, A. J., Rouvimov, S., Burns, P. C. & Simonetti, A. (2017) Nuclear-blast induced nanotextures in quartz and zircon within Trinitite. American Mineralogist 102, 445–460.
69. Kletetschka, G., Radana, K. & Hakan, U. (2021) Evidence of shock-generated plasma’s demagnetization in the shock-exposed rocks. Scientific Reports.
70. Thy, P., Willcox, G., Barfod, G. H. & Fuller, D. Q. (2015) Anthropogenic origin of siliceous scoria droplets from Pleistocene and Holocene archaeological sites in northern Syria. Journal of Archaeological Science 54, 193–209.
71. Thy, P., Segobye, A. K. & Ming, D. W. (1995) Implications of prehistoric glassy biomass slag from east-central Botswana. Journal of Archaeological Science 22, 629–637.
72. Firestone, R. B. et al. (2007) Evidence for an extraterrestrial impact 12,900 years ago that contributed to the megafaunal extinctions and the Younger Dryas cooling. Proceedings of the National Academy of Sciences 104, 16016–16021.
73. Firestone, R. B. et al. (2010) Analysis of the Younger Dryas impact layer. Journal of Siberian Federal University 1, 30–62.
74. Hagstrum, J. T., Firestone, R. B., West, A., Weaver, J. C. & Bunch, T. E. (2017) Impact-related microspherules in Late Pleistocene Alaskan and Yukon “muck” deposits signify recurrent episodes of catastrophic emplacement. Scientific Reports 7, 1–15. https://doi.org/10.1038/s41598-017-16958-2
75. Israde-Alcántara, I. et al. (2012) Evidence from central Mexico supporting the Younger Dryas extraterrestrial impact hypothesis. Proceedings of the National Academy of Sciences 109, E738–E747.
76. LeCompte, M. A. et al. (2012) Independent evaluation of conflicting microspherule results from different investigations of the Younger Dryas impact hypothesis. Proceedings of the National Academy of Sciences 109, E2960–E2969.
77. LeCompte, M. A. et al. (2017) The Bowser Road Mastodon and the Younger Dryas Impact Hypothesis, Appendix 3 in The archaeological recovery of the Bowser Road Mastodon, Orange County NY (ed. R. M. Gramly). Persimmon Press.
78. Pino, M. et al. (2019) Sedimentary record from Patagonia, southern Chile supports cosmic-impact triggering of biomass burning, climate change, and megafaunal extinctions at 12.8 ka. Scientific Reports 9, 4413.
79. Teller, J. et al. (2019) A multi-proxy study of changing environmental conditions in a Younger Dryas sequence in southwestern Manitoba, Canada, and evidence for an extraterrestrial event. Quaternary Research 93, 1–28.
80. Wu, Y., Sharma, M., LeCompte, M. A., Demitroff, M. N. & Landis, J. D. (2013) Origin and provenance of spherules and magnetic grains at the Younger Dryas boundary. Proceedings of the National Academy of Sciences 110, E3557–E3566.
81. Bunch, T. E. et al. (2012) Very high-temperature impact melt products as evidence for cosmic airbursts and impacts 12,900 years ago. Proceedings of the National Academy of Sciences 109, E1903–E1912.
82. Wittke, J. H. et al. (2013) Evidence for deposition of 10 million tonnes of impact spherules across four continents 12,800 y ago. Proceedings of the National Academy of Sciences 110, E2088–E2097.
83. Harris, R. & Schultz, P. (2019) Are Ti-Rich particles in Late Pleistocene sediments from Patagonia distal ejecta from an Atacama airburst? In Lunar and Planetary Science Conference, abstract 2526.
84. Baker, G. A. (1959) Tektites. National Museum of Victoria.
85. Sharygin, V., Sokol, E. & Belakovskii, D. (2009) Fayalite-sekaninaite paralava from the Ravat coal fire (central Tajikistan). Russian Geology and Geophysics 50, 703–721.
86. Baker, G. (1968) Micro-forms of hay-silica glass and of volcanic glass. Mineralogical Magazine 36, 1012–1023.
87. Pauketat, T. R. et al. (2002) The residues of feasting and public ritual at early Cahokia. American Antiquity 67, 257–279.
88. Friend, C., Dye, J. & Fowler, M. (2007) New field and geochemical evidence from vitrified forts in South Morar and Moidart, NW Scotland: further insight into melting and the process of vitrification. Journal of Archaeological Science 34, 1685–1701.
89. Johnston, S. et al. (2018) The experimental building, burning and excavation of a two-storey Trypillia house. PAST: Newsletter of the Prehistoric Society 89, 13–15.
90. Orton, D. C., Nottingham, J., Rainsford-Betts, G., Hosking, K. & Millard, A. (2020) Animal bones [from Nebelivka]. In Early Urbanism in Europe (ed. G. Bisserka), 383–404. De Gruyter Open.
91. Dever, W. G. (1996) Preliminary Excavation Reports: Sardis, Idalion, and Tell El-Handaquq North, Vol. 53. American Schools of Oriental Research.
92. Bikai, P. M. & Egan, V. (1996) Archaeology in Jordan. American Journal of Archaeology 100, 507–535.
93. Yates, C. J. C. (2014) Beyond the mound: Locating complexity in Northern Mesopotamia during the “Second Urban Revolution”. Boston University.
94. Senior, L. M. (1998) Time and technological change: Ceramic production, labor, and economic transformation in a third millennium complex society (Tell Leilan, Syria). University of Arizona.
95. Weiss, H. et al. (n.d.) Revising the contours of history at Tell Leilan. Annales Archéologiques Arabes Syriennes 59.
96. Courty, M.-A. (n.d.) The soil record of an exceptional event at 4000 BP in the Middle East. In Natural Catastrophes During Bronze Age Civilisations, p. 93.
97. Grissom, C. A. (1996) Conservation of Neolithic lime plaster statues from ’Ain Ghazal. Studies in Conservation 41, 70–75. https://doi.org/10.1179/sic.1996.41.Supplement-1.70
98. Osinski, G., Bunch, T. & Wittke, J. (2003) Evidence for the shock melting of carbonates from Meteor Crater, Arizona. Meteoritics & Planetary Science Supplement 38, abstract 5070.
99. Osinski, G., Bunch, T. & Wittke, J. (2007) Impact melt generation at Meteor Crater, Arizona: Implications for impacts into volatile-rich target rocks. Meteoritics & Planetary Science Supplement 42, abstract 5110.
100. Boslough, M. et al. (2012) Arguments and evidence against a Younger Dryas impact event. In Climates, Landscapes, Civilizations, Geophysical Monograph Series Vol. 198, 13–26. American Geophysical Union.
101. Boslough, M. & Crawford, D. A. (2008) Low-altitude airbursts and the impact threat. International Journal of Impact Engineering 35, 1441–1448.
102. Wakita, S., Johnson, B. C., Denton, C. A. & Davison, T. M. (2021) Jetting during oblique impacts of spherical impactors. Icarus 360, 114365.
103. Butterman, W. C. & Foster, W. R. (1967) Zircon stability and the ZrO₂–SiO₂ phase diagram. American Mineralogist 52, 880–885.
104. Bohor, B., Betterton, W. & Krogh, T. (1993) Impact-shocked zircons: discovery of shock-induced textures reflecting increasing degrees of shock metamorphism. Earth and Planetary Science Letters 119, 419–424.
105. Patterson, M. C. L. (1986) Development of a coalesced arc plasma reactor for minerals processing. University of Cambridge.
106. Rochow, E. G. (2013) The Chemistry of Silicon. Pergamon International Library of Science, Technology, Engineering and Social Studies, Vol. 9. Elsevier.
107. Glass, B. P. & Simonson, B. M. (2013) Mesozoic spherule/impact ejecta layers. In Distal Impact Ejecta Layers, 245–320. Springer.
108. Chen, M., Shu, J., Mao, H.-K., Xie, X. & Hemley, R. J. (2003) Natural occurrence and synthesis of two new postspinel polymorphs of chromite. Proceedings of the National Academy of Sciences 100, 14651–14654.
109. Economou-Eliopoulos, M., Eliopoulos, D. G. & Tsoupas, G. (2017) On the diversity of the PGE content in chromitites hosted in ophiolites and in porphyry-Cu systems: Controlling factors. Ore Geology Reviews 88, 156–173.
110. Cabri, L. J., Harris, D. C. & Weiser, T. W. (1996) Mineralogy and distribution of platinum-group mineral (PGM) placer deposits of the world. Exploration and Mining Geology 2, 73–167.
111. Uysal, I. (2008) Platinum-group minerals (PGM) and other solid inclusions in the Elbistan-Kahramanmaraş mantle-hosted ophiolitic chromitites, south-eastern Turkey: their petrogenetic significance. Turkish Journal of Earth Sciences 17, 729–740.
112. Jansen, M. et al. (2016) Platinum group placer minerals in ancient gold artifacts—Geochemistry and osmium isotopes of inclusions in Early Bronze Age gold from Ur/Mesopotamia. Journal of Archaeological Science 68, 12–23.
113. Tolstykh, N. D., Sidorov, E. G., Laajoki, K. V., Krivenko, A. P. & Podlipskiy, M. (2000) The association of platinum-group minerals in placers of the Pustaya River, Kamchatka, Russia. Canadian Mineralogist 38, 1251–1264.
114. Okrugin, A. (2001) Mineral parageneses and the origin of isoferroplatinum nuggets from the Ignali placer deposit (Siberian platform).
115. Zaccarini, F. et al. (2013) Platinum-group minerals (PGM) nuggets from alluvial–eluvial placer deposits in the concentrically zoned mafic-ultramafic Uktus complex (Central Urals, Russia). European Journal of Mineralogy 25, 519–531.
116. Barkov, A., Martin, R., Fleet, M., Nixon, G. & Levson, V. (2008) New data on associations of platinum-group minerals in placer deposits of British Columbia, Canada. Mineralogy and Petrology 92, 9–29.
117. Tolstykh, N. D., Foley, J. Y., Sidorov, E. G. & Laajoki, K. V. (2002) Composition of the platinum-group minerals in the Salmon River placer deposit, Goodnews Bay, Alaska. Canadian Mineralogist 40, 463–471.
118. Fedortchouk, Y. et al. (2009) Major- and trace-element composition of platinum group minerals and their inclusions from several Yukon placers. Yukon Exploration and Geology, 185–196.
119. Harries, D., Berg, T., Langenhorst, F. & Palme, H. (2012) Structural clues to the origin of refractory metal alloys as condensates of the solar nebula. Meteoritics & Planetary Science 47, 2148–2159.
120. Daly, L. et al. (2017) In situ analysis of refractory metal nuggets in carbonaceous chondrites. Geochimica et Cosmochimica Acta 216, 61–81.
121. Schwander, D. (2014) Extraktion und nanoanalytische Charakterisierung refraktärer Nanometallpartikel frühester solarer Materie und Synthese metallischer Nanopartikel aus dotierten Ca–Mg–Al–Si-Schmelzen. Universitätsbibliothek Mainz.
122. Bonté, P., Jehanno, C., Maurette, M. & Brownlee, D. (1987) Platinum metals and microstructure in magnetic deep-sea cosmic spherules. Journal of Geophysical Research 92, E641–E648.
123. Rudraswami, N., Parashar, K. & Shyam Prasad, M. (2011) Micrometer- and nanometer-sized platinum group nuggets in micrometeorites from deep-sea sediments of the Indian Ocean. Meteoritics & Planetary Science 46, 470–491.
124. Rudraswami, N. et al. (2014) Refractory metal nuggets in different types of cosmic spherules. Geochimica et Cosmochimica Acta 131, 247–266.
125. Brownlee, D., Bates, B. & Wheelock, M. (1984) Extraterrestrial platinum group nuggets in deep-sea sediments. Nature 309, 693–695.
126. Joswiak, D., Brownlee, D., Nguyen, A. & Messenger, S. (2017) Refractory materials in comet samples. Meteoritics & Planetary Science 52, 1612–1648.
127. Anders, E. & Grevesse, N. (1989) Abundances of the elements: Meteoritic and solar. Geochimica et Cosmochimica Acta 53, 197–214.
128. Berg, T. et al. (2009) Direct evidence for condensation in the early solar system and implications for nebular cooling rates. Astrophysical Journal Letters 702, L172.
129. Palme, H., Hutcheon, I. & Spettel, B. (1994) Composition and origin of refractory-metal-rich assemblages in a Ca, Al-rich Allende inclusion. Geochimica et Cosmochimica Acta 58, 495–513.
130. Schwander, D., Berg, T., Harries, D., Schönhense, G. & Ott, U. (2014) Composition and clues to the origin of refractory metal nuggets extracted from chondritic meteorites. Meteoritics & Planetary Science 49, 1888–1901.
131. Wark, D. & Lovering, J. Refractory/platinum metal grains in Allende calcium–aluminium-rich clasts (CARCs): possible exotic presolar material? In Lunar and Planetary Science Conference.
132. Nazarov, M. et al. (2009) Phosphorus-bearing sulfides and their associations in CM chondrites. Petrology 17, 101–123.
133. Flynn, G. J. et al. (2006) Elemental compositions of comet 81P/Wild 2 samples collected by Stardust. Science 314, 1731–1735.
134. Makvandi, S., Beaudoin, G., McClenaghan, B. M. & Layton-Matthews, D. (2015) The surface texture and morphology of magnetite from the Izok Lake volcanogenic massive sulfide deposit and local glacial sediments, Nunavut, Canada: Application to mineral exploration. Journal of Geochemical Exploration 150, 84–103.
135. Knipping, J. L. et al. (2015) Trace elements in magnetite from massive iron oxide-apatite deposits indicate a combined formation by igneous and magmatic-hydrothermal processes. Geochimica et Cosmochimica Acta 171, 15–38.
136. Knipping, J. L. et al. (2019) In-situ iron isotope analyses reveal igneous and magmatic-hydrothermal growth of magnetite at the Los Colorados Kiruna-type iron oxide-apatite deposit, Chile. American Mineralogist 104, 471–484.
137. Britvin, S., Murashko, M., Vapnik, E., Polekhovsky, Y. S. & Krivovichev, S. (2017) Barringerite Fe₂P from pyrometamorphic rocks of the Hatrurim Formation, Israel. Geology of Ore Deposits 59, 619–625.
138. Harris, R. & Schultz, P. Evidence of multiple cometary airbursts during the Pleistocene from Pica (Chile), Dakhleh (Egypt), and Edeowie (Australia) glasses. In Lunar and Planetary Science Conference, abstract 2229.
139. Collins, S. & Aljarrah, H. (2011) Tall el-Hammam Season Six, 2011: Excavation, Survey, Interpretations and Insights. Department of Antiquities of Jordan, Amman.
140. Knüsel, C. J. (2014) Crouching in fear: Terms of engagement for funerary remains. Journal of Social Archaeology 14, 26–58.
141. Rubio, L. et al. (2020) Spectrophotometric color measurement to assess temperature of exposure in cortical and medullar heated human bones: A preliminary study. Diagnostics 10, 979.
142. Jenniskens, P., Popova, O. P., Glazachev, D. O., Podobnaya, E. D. & Kartashova, A. P. (2019) Tunguska eyewitness accounts, injuries, and casualties. Icarus 327, 4–18.
143. Collins, S., Byers, G. A., Kobs, C. M. & Silvia, P. J. (2014) Tall el-Hammam Season Nine, 2014: Excavation, Survey, Interpretations and Insights. Department of Antiquities of Jordan, Amman.
144. Ibrahim, M., Sauer, J. A. & Yassine, K. (1988) The east Jordan valley survey 1976 (Part two). Archaeology of Jordan: essays and reports, University of Jordan, Amman, 189–207.
145. Ibrahim, M. A., Sauer, J. A. & Yassine, K. (1976) The East Jordan Valley Survey, 1975. Bulletin of the American Schools of Oriental Research 222, 41–66.
146. Yassine, K. (2011) Tell Nimrin: An Archaeological Exploration. University of Jordan.
147. Flanagan, J. W., McCreery, D. W. & Yāsīn, H. A. N. (1992) Preliminary report of the 1990 excavation at Tell Nimrin. Annual of the Department of Antiquities of Jordan 36, 89–111.
148. Collins, S. (2012) Tall el-Hammam is Sodom: Billington’s Heshbon identification suffers from numerous fatal flaws. Biblical Research Bulletin XII.
149. Al-Rifaee, M. K. (2013) Jordan Valley. In Salinity management workshop for the CGIAR Research Program on Water, Land, and Ecosystem (WLE), Jordan.
150. Ammari, T. et al. (2013) Soil salinity changes in the Jordan Valley potentially threaten sustainable irrigated agriculture. Pedosphere 23, 376–384.
151. Singer, A. (2007) Saline and alkaline soils in Israel. Soils of Israel, 231–248.
152. Ayers, R. S. & Westcot, D. W. (1985) Water quality for agriculture. FAO Irrigation and Drainage Paper 29, Rome.
153. USDA (2011) Crop tolerance and yield potential of selected crops as influenced by irrigation water salinity (ECw) or soil salinity (ECe). USDA, Washington, DC.
154. Kenyon, K. M. (1955) Excavations at Jericho, 1955. Palestine Exploration Quarterly 87, 108–117.
155. Kenyon, K. M. (1957) Digging up Jericho.
156. Nigro, L. & Taha, H. (2009) Renewed excavations and restorations at Tell es-Sultan/ancient Jericho, Fifth season—March–April 2009, 731–744.
157. Nigro, L. & Taha, H. Results of the Italian–Palestinian expedition to Tell es-Sultan: At the dawn of urbanization in Palestine. In Tell es-Sultan/Jericho in the Context of the Jordan Valley: Proceedings of the International Workshop (Ariha 2005), 1–40.
158. Kenyon, K. M. (1951) Some notes on the history of Jericho in the second millennium BC. Palestine Exploration Quarterly 83, 101–138.
159. Nigro, L., Sala, M., Taha, H. & Yassine, J. (2011) The Bronze Age palace and fortifications at Tell es-Sultan/Jericho: the 6th–7th seasons (2010–2011), 571–597.
160. Migowski, C., Agnon, A., Bookman, R., Negendank, J. F. & Stein, M. (2004) Recurrence pattern of Holocene earthquakes along the Dead Sea transform revealed by varve-counting and radiocarbon dating of lacustrine sediments. Earth and Planetary Science Letters 222, 301–314.
161. Svetsov, V. (1996) Total ablation of the debris from the 1908 Tunguska explosion. Nature 383, 697–699.
162. Svetsov, V. B. (2006) Thermal radiation on the ground from large aerial bursts caused by Tunguska-like impacts. In Lunar and Planetary Science XXXVII, 1–2.
163. Kirova, O. (1965) Scattered matter from the area of fall of the Tunguska cometary meteorite. Annals of the New York Academy of Sciences 119, 235–242.
164. Beretta, M. (2017) The alchemy of glass: counterfeit, imitation, and transmutation in ancient glassmaking. Science History Publications.
165.
Museum of London (2019) What happened in the Great Fire of London?
166. Hopkins, R. P. (2008) The historiography of the Allied bombing campaign of Germany.
167. Connolly, B. D. (2011) HSE and Re-Os systematics of the 3.3 Ga Weltevreden komatiites from the Barberton Greenstone Belt, South Africa: Implications for early Earth’s mantle evolution.
168. de Silva, S. & Sharpton, V. (1988) Explosive volcanism, shock metamorphism and the KT boundary. In Global Catastrophes in Earth History: An Interdisciplinary Conference on Impacts, Volcanism, and Mass Mortality, Vol. 38.
169. Ramsey, C. B., Manning, S. W. & Galimberti, M. (2004) Dating the volcanic eruption at Thera. Radiocarbon 46, 325–344.
170. Collins, S. (2006) The search for Sodom & Gomorrah. Trinity Southwest University Press.
171. Sigurdsson, H., Carey, S. & Devine, J. (1990) Assessment of mass, dynamics and environmental effects of the Minoan eruption of Santorini volcano. In Thera and the Aegean World III, Vol. 2, 100–112.
172. Moore, A., Hillman, G. & Legge, A. (2000) Village on the Euphrates: From foraging to farming at Abu Hureyra. Oxford University Press.
173. Moore, A. & Kennett, D. (2013) Cosmic impact, the Younger Dryas, Abu Hureyra, and the inception of agriculture in Western Asia. Eurasian Prehistory 10, 57–66.
174. Hanson, S. K. et al. (2016) Measurements of extinct fission products in nuclear bomb debris: Determination of the yield of the Trinity nuclear test 70 y later. Proceedings of the National Academy of Sciences 113, 8104–8108.
175. Glasstone, S. & Dolan, P. J. (1977) The Effects of Nuclear Weapons, third edition. U.S. Government Printing Office.
176. Wheeler, L. F. & Mathias, D. L. (2019) Probabilistic assessment of Tunguska-scale asteroid impacts. Icarus 327, 83–96.
177. Hermes, R. E. & Strickfaden, W. B. (2005) A new look at Trinitite. Nuclear Weapons Journal 2, 2–7.
178. Brazo, M. W. & Austin, S. A. (1982) The Tunguska explosion of 1908. Origins 9, 82–93.
179. Wolbach, W. S. et al. (2018) Extraordinary biomass-burning episode and impact winter triggered by the Younger Dryas cosmic impact ∼12,800 years ago. 2. Lake, marine, and terrestrial sediments. Journal of Geology 126, 185–205.
180.
Robertson, D. K. & Mathias, D. L. (2019) Hydrocode simulations of asteroid airbursts and constraints for Tunguska. Icarus 327, 36–47.
181. Kletetschka, G., Procházka, V., Fantucci, R. & Trojek, T. (2017) Survival response of Larix sibirica to the Tunguska explosion. Tree-Ring Research 73, 75–90.
182. Zlobin, A. E. (2013) Discovery of probably Tunguska meteorites at the bottom of Khushmo river’s shoal. arXiv preprint arXiv:1304.8070.
183. Kirova, O. & Zaslavskaya, N. (1966) Data characterizing the dispersed matter as recovered from the area of fall of the Tunguska meteorite. Meteoritika 27, 119–127.
184. Vishnevsky, S. & Raitala, J. (2000) Impact diamonds as indicators of shock metamorphism in strongly-reworked Pre-Cambrian impactites. In Impacts and the Early Earth, 229–247.
185. Kvasnitsa, V. et al. (1979) High-pressure carbon polymorphs in the peats of Tunguska catastrophe region. Dopovidi Akademii Nauk Ukrainskoi RSR, 999–1004.
186. Hryanina, L. (1999) The bouquet of the meteorite craters in the epicentre of Tunguska impact 1908. In Lunar and Planetary Science Conference, abstract 1186.
187. Korina, M. et al. Iridium distribution in the peat layers from area of Tunguska event. In Lunar and Planetary Science Conference.
188. LeMaire, T. R. (1980) Stones from the stars: the unresolved mysteries of meteorites. Prentice Hall.
189. Collins, G. S., Melosh, H. J. & Marcus, R. (2005) Earth impact effects program: A web-based computer program for calculating the regional environmental consequences of a meteoroid impact on Earth. Meteoritics & Planetary Science 40, 817–840.
190.
Collins, G. S., Melosh, H. J. & Marcus, R. (2005) Earth impact effects program
191. Clifton, J. R. & Davis, F. L. (1979) Mechanical properties of adobe, Vol. 13. National Bureau of Standards.
192. Torrealva, D., Cerrón, C. & Espinoza, Y. Shear and out-of-plane bending strength of adobe walls externally reinforced with polypropylene grids. In 14th World Conference on Earthquake Engineering, Beijing, 12–17.
193. Silveira, D. et al. (2012) Mechanical properties of adobe bricks in ancient constructions. Construction and Building Materials 28, 36–44.
194. Zipf, R. & Cashdollar, K. (2010) Explosions and refuge chambers: Effects of blast pressure on structures and the human body.
195. Alekseev, V., Konkashbaev, I. & Konkashbaev, I. (1998) Possible explanation of total ablation of the 1908 Tunguska asteroid.
196. Boslough, M. Computational modeling of low-altitude airbursts. In AGU Fall Meeting Abstracts, U21E-03.
197. Boslough, M. Airburst modeling. In First International Workshop on Potentially Hazardous Asteroids Characterization, Atmospheric Entry and Risk Assessment. Sandia National Laboratories.
198. Gustafsson, Ö. et al. (2001) Evaluation of a protocol for the quantification of black carbon in sediments. Global Biogeochemical Cycles 15, 881–890.
199. Wolbach, W. S., Gilmour, I. & Anders, E. (1990) Major wildfires at the Cretaceous/Tertiary boundary. Geological Society of America Special Paper 247, 391–400.
200. Wolbach, W. S., Lewis, R. S. & Anders, E. (1985) Cretaceous extinctions: Evidence for wildfires and search for meteoritic material. Science 230, 167–170.
201. Wolbach, W. S. et al. (2018) Extraordinary biomass-burning episode and impact winter triggered by the Younger Dryas cosmic impact ∼12,800 years ago. 1. Ice cores and glaciers. Journal of Geology 126, 165–184.
202. Wolbach, W. S., Gilmour, I., Anders, E., Orth, C. J. & Brooks, R. R. (1988) Global fire at the Cretaceous–Tertiary boundary. Nature 334, 665–669.
203.
Ramsey, C. B. (2013) Analysis operations and models
204.
Ramsey, C. B. (2013) Analysis examples