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Abstract

Due to freely available, tailored software, Bayesian statistics is
fast becoming the dominant paradigm in archaeological chronology
construction. Such software provides users with powerful tools for
Bayesian inference for chronological models with little need to under-
take formal study of statistical modelling or computer programming.
This runs the risk that it is reduced to the status of a black-box which
is not sensible given the power and complexity of the modelling tools
it implements. In this paper we seek to offer intuitive insight to en-
sure that readers from the archaeological research community who use
Bayesian chronological modelling software will be better able to make
well educated choices about the tools and techniques they adopt. Our
hope is that they will then be both better informed about their own
research designs and better prepared to offer constructively critical
assessments of the modelling undertaken by others.

1 Background

Bayesian chronological models are statistical models that allow us to rep-
resent, manage and interpret both relative and absolute chronological in-
formation from one or more archaeological or palaeoenvironmental research
projects. They were developed over the last thirty years specifically for the
archaeo and palaeo research communities by statisticians and software de-
velopers who took advantage of a revolution in our ability to implement
such models using a simulation-based (as opposed to an exact calculation)
approach.

Users of the resulting software need not know the details of the underly-
ing maths and stats nor of the computational techniques used to implement
them. They must, however, understand the concept of a model, appreciate
the choices they are making when they select a particular model to repre-
sent their own project and understand enough of the key decisions made by
the statistical modellers and software developers to know which software is
appropriate for their needs.

In this paper, we aim to provide readers with some of the background they
need to undertake each of these tasks. In Section 1.1 we look at some key
concepts and decisions involved in modelling in general and then Section 2
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Figure 1: Two models of elephants: which is best?

focusses on the basics of formal chronology construction, highlighting the fact
that section drawings and Harris Matrices are both types of chronological
model. Formal statistical notation is then introduced, in Section 3, and used
to define the statistical models now in routine use for Bayesian radiocarbon
dating. These are then applied to specific examples and illustrative software
output is discussed. Section 4 focuses on some of the practicalities involved
in using Bayesian radiocarbon calibration software, and Section 5 looks to
the future.

1.1 What makes a good model?

For the purposes of this paper, we define a model as:

a representation of a person, organism, structure or concept typ-
ically smaller, simpler and/or more abstract than the original.

This definition highlights the very many different ways in which the term
model is used in modern parlance, but it tells us nothing about what makes
a good model for any specific purpose. To move towards this, we start by
thinking about a simple and perhaps rather trivial modelling problem: what
makes a good model of an elephant?
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Consider the model elephants pictured in Figure 1; clearly neither are anatom-
ically accurate, but is one model better than the other? Our contention is
that which one is best depends on what the model is to be used for. If the
model is for entertaining a 3-year-old child on a wet afternoon, then the one
on the left is probably the best. It’s safe for them to play with on their own,
has no sharp or fragile pieces and will allow them to recognise an elephant
just from its long nose. If, on the other hand, the model is to be used to help
a 10-year-old child learn the key features of real elephants, then the model on
the right is surely more suitable. It has more realistic legs and head and also
has a tail, ears and tusks which are all missing from the one on the left. Were
we to want to move beyond these basics, however, to teach an older child
or adult about, say, the differences between African and Indian elephants
or about the physiology of elephants relative to other large mammals then
neither of the models pictured would be suitable and we would need to look
elsewhere for something more anatomically detailed.

Analogies of this sort are useful only up to a point and this one could cer-
tainly be taken too far, but before we leave it and move to think about
chronological models it is worth noting a couple of similarities between them
and model elephants. Both chronological models and model elephants can be:
off-the-shelf or tailor-made and descriptive or mechanistic. The elephants in
Figure 1 are both off-the-shelf and descriptive, but were we to seek anatomi-
cally correct models for more sophisticated purposes then they may well need
to be tailor-made and mechanistic.

In a similar way, for many purposes, chronological models that are descriptive
and available off-the-shelf can be all that is required to complete our archae-
ological or palaeoenvironmental inference. In other situations we might need
off-the-shelf, but mechanistic chronological models which capture (in part)
the mechanisms that led to the chronological observations we have made. In
some situations, however, none of the models on offer in existing off-the-shelf
software are suitable for our needs and then we must ask a statistician or
software developer to construct a tailor-made, probably mechanistic, model
for us.
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2 Formal chronology construction

All modelling clearly involves making choices. Generally, we start by se-
lecting a meduim, framework or paradigm in which to construct the model
and other choices then follow. In statistical modelling, our first choice is be-
tween the Frequentist or Classical paradigm and the Bayesian one. Frequen-
tist/Classical statistics is based on a classical interpretation of probability
which defines an event’s probability as the limit of its relative frequency in a
large number of trials. Bayesian statistics — named for Thomas Bayes (1701–
1761) — is a paradigm in which evidence about the true (but unknown) state
of the world is expressed in terms of ‘degrees of belief’, represented as per-
sonal probability statements. Because of it’s focus on degrees of belief, the
Bayesian paradigm is ideally suited to the representation and management of
expert opinion and prior knowledge as well as scientific data and this makes
it particularly appealing to archaeologists and palaeoenvironmental scien-
tists looking for a coherent way to draw together information from several
different sources.

Buck et al (1996) made the case for the use of the Bayesian paradigm in
archaeology in some detail and we do not recap those arguments here. In-
stead, we consider the circumstances we find ourselves in when constructing
chronological models and propose that, for all but the simplest problems, the
Bayesian paradigm seems most natural.

2.1 Appropriate chronological models

Just as with the elephant modelling problem, in order to choose the appropri-
ate nature and scale of model for our archaeo or palaeo research project, we
need to know precisely what we are modelling and why. For example, if we
are seeking to date a single event in the archaeological record, like the death
of an individual human whose articulated skeleton has been found in a well
sealed grave, then a Frequentist approach might be suitable. We could (in
theory) repeatedly date the same event by sending multiple samples from the
skeleton to the laboratory for dating and then summarise the results within
the Classical statistical paradigm. However, if we want to date a sequence of
events (e.g. stratigraphy from an archaeological site or a sediment core) then
the relative chronological knowledge needs modelling and, probably, some ex-
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pert chronological knowledge/opinion too. In which case we will surely need
the Bayesian paradigm. If we want to construct a chronology for a whole
site or landscape then multiple sequences need comparing and combining:
several experts might be involved, working at different times and/or in dif-
ferent places and so the model must be modular and will almost certainly
need to account for personal probability statements from multiple experts.
In such circumstances, the Bayesian paradigm is the only one that we are
aware of that allows robust interpretation of all of the inter-related sources
of information simultaneously.

2.2 Pictures as chronological models

Almost all chronologists who are drawn towards the Bayesian paradigm are
motivated in part by the desire to combine scientific dates and relative or
absolute prior knowledge. Stratigraphic information, is the most common
such knowledge from archaeological excavations and is usually held in the
research archive in the form of sketches or plots: section drawings, phase
diagrams, Harris matrices or age/depth plots. These are all pictorial models
of relative chronology and are a key starting point in chronological modelling.
Figure 2 offers an example section drawing from an imagined archaeological
site which we use to illustrate how such information can be utilised as the
starting point for chronological modelling.

The first step in creating a formal chronological model is to simplify the
stratigraphic drawing and to focus purely on the temporal information it
contains. The left-hand sketch in Figure 3 shows just such a simplification for
the illustrative section in Figure 2. The right-hand sketch in the same figure
shows a simplification of the one on the left, with a focus only on contexts
that contain samples that could be submitted for chronometric dating.

By drawing the two sketches in Figure 3 side-by-side, we highlight a key
choice that all chronological modellers must make i.e. which contexts and
samples to include. Most modellers are agreed that, all other things being
equal, we should follow Occam’s razor and keep the model as simple as
possible. This seems like good, straightforward advice, but in practice all
other things are seldom equal. By which we mean that excluding or including
contexts or samples from our chronological model, and precisely how we
represent the ones we do include, will almost always have at least some
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Figure 2: An illustrative section drawing from part of an (imagined) archae-
ological site. The locations of samples suitable for chromometric dating are
indicated by crosses.

impact on the results we get.

Given this, and the fact that there are many more such choices we need to
make as we undertake the implementation process, in the later sections of this
paper we offer some general guidance for those seeking to make responsible
use of Bayesian chronological modelling software. Before we can do that,
however, we need to a) clearly identify the key chronological components
that we wish to manage or interpret and b) to think and write rather more
formally, thus constructing statistical models. We address a) in the next
section and move to b) in Section 3. In doing so we draw on a large body of
existing literature, but in particular: Naylor and Smith (1988); Buck et al.
(1996); Blackwell and Buck (2008) and citations therein.

2.3 Key components of a statistical chronological model

There are broadly two types of information to be represented in a statistical
model for chronology construction: relative and absolute. Relative chrono-
logical information typically relates to the (prior) ordering of events; whereas
absolute chronological information usually arises from historical records or
from scientific dating methods.
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or

Figure 3: Sketches of the relative chronological information contained within
the stratigraphic profile shown in Figure 2. Horizontal lines represent ar-
chaeological context boundaries and crosses indicate the location within the
stratigraphic sequence of samples suitable for chronometric dating. The pro-
file on the left shows all of the contexts in Figure 2; the one on the right
shows only the contexts that contain samples suitable for absolute dating.
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In the remainder of this paper, we focus on absolute dates that arise from
radiocarbon dating, but Bayesian methods have also been developed for den-
drochronology (Litton and Zainodin, 1991; Millard, 2002; Jones, 2013), lu-
minescence dating (Zink, 2015) and electron spin resonance dating (Millard,
2006). We will also centre what we say around seeking to manage and inter-
pret the chronological information represented in Figures 2 and 3. Bayesian
models now exist to represent a considerably wider range of chronological
features than those needed for this purpose, but our goal here is to be intro-
ductory rather than comprehensive and we hope that interested readers will
read further work by the authors cited herein.

There are two key types of chronological event in Figures 2 and 3: those that
relate to directly datable objects (like the deposition of the samples indicted
by crosses) and those, like the creation of context boundaries, that do not.
Absolute date estimates for the context boundaries can only be obtained by
modelling their relationship with the datable objects, via the stratigraphic
sequence. So, in summary we need model components to represent the fol-
lowing:

• the true underlying dates we wish to learn about, only some of which
relate directly to datable objects,

• stratigraphic relationships between the true underlying dates of all com-
ponents of the stratigraphic record,

• the relationship between the true underlying dates and radiocarbon
determinations, including laboratory uncertainties and the necessary
calibration.

In the next section we look at all three of these, starting with a simple model
which includes only directly datable objects and their associated stratigraphic
relationships and then moving to include context boundaries and their strati-
graphic relationships to the datable objects. In so doing, we suppose that
the datable samples in Figures 2 and 3 (identified by crosses) give rise to the
radiocarbon determinations indicated in Table 1.
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Context Sample label Stratified within context Mean C14 age Lab error
B θ1 No 5700 30

θ2 No 5670 30
θ3 No 5650 30

C θ4 No 5720 30
θ5 No 5780 30

E θ6 Yes 5900 50
θ7 Yes 5870 50
θ8 Yes 5850 50

G θ9 No 6000 30
θ10 No 6130 30

I θ11 No 6200 50
θ12 No 6250 50

Table 1: Radiocarbon determinations assumed to be associated with the
illustrative stratigraphic sequence in Figure 2, along with an indication as
to whether or not we are assuming each sample to be stratified within the
relevant context.

3 Models for Bayesian radiocarbon dating

Since the focus in this section is on formal statistical modelling, some read-
ers may find it daunting. For those who do, we suggest that you focus on
appreciating the notation used and on the general structure of the equations
provided. It is not essential to understand the details of the equations to gain
insight into the structure of the models and the general nature of the way
in which they are constructed and it is these that are the most important.
Given this, we offer Figure 4 which we hope readers will use to follow the
structure of the model as it is described. The top part of the figure relates
to the ideas in Sections 3.1 and the lower part to those in Section 3.2.

Before we get into details, however, it is worth highlighting a few notational
conventions. We use Greek and Roman letters to represent individual compo-
nents of statistical models which are known as parameters. Some parameters
take single numerical values (known as scalars), and we indicate these using
standard font. Parameters defined using a bold font indicate a fixed length
sequence of scalars, known as a vector. Since vectors contain a sequence of
values, we often undertake calculations systematically for each entry in the
vector. For example, if z is a vector of length k (i.e. contains a sequence
of k scalars), then to multiply the elements in z together, we would write∏k

m=1 zm, where
∏

indicates multiply and zm (a scalar) is just one of the
entries of z.
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Data model

14C age Cal. ageCal. curve
µ(θ)X θ� �

±σ ±γ
X ∼ N(µ(θi,j), σ2

i,j + γ(θi,j)2)

Process model α
�
�
�
���

β
B
B
B
BBM

θi,j ∼ U(αj , βj)

Figure 4: Pictorial representation of the (hierarchical) statistical model de-
veloped by Naylor and Smith (1988). Here we represent the relationship
between chronological parameters that relate directly to data (i.e. θ, x and
σ) and those used to represent the underlying archaeological processes (α
and β). To emphasize the process relationships, the arrows represent the
causal direction which is the opposite direction from the one in which we
make inferences.

We will also need to use the term probability distribution function (or proba-
bility density) which refers to a function whose value at any given point pro-
vides a probabilistic statement about the parameter represented by the func-
tion. The familiar bell-shaped curve of the Normal probability distribution
function is one that readers will probably be able to call to mind. Such dis-
tributions can be used one-at-a-time to represent individual, independently
varying parameters. More commonly in statistical models, however, we work
with collections of such functions that are inter-related or covarying. When
we do this, we typically undertake calculations on lots of variables simul-
taneously (or jointly) so that we can keep track of their inter-relationships.
Then, when we create plots of the final results, we usually focus on variables
one at a time since visualising high dimensional distributions is notoriously
difficult. Such single variable representations are referred to as marginal (as
opposed to joint) probability distribution functions.

3.1 The basic Bayesian radiocarbon model

A radiocarbon determination has two parts: a radiocarbon age estimate, x
before present (BP), and an associated laboratory error, σ. We want to use
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this determination to learn about the (true underlying) calendar date, θ cali-
brated BP (cal BP), on which the sample sent for dating ceased metabolising.
To help us we often have prior information (historical, stratigraphic, etc.)
about the calendar date, which we represent with the (prior) probability
density p(θ).

In order to use the data and the prior information to learn about the calendar
date, we need to formalize the link between the information we have, i.e.
x±σ and p(θ), and what we want to learn about i.e. p(θ|x, σ) (note that the
symbol | can be read as ‘given’ so this is the probability density of θ given
x and σ). Since the proportion of radioactive carbon atoms in the earth’s
atmosphere has not been constant over time, we need a calibration curve to
map between radiocarbon and calendar ages. We refer to this calibration
curve as µ(θ). Hence, strictly, we want to learn about p(θ|x, σ, µ(θ)).

Since we would not get precisely the same radiocarbon determination if we
sent several parts of the same organic sample to the same radiocarbon lab-
oratory, x BP is just one realisation of a random variable X BP, which is
associated with a specific calendar date θ cal BP. We can think of X as the
true value of the calibration curve at date θ plus some uncertainty, ε. If the
true value of the calibration curve at θ cal BP is µ(θ) BP then X = µ(θ) + ε
and, since ε is usually assumed to be Normally distributed, ε ∼ N(0, σ2).

Focussing on context E from Figure 2, for example, we have three radio-
carbon determinations from a stratigraphic sequence (see Table 1) and so
x = (5900, 5870, 5850) and σ = (50, 50, 50) and the true underlying dates
associated with them are θ = (θ6, θ7, θ8). The stratigraphic information al-
lows us to be sure (a priori) that the three calendar dates are strictly ordered,
θ6 > θ7 > θ8. Then, using the standard statistical model for radiocarbon (not
motivated here, but discussed in detail in Buck et al., 1996, Chap. 9),

P (x|θ) ∝
n∏

i=m

exp

{
− (xi − µ(θi))

2

2σ2
i + 2γ(θi)2

}
where γ(θi) is the standard deviation on the current internationally-agreed
estimate of the calibration curve at θi and, in our example m = 6 and n = 8.
Note that in the formulation in Naylor and Smith (1988) and Buck et al.
(1996) the parameter γ(θi) is not present since those authors assumed this to
be very small relative to σi which was reasonable at the time, but no longer
holds because laboratory errors have reduced considerably.
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The (prior) stratigraphic information can then be formalised as

P (θ) ∝ I(θi) =

{
1 θi−1 > θi > θi+1

0 otherwise

and the Bayesian solution (or posterior distribution function) is

P (θ|x) ∝ P (x|θ)× P (θ) ∝

{
n∏

i=m

exp

{
−(xi − µ(θi))

2

2σ2
i + 2γ2

µ(θi)

}}
I(θ). (1)

With modern computational power and simulation-based implementation
methods (detailed in Buck et al., 1996, and discussed below), applying this
equation to even very large stratigraphic sequences is now straightforward
using off-the-shelf Bayesian radiocarbon calibration packages such as OxCal
(Bronk Ramsey, 2009) or BCal (Buck et al., 1999). For illustration, we used
BCal with the IntCal13, internationally-agreed, estimate of the radiocarbon
calibration curve (Reimer et al., 2013) to calibrate the three stratified de-
terminations from context E in Figure 2 and obtained the results shown in
Figure 5, where blue indicates the probability distribution function obtained
when each determination is calibrated individually and red indicates the re-
sults from computing the Bayesian posterior density function in Equation 1.

This simple Bayesian model is clearly powerful, allowing inclusion of basic
stratigraphic information that would otherwise have been ignored or han-
dled in an ad hoc manner. In so doing, we typically obtain more precise date
estimates than those that can be obtained by calibrating determinations in-
dividually. For context E, the gain in precision is fairly modest because we
have only three determinations that are temporally rather widely spaced.
With more data in a similar time interval, however, the gains can be con-
siderably more substantial. Despite these benefits, the model in Equation 1
does not have sufficient complexity to allow us to include all of the features of
the stratigraphy in Figures 2 or 3 since there is no way to represent events for
which we do not have direct dating evidence. In particular we have no way to
represent the concept of depositional history, as recorded by the relationships
between archaeological contexts.
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Calibrated age BP

7000 6900 6800 6700 6600 6500 6400

Figure 5: Results of calibrating the three radiocarbon determinations
5900±50 BP, 5870±50 BP and 5850±50 BP (blue when stratigraphic info is
ignored, red when it is included by application of Equation 1).
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3.2 Modelling deposition

To represent boundaries between different depositional contexts or phases,
Naylor and Smith (1988) introduced two further parameters to the model,
α and β (both cal BP) with αj > βj (i.e. αj and βj are, respectively, the
early and late boundary dates for context j). Typically, we have some relative
chronological information, which relates such parameters to datable material,
but there is no direct scientific dating evidence associated with them. This
situation is very common, of course, since in archaeology and palaeoenviron-
mental research we seldom find datable material directly associated with all
of the key locations in our stratigraphic sequences.

Naylor and Smith (1988) thus amended the model in Equation 1 so that for
contexts with no internal stratigraphy (and hence no a priori ordering of the
dates of the samples)

P (x|θ) ∝
J∏
j=1

{
(αj − βj)−nj

nj∏
i=1

zi,jIB(θi,j)

}
where J is the number of contexts or phases in the model, nj is the number
of datable samples in context or phase j,

zi,j = exp

{
− (xi,j − µ(θi,j))

2

2σ2
i,j + 2γ(θi,j)2

}
,

and

IB(θi,j) =

{
1 βj ≥ θi,j ≥ αj

0 otherwise.

Assuming that the deposition rate for material in each context is constant,
but allowing varying deposition rates between contexts, they then modelled
the prior knowledge as

P (θ) ∝ IA(α,β) =

{
1 α,β ∈ A
0 otherwise

where A is the set of values of α and β that satisfy the prior chronological
(e.g. stratigraphic) information. Thus obtaining calibrated dates via

P (θ|x) ∝ IA(α,β)×
J∏
j=1

{
(αj − βj)−nj

nj∏
i=1

zi,jIB(θi,j)

}
. (2)
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In situations where we have stratigraphic ordering of samples within a context
(as in context E), it is computationally straightforward to add the relevant
parts of Equation 1 when we implement Equation 2 in software. It is also
trivial to allow for contexts or phases for which there is stratigraphic infor-
mation, but no direct dating evidence at all (i.e. pairs of αj, βj that have
direct relation only to other boundary parameters and not to any samples
that can be directly dated).

OxCal (Bronk Ramsey, 2009) and BCal (Buck et al., 1999) offer tools to
implement the full range of such models and we adopt the latter to formalise
the models in Figure 3. When we do this we are, of course, embedding context
E within a larger model for the whole of the stratigraphic sequence shown in
Figure 2. Nonetheless, for illustration, we can focus just on the marginal
results for the dates of the samples within that context, thus producing
Figure 6, which suggests that as we add more stratigraphic detail (and hence
more parameters) to our model we (appear to) learn increasingly precisely
about the dates for the samples in context E.

Superficially, this seems attractive since greater precision is almost always
the goal of chronologists, however we need to be cautious here. Surely there
must be a point at which adding more contexts to our model, without adding
any more absolute dating evidence leads to a false sense of extra information.
Does knowing that there are an extra two contexts between contexts G and E
really provide very much extra chronological information (given that neither
are directly associated with any absolute dating evidence) and, if so, is our
statistical modelling of the information in Figure 4 capturing it well? This
and other implementation questions are discussed in the next section but
before we move to that, we look first at some of the estimates obtained for
the dates of the context boundaries in our example.

Given standard model selection advice (summarised above and discussed fur-
ther below), all-other-things being equal we prefer simple over more complex
models and so Figure 7 shows the posterior estimates of the boundary dates
for the contexts in the right-hand sequence of Figure 3. Similar results could
be shown for the left-hand sequence, should there be a strong archaeological
reason for doing so. What we see in Figure 7 is the clear impact of the tempo-
ral ordering imposed by the prior distribution on the boundary parameters,
which were derived from the context relationships shown in Figure 3. We
also find that we can date each of the context boundaries to within at most
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Calibrated age BP

7000 6900 6800 6700 6600 6500 6400

Figure 6: Results of calibrating the three radiocarbon determinations rep-
resented in context E. Blue when all stratigraphic info is ignored; red when
ordering ony within this context is included (using Equation 1); green when
ordering within this context is included and the contextual relationships
shown in the right-hand panel of Figure 3 are modelled (using Equation 2);
orange when ordering within this context is included and the contextual
relationships shown in the left-hand panel of Figure 3 are modelled (using
Equation 2). Note a) that we are showing only the outline of the marginal
probability density in each case so that all four distributions can clearly be
seen and b) that as we add more stratigraphic detail to our model the proba-
bility densities become increasingly peaked (i.e. the date estimates are more
precise).
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Context B

Context C

Context E

Context G

Calibrated age BP

Context I

7500 7000 6500

Figure 7: Estimated calibrated context boundary dates for the contexts
shown in the righ-hand panel of Figure 3. Early boundary daets for each
context are in blue and late ones in red.
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500 years and in the case of context B, to within 100 years, despite the fact
that we have no direct absolute dating evidence for any of these parameters.
Clearly this is a very powerful archaeological inference tool, even for this very
simple stratigraphic sequence. Before using such methods to aid in the inter-
pretation of real archaeological projects, however, we must return to some of
the inferential and modelling decisions related to their use, particularly the
modelling dilemma outlined in the previous paragraph.

4 Modelling and implementation decisions

4.1 Model selection

When Naylor and Smith (1988) first proposed the models in Equations 1
and 2 they implemented them using a technique known as numerical inte-
gration which is time consuming to programme and the resulting code is
computationally demanding. Taken along with the fact that at-the-time
computational power was extremely limited, this meant that only the sim-
plest of archaeological models could be implemented. The rapid increase in
adoption of Bayesian chronological modelling did not come, therefore, until
several years later when coders started to adopt simulation-based methods
for implementation, known as Markov chain Monte Carlo (MCMC) meth-
ods. These are considerably easier to code initially and also to modify when
new components are needed, thus making them more attractive for modu-
lar modelling problems of the sort discussed here and highly amenable to
the implementation of generalisable algorithms like those used in OxCal and
BCal.

With modern computational power and these faster, more flexible implemen-
tation tools a range of software options are now available to chronological
modellers. This has led to an ever increasing choice of modelling options
and selecting precisely which model to implement is thus a routine dilemma.
Currently, the only widely used formal model choice tools for chronologists
are those offered by OxCal (Bronk Ramsey, 2009). Put simply, these com-
pare the prior with the posterior probability densities and prefer models that
result in posterior densities that are closest to the priors.

Such methods are somewhat arbitrary, however, and best suited to compar-
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ing models of similar structure and size and so are not ideal for addressing
the dilemma we faced at the end of Section 3.2. For that we really need a
formal model selection technique and these are notoriously difficult to con-
struct, especially when the numbers of parameters vary greatly between the
various representations, as can easily be the case with large archaeological
sequences. For this reason model selection is an art that Bayesian chrono-
logical modellers need to acquire and which, like most arts, can only really
be learnt by experience.

The present authors have some experience of such modelling and, in general
with Occam’s razor in mind, we prefer models with fewer parameters over
those with more. So, in the case of the dilemma in the previous section, we
preferred the model represented by the right-hand panel of Figure 4, over that
on the left. We do this because the simpler model allows representation of
the key depositional history for the datable samples, but does not explicitly
include those contexts that contain no absolute dating evidence and so add
relatively little extra information to the inference process.

We might quite readily make a different choice however, if the archaeolog-
ical event that we most needed to date related to one of the contexts that
contains no datable samples. For illustration, suppose that context F were a
destruction layer between two periods of human activity, then we may well
decide to include context F in the model, accepting that the total amount
of chronological information we have available has not increased very much,
but allowing us to do our best to date the context about which we are most
eager to learn.

4.2 Responsible use of software

Given what we have said about implementation of chronological modelling
software, coding it is clearly not a task for a novice and so we assume that
readers of this paper will be using one of the off-the-shelf packages like OxCal
or BCal. These are very powerful tools when used carefully, but they do come
with some responsibilities. These relate to gaining at least an intuitive insight
into what models the software is implementing and how. This paper provides
a basic introduction to some aspects, but users should also read the specific
background literature cited by the software providers and the explanations
offered by the user manuals.

20



We all also have responsibilities when writing up modelling work. It is vital,
for example, that readers are not simply told which model (or software) was
used, but that they are also offered a clear explanation as to why the model
in question was selected for the current application. Typically, as in the
examples above, some reasons will relate to the author’s interpretation of the
archaeology and some to theoretical or practical constraints. Such details are
important because scientific dating evidence is often collected before models
are specified and so the only way that readers can be sure that the same
sources of information were not used multiple times is for all authors to offer
clear justification for their choices of model and prior and that these do not
rely on any aspect the scientific dating evidence.

Users should also know enough about how the software implements their
model that they can make principled decisions and report clearly on them.
This is important because MCMC-based software uses simulation and so
each time it is run (slightly) different results are obtained. Key concepts
here include:

• Burn-in: samples discarded from the beginning of MCMC simulations,
which may not be very representative of the posterior density. This
is necessary because all simulations start from somewhat arbitrarily
selected values which might not have high posterior probability.

• Convergence: the desired state of the MCMC sampler, from which
samples can reliably be used to estimate the posterior. The burn-in
phase is intended to ensure that the samples we store are from this
part of the simulation.

• Thinning and effective sample size: the process of storing only a sub-set
of MCMC samples (thinning) to leave a subset which is smaller than
the total but nonetheless conveys equivalent information (and so has
the same effective sample size). Subsetting the output in this way is
most important when parameters of our model are highly correlated (as
is often the case in stratigraphic sequences) and so the simulated values
for each parameter change only very slowly between neighbouring steps
of the Markov chain.

Most software providers, offer automated convergence checking tools that
provide guidance about the amount of burn-in and thinning required. How-
erver, users should understand intuitively the checks being conducted and
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record the choices made in their write-up so that others may replicate and/or
build appropriately on their work. The OxCal and BCal manuals both offer
more advice on these issues.

Since MCMC methods are simulation-based, users must check reproducibility
by making multiple runs for each model, with different start values for the
sampling chains, to check that the results obtained for key parameters are the
same to an appropriate level of accuracy. Appropriate is, of course, a relative
term. We will require a different level of accuracy in historic periods from
the palaeolithic. Reproducibility experiments, and the accuracy to which we
report results, should reflect this.

Since applied Bayesian statistics involves so many personal judgements users
should also explore the sensitivity of results to the choices they made. For
each application users should vary models and/or priors, to explore other
plausible options, and report resulting changes in the posteriors densities,
just as we did here when we considered two formalisations of the stratigraphic
information in Figure 2. Such checks are essential since without them we have
no idea how robust results are. If they aren’t robust to key decisions, which
for large or complex models is not unusual, considerable further exploration
may be needed as to why particular choices were made.

5 Other current and future options

There are a considerable number of modelling options now available to users
of off-the-shelf Bayesian chronological modelling software and we will not
attempt to discuss here all, or even very many, of these. The following are
worth highlighting, however:

• model extensions to allow inclusion of a wide range of absolute prior
knowledge not discussed here. For example: that derived from histori-
cal documents or classical texts and/or from scientific dating evidence
other than radiocarbon.

• a range of deposition models e.g. of the gradual colonisation of a site
(Jones, 2013; Lee and Bronk Ramsey, 2012) and of peat or sediment ac-
cumulation (Christen et al., 1995; Haslett and Parnell, 2008; Bronk Ram-
sey, 2008; Blaauw and Christen, 2005, 2011).
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• detection of outliers in radiocarbon dating (Christen, 1994; Bronk Ram-
sey, 2008).

• automated selection of samples during an incremental radiocarbon dat-
ing programme in order to use the dating budget cost effectively (Chris-
ten and Buck, 1998; Buck and Christen, 1998).

The first three of these are in routine use and are implemented in several
freely available software packages, in particular OxCal Bronk Ramsey (2009).
The fourth is not however and this seems rather strange given the very large
dating projects now undertaken within the Bayesian framework. Of course,
uptake is likely to be limited until such methods are offered in freely available
software and so it would be good to see them developed in the near future.
OxCal already has a feature, known as R Simulate, which allows users to
generate likely additional radiocarbon dates for potential samples within an
existing model. This is the first step towards such a tool, but at present the
automatic selection of samples likely to lead to the most cost effective dating
programme is not.

Other desirable features not currently available in any of the standard soft-
ware are

• extensions of the purely temporal Bayesian chronological models to in-
clude spatial components, thus creating a spatio-temporal modelling
framework. Such extensions are desirable, in projects relating to the
spread of humans or ideas in time and space. However, they are com-
putationally very demanding to implement since they require data from
entire landscapes to be analysed simultaneously. As a result there are
two commonly adopted approaches to such problems. The simplest
is to spatially partition the data and then analyse the spatial groups
within a purely temporal model (as, for example, in Blackwell and
Buck, 2003). A more sophisticated approach is to develop a mechanis-
tic (typically deterministic) model for the spatial process (such as de-
mographic spread) and then to use statistical methods to compare the
resulting spread patterns with the available chronological evidence us-
ing formal statistical methodology (as, for example, in Baggaley et al.,
2012a,b).

• tools to automate production of pictures like those in Figure 4, from
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archaeological site databases and then to generate from them chrono-
logical models of the sort explored herein. Dye and Buck (2015) provide
a proof of concept about how such a tool might be developed, using a
refinement of Harris matrices and techniques adopted from graph the-
ory, but there is considerable work to do before such approaches would
be ready for routine use.

• improvements to age-depth models to allow for geomorphology. At
present, such models effectively assume that the cores from lake sedi-
ments were derived from cylindrical lake basins. In practise we do not
know the morphology of most of the lakes from which cores are taken,
but we can be fairly sure that they are not cylindrical and recent work
by Bennett and Buck (2016) shows that basin geomorphology can have
a considerable impact on the age-depth relationships. Given this, more
work is needed to a) find a good, cost-effective ways to establish basin
morphology and b) develop the existing Bayesian age-depth models to
take account of the information obtained.

Clearly, such extensions would take chronology construction considerably be-
yond the relatively simple, but powerful models and methods outlined above.
Some may eventually be fairly readily added to the general purpose chrono-
logical modelling software like OxCal and BCal, but others, in particular
the spatio-temporal modelling options, require inclusion of parameters with
completely different structure from those used thus far. As a consequence,
at least for the moment, those wishing to adopt such models will need to
learn not just modelling stills, but computer programming too. The chrono-
logical modelling community is short of such skills and we hope that one
or two readers of this paper might already have programming skills and be
keen to help or might be willing to learn them in order to do so. We would
be delighted to hear from anyone interested in such work and to encourage
them to help us to make the next thirty years of chronological modelling as
productive as the last.
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