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10.4 arya-jovian-period

10.5 jovian-year
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11.10 mayan-tzolkin-ordinal

11.11 mayan-tzolkin-on-or-before
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11.13 mayan-calendar-round-on-or-before
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14.8 zone-from-longitude

14.9 universal-from-local
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14.11 standard-from-universal

14.12 universal-from-standard

14.13 standard-from-local
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14.15 ephemeris-correction
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14.23 apparent-from-universal

14.24 universal-from-apparent

14.25 midnight

14.26 midday

14.27 sidereal-from-moment



14.28 obliquity

14.29 declination

14.30 right-ascension

14.31 mean-tropical-year

14.32 mean-sidereal-year

14.33 solar-longitude

14.34 nutation

14.35 aberration

14.36 solar-longitude-after

14.37 season-in-gregorian

14.38 urbana-winter

14.39 precession

14.40 sidereal-solar-longitude

14.41 solar-altitude

14.42 estimate-prior-solar-longitude

14.44 mean-synodic-month

14.45 nth-new-moon

14.46 new-moon-before

14.47 new-moon-at-or-after



14.48 lunar-longitude

14.49 mean-lunar-longitude

14.50 lunar-elongation

14.51 solar-anomaly

14.52 lunar-anomaly

14.53 moon-node

14.54 lunar-node

14.55 sidereal-lunar-longitude

14.56 lunar-phase

14.57 lunar-phase-at-or-before

14.58 lunar-phase-at-or-after

14.59 new

14.60 first-quarter

14.61 full

14.62 last-quarter

14.63 lunar-latitude

14.64 lunar-altitude

14.65 lunar-distance

14.66 lunar-parallax

14.67 topocentric-lunar-altitude



14.68 approx-moment-of-depression

14.69 sine-offset

14.70 moment-of-depression

14.71 morning

14.72 dawn

14.73 evening

14.74 dusk

14.75 refraction

14.76 sunrise

14.77 sunset

14.78 urbana-sunset

14.79 cfs-alert

14.80 jewish-sabbath-ends

14.81 jewish-dusk

14.82 observed-lunar-altitude

14.83 moonrise

14.84 moonset

14.85 padua

14.86 local-zero-hour



14.87 local-from-italian

14.88 italian-from-local

14.89 daytime-temporal-hour

14.90 nighttime-temporal-hour

14.91 standard-from-sundial

14.92 jewish-morning-end

14.93 asr

14.94 alt-asr

14.95 arc-of-light
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14.97 shaukat-criterion
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14.100 yallop-criterion
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14.105 phasis-on-or-after

15.1 persian-epoch



15.2 tehran

15.3 midday-in-tehran

15.4 persian-new-year-on-or-before

15.5 fixed-from-persian
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15.7 arithmetic-persian-leap-year?

15.8 fixed-from-arithmetic-persian
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16.8 fixed-from-astro-bahai
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16.10 bahai-new-year

16.11 naw-ruz

16.12 feast-of-ridvan

16.13 birth-of-the-bab
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17.2 midnight-in-paris
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17.4 french-epoch
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17.7 french-leap-year?
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18.5 babylonian-epoch
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18.7 fixed-from-babylonian
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18.16 alt-observational-islamic-from-fixed
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18.18 saudi-new-month-on-or-before

18.19 fixed-from-saudi-islamic

18.20 saudi-islamic-from-fixed

18.21 hebrew-location

18.22 observational-hebrew-first-of-nisan

18.23 observational-hebrew-from-fixed

18.24 fixed-from-observational-hebrew

18.25 classical-passover-eve



18.26 alt-observational-hebrew-from-fixed

18.27 alt-fixed-from-observational-hebrew

18.28 samaritan-location

18.29 samaritan-noon

18.30 samaritan-new-moon-after

18.31 samaritan-new-moon-at-or-before

18.32 samaritan-epoch
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19.5 current-minor-solar-term

19.6 minor-solar-term-on-or-after

19.7 midnight-in-china

19.8 chinese-winter-solstice-on-or-before

19.9 chinese-new-moon-on-or-after

19.10 chinese-new-moon-before



19.11 chinese-no-major-solar-term?

19.12 chinese-prior-leap-month?

19.13 chinese-new-year-in-sui

19.14 chinese-new-year-on-or-before

19.15 chinese-epoch

19.16 chinese-from-fixed

19.17 fixed-from-chinese

19.18 chinese-sexagesimal-name

19.19 chinese-name-difference

19.20 chinese-year-name
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19.30 double-bright

19.31 bright

19.32 blind

19.33 widow

19.34 chinese-year-marriage-augury

19.35 japanese-location

19.36 korean-location

19.37 korean-year

19.38 vietnamese-location

20.1 hindu-sidereal-year

20.2 hindu-sidereal-month

20.3 hindu-synodic-month

20.4 hindu-sine-table

20.5 hindu-sine

20.6 hindu-arcsin

20.7 hindu-mean-position

20.8 hindu-creation

20.9 hindu-anomalistic-year

20.10 hindu-anomalistic-month

20.11 hindu-true-position



20.12 hindu-solar-longitude

20.13 hindu-zodiac

20.14 hindu-lunar-longitude

20.15 hindu-lunar-phase

20.16 hindu-lunar-day-from-moment

20.17 hindu-new-moon-before

20.18 hindu-calendar-year

20.19 hindu-solar-era

20.20 hindu-solar-from-fixed
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20.22 hindu-lunar-era
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20.26 hindu-location

20.27 hindu-ascensional-difference
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20.30 hindu-daily-motion



20.31 hindu-rising-sign

20.32 hindu-equation-of-time

20.33 hindu-sunrise

20.34 hindu-sunset

20.35 hindu-standard-from-sundial

20.36 hindu-fullmoon-from-fixed

20.37 fixed-from-hindu-fullmoon

20.38 hindu-expunged?

20.39 alt-hindu-sunrise

20.40 ayanamsha

20.41 sidereal-start

20.42 astro-hindu-sunset

20.43 sidereal-zodiac

20.44 astro-hindu-calendar-year

20.45 astro-hindu-solar-from-fixed
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20.48 astro-hindu-lunar-from-fixed

20.49 fixed-from-astro-hindu-lunar
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20.51 mesha-samkranti

20.52 hindu-lunar-day-at-or-after

20.53 hindu-lunar-new-year

20.54 hindu-lunar-on-or-before?

20.55 hindu-date-occur

20.56 hindu-lunar-holiday

20.57 diwali

20.58 hindu-tithi-occur

20.59 hindu-lunar-event

20.60 shiva

20.61 rama

20.62 hindu-lunar-station
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20.64 yoga

20.65 sacred-wednesdays
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21.1 tibetan-epoch

21.2 tibetan-sun-equation

21.3 tibetan-moon-equation



21.4 fixed-from-tibetan

21.5 tibetan-from-fixed

21.6 tibetan-leap-month?

21.7 tibetan-leap-day?

21.8 losar

21.9 tibetan-new-year



Abbreviations

Abbreviation Meaning Explanation

a.d. ante	diem prior	day

A.D. Anno
Domini	(=
C.E.)

In	the	year	of	the	Lord

A.H. Anno
Hegiræ

In	the	year	of	Mohammed’s	emigration	to
Medina

a.m. ante
meridiem

before	noon

A.M. Anno
Mundi

In	the	year	of	the	world	since	creation

Anno
Martyrum

Era	of	the	Martyrs

A.P. Anno
Persico

Anno Persian	year



Persarum

A.S. Anno
Samaritano
rum

Samaritan	year

A.U.C. Ab	Urbe
Condita

From	the	founding	of	the	city	of	Rome

B.C. Before
Christ	(=
B.C.E.)

B.C.E. Before	the
Common
Era	(=	B.C.)

B.E. Bahá’í	Era

C.E. Common
Era	(=	A.D.)

E.E. Ethiopic
Era

JD Julian	Day
number

Elapsed	days	since	noon	on	Monday,	January	1,
4713	B.C.E.	(Julian);	sometimes	J.A.D.,	Julian
Astronomical	Day

K.Y. Kali	Yuga “Iron	Age”	epoch	of	the	traditional	Hindu
calendar



m meters

MJD Modified
Julian	Day
number

Julian	day	number	minus	2400000.5

p.m. post
meridiem

after	noon

R.D. Rata	Die Fixed	date—elapsed	days	since	the	onset	of
Monday,	January	1,	1	(Gregorian)

S.E. Śaka	Era Epoch	of	the	modern	Hindu	calendar

U.T. Universal
Time

Mean	solar	time	at	Greenwich,	England
(0°	meridian),	reckoned	from	midnight;
sometimes	G.M.T.,	Greenwich	Mean	Time

V.E. Vikrama
Era

Alternative	epoch	of	the	modern	Hindu
calendar



Mathematical	Notations

Notation Name Meaning

floor largest	integer	not	larger	than	

ceiling smallest	integer	not	smaller	than	

round nearest	integer	to	 ,	that	is,	

remainder

adjusted
remainder

	if	 ,	 	otherwise

interval
mod

	if	 ,	 	otherwise

greatest
common
divisor

	if	 ,	 	otherwise

least
common
multiple



absolute
value

unsigned	value	of	

sign 	when	 	is	negative,	 	when	 	is	positive,	0
when	 	is	0

angle 	degrees,	 	arc	minutes,	and	 	arc	seconds

totient
function

number	of	positive	integers	less	than	 	and
relatively	prime	to	it

pi ratio	of	circumference	of	circle	to	diameter

sine sine	of	 ,	given	in	degrees

cosine cosine	of	 ,	given	in	degrees

tangent tangent	of	 ,	given	in	degrees

arc	sine inverse	sine	of	 ,	in	degrees

arc	cosine inverse	cosine	of	 ,	in	degrees

arc	tangent inverse	tangent	of	 ,	in	degrees

closed
interval

all	real	numbers	 ,	

open
interval

all	real	numbers	 ,	



half-open
interval

all	real	numbers	 ,	

half-open
interval

all	real	numbers	 ,	

logical
negation

true	when	 	is	false	and	vice	versa

summation the	sum	of	 	for	all	integers	 ,	 ,	…,
continuing	only	as	long	as	the	condition	
holds

product the	product	of	 	for	all	integers	 ,	 ,
…,	continuing	only	as	long	as	the	condition	
holds

summation the	sum	of	 	for	all	like-indexed
components	of	the	vectors	 ,	 ,	…

maximum
integer
value

the	largest	integer	 	such	that	 ,
,	…,	 	are	true

minimum
integer
value

the	smallest	integer	 	such	that	
	is	true

minimum
value

the	value	 	such	that	 	is	false	in	 	and	is
true	in	 ;	see	equation	(1.35)	on	page	24



for	details

function
inverse

approximate	 	in	 	such	that	

record
formation

the	record	containing	fields	

field
selection

contents	of	field	 	of	record	

list
construction

the	list	containing	

empty	list a	list	with	no	elements

list
element

the	 th	element	of	list	 ;	0-based

sublist a	list	of	the	 th,	 st,	and	so	on	elements	of
list	

concatenati
on

the	concatenation	of	lists	 	and	

vector indexed	list	of	elements	



set
formation

the	set	containing	

set
membership

the	element	 	is	a	member	of	set	

integer the	number	 	is	an	integer

set
intersection

the	intersection	of	sets	 	and	

set	union the	union	of	sets	 	and	

range	of
integers

the	set	

;	 mixed-
radix	base

each	position	 	takes	values	in	 ,	with
units	in	position	

mixed-
radix
number

value	of	 	in	base	

mixed-
radix
representat
ion

representation	of	 	in	base	

time	of	day 	hours,	 	minutes,	and	 	seconds



duration	of
time

	days,	 	hours,	 	minutes,	and	 	seconds

bogus error invalid	calendar	date	or	time

	



Page	from	an	Iranian	synagogue	calendar	for	mid-March	1998	showing	the
Gregorian,	Hebrew,	Persian,	and	Islamic	calendars.	(Collection	of	E.M.R.)



Preface

No	one	has	the	right	to	speak	in	public	before	he	has	rehearsed	what	he	wants	to	say	two,	three,
and	four	times,	and	learned	it;	then	he	may	speak	…	But	if	a	man	…	puts	it	down	in	writing,	he
should	revise	it	a	thousand	times,	if	possible.

Maimonides:	The	Epistle	on	Martyrdom	(circa	1165)

This	 book	 has	 developed	 over	 a	 more	 than	 30-year	 period	 during	 which	 the
calendrical	 algorithms	 and	 our	 presentation	 of	 them	 have	 continually	 evolved.
Our	initial	motivation	was	an	effort	by	one	of	us	(E.M.R.)	to	create	Emacs-Lisp
code	that	would	provide	calendar	and	diary	features	for	GNU	Emacs	[15];	 this
version	of	the	code	included	the	Gregorian,	Islamic,	and	Hebrew	calendars	(the
Hebrew	 implemented	 by	 N.D.).	 A	 deluge	 of	 inquiries	 from	 around	 the	 globe
soon	made	it	clear	to	us	that	there	was	keen	interest	in	an	explanation	that	would
go	beyond	the	code	itself,	leading	to	our	article	[3]	and	encouraging	us	to	rewrite
the	code	completely,	this	time	in	Common	Lisp	[16].	The	subsequent	addition—
by	popular	demand—of	the	Mayan	and	French	Revolutionary	calendars	to	GNU
Emacs	 prompted	 a	 second	 article	 [13].	We	 received	many	 hundreds	 of	 reprint
requests	 for	 these	 articles.	 This	 response	 far	 exceeded	 our	 expectations	 and
provided	the	impetus	to	write	a	book	in	which	we	could	more	fully	address	the
multifaceted	subject	of	calendars	and	their	implementation.

The	 subject	 of	 calendars	 has	 always	 fascinated	 us	 with	 its	 cultural,
historical,	 and	 mathematical	 wealth,	 and	 we	 have	 occasionally	 employed
calendars	as	accessible	examples	in	introductory	programming	courses.	Once	the
book’s	 plan	 took	 shape,	 our	 curiosity	 turned	 into	 obsession.	 We	 began	 by
extending	our	programs	to	include	other	calendars	such	as	the	Chinese,	Coptic,



modern	Hindu,	and	arithmetic	Persian.	Then,	of	course,	the	code	for	these	newly

added	calendars	needed	to	be	rewritten,	in	some	cases	several	times,	to	bring	it
up	to	the	standards	of	the	earlier	material.	We	have	long	since	lost	 track	of	the
number	of	revisions,	and,	needless	to	say,	we	could	undoubtedly	devote	another
decade	 to	 polishing	what	we	 have,	 tracking	 down	minutiæ,	 and	 implementing
and	refining	additional	 interesting	calendars.	As	much	as	we	might	be	 tempted
to,	circumstances	do	not	allow	us	to	follow	Maimonides’	dictum	quoted	above.

In	this	book	we	give	a	unified	algorithmic	presentation	for	more	than	three
dozen	calendars	of	current	and	historical	 interest:	 the	Gregorian	(current	civil),
ISO	 (International	 Organization	 for	 Standardization),	 Icelandic,	 Egyptian	 (and
nearly	 identical	 Armenian),	 Julian	 (old	 civil),	 Coptic	 and	 virtually	 identical
Ethiopic,	Akan,	 Islamic	 (Muslim),	 including	 the	 arithmetic,	 observational,	 and
Saudi	 Arabian	 forms,	 modern	 Persian	 (both	 the	 astronomical	 and	 arithmetic
forms),	 Bahá’í	 (both	 the	 arithmetic	 and	 astronomical	 forms),	 French
Revolutionary	 (both	 the	 astronomical	 and	 arithmetic	 forms),	 Babylonian,
Hebrew	 (Jewish)	 standard	 and	 observational,	 Samaritan,	 Mayan	 (long	 count,
haab,	and	 tzolkin)	and	 two	almost	 identical	Aztec,	Balinese	Pawukon,	Chinese
(and	nearly	 identical	 Japanese,	Korean,	and	Vietnamese),	old	Hindu	 (solar	and
lunisolar),	modern	Hindu	(solar	and	lunisolar,	traditional	and	astronomical),	and
Tibetan.	 Easy	 conversion	 among	 these	 calendars	 is	 a	 natural	 outcome	 of	 the
approach,	as	is	the	determination	of	secular	and	religious	holidays.

Our	 goal	 in	 this	 book	 is	 twofold:	 to	 give	 precise	 descriptions	 of	 each
calendar	 and	 to	 make	 accurate	 calendrical	 algorithms	 readily	 available	 for
computer	 use.	The	 complete	workings	 of	 each	 calendar	 are	 described	 in	 prose
and	in	mathematical/algorithmic	form.	Working	computer	programs	are	included
in	an	appendix	and	are	available	on	the	internet	(see	following).

Calendrical	problems	are	notorious	for	plaguing	software,	as	shown	by	the
following	examples:



1.	 	 	 Since	 the	 early	 days	 of	 computers,	 when	 storage	 was	 at	 a	 premium,
programmers—especially	COBOL	programmers—usually	allocated	only	two
decimal	digits	 for	 the	 internal	 storage	of	years	 [10];	 thus	billions	of	dollars
were	spent	fixing	untold	numbers	of	programs	to	prevent	their	going	awry	on
New	Year’s	Day	of	2000	by	interpreting	“00”	as	1900	instead	of	2000.	This
became	known	as	the	“Y2K	problem.”

2.			In	a	Reuters	story	dated	Monday,	November	6,	2006,	Irene	Klotz	wrote:
A	computer	problem	could	force	NASA	to	postpone	next	month’s	launch	of	shuttle	Discovery
until	2007	to	avoid	having	the	spaceship	in	orbit	when	the	clock	strikes	midnight	on	New	Year’s
Eve.	The	shuttle	is	due	to	take	off	from	the	Kennedy	Space	Center	in	central	Florida	on	December
7	on	a	12-day	mission	to	continue	construction	of	the	half-built	International	Space	Station.	But	if
the	launch	is	delayed	for	any	reason	beyond	December	17	or	18,	the	flight	likely	would	be
postponed	until	next	year,	officials	at	the	U.S.	space	agency	said	on	Monday.	To	build	in	added
cushion,	NASA	may	move	up	the	take	off	to	December	6.	“The	shuttle	computers	were	never
envisioned	to	fly	through	a	year-end	changeover,”	space	shuttle	program	manager	Wayne	Hale
told	a	briefing.	After	the	2003	accident	involving	space	shuttle	Columbia,	NASA	started
developing	procedures	to	work	around	the	computer	glitch.	But	NASA	managers	still	do	not	want
to	launch	Discovery	knowing	it	would	be	in	space	when	the	calendar	rolls	over	to	January	1,
2007.	The	problem,	according	to	Hale,	is	that	the	shuttle’s	computers	do	not	reset	to	day	one,	as
ground-based	systems	that	support	shuttle	navigation	do.	Instead,	after	December	31,	the	365th
day	of	the	year,	shuttle	computers	figure	January	1	is	just	day	366.

3.			Poorly	written	calendar	software	in	Notify	Technology’s	code	to	synchronize
mobile	devices	did	not	correctly	handle	monthly	recurring	events	on	the	29th,
30th,	or	31st	of	the	month	because	these	dates	do	not	occur	in	all	months.

4.	 	 	 The	 change	 from	 daylight	 saving	 time	 to	 standard	 time	 in	 late	 2010	 (at
various	dates	around	the	world)	caused	the	failure	of	certain	repeating	iPhone
alarms.	The	alarms	failed	again	on	January	1,	2011.

5.	 	 	Many	programs	err	 in,	or	simply	ignore,	 the	century	rule	for	leap	years	on
the	Gregorian	calendar	(every	4th	year	is	a	leap	year,	except	for	every	100th
year,	which	is	not,	except	for	every	400th	year,	which	is):
(a)			The	New	York	Times	of	March	1,	1997	reported	that	the	New	York	City

Taxi	and	Limousine	Commission	chose	March	1,	1996,	as	the	start	date



for	 a	 new,	 higher	 fare	 structure	 for	 cabs.	Meters	 programmed	 by	 one

company	 in	 Queens	 ignored	 the	 leap	 day	 and	 charged	 customers	 the
higher	rate	on	February	29.

(b)			According	to	the	New	Zealand	Herald	of	January	8,	1997,	a	computer
software	error	at	the	Tiwai	Point	aluminum	smelter	at	midnight	on	New
Year’s	 Eve	 caused	 more	 than	 A$	 1	 million	 of	 damage.	 The	 software
error	was	 the	 failure	 to	 consider	 1996	 a	 leap	 year;	 the	 same	 problem
occurred	 2	 hours	 later	 at	 Comalco’s	 Bell	 Bay	 smelter	 in	 Tasmania
(which	 was	 2	 hours	 behind	 New	 Zealand).	 The	 general	 manager	 of
operations	 for	New	Zealand	Aluminum	Smelters,	David	Brewer,	 said,
“It	was	a	complicated	problem	and	 it	 took	quite	some	 time	 to	 find	 the
cause.”

(c)			Early	releases	of	the	popular	spreadsheet	program	Lotus®1-2-3®	treated
2000	as	a	nonleap	year—a	problem	that	was	eventually	fixed.	However,
all	releases	of	Lotus®	1-2-3®	take	1900	as	a	leap	year,	which	is	a	serious
problem	with	historical	data;	by	the	time	this	error	was	recognized,	the
company	deemed	it	too	late	to	correct:	“The	decision	was	made	at	some
point	 that	a	change	now	would	disrupt	formulas	which	were	written	 to
accommodate	 this	 anomaly”	 [17].	 Excel®,	 part	 of	 Microsoft	 Office®,
suffers	 from	 the	 same	 flaw;	Microsoft	 acknowledges	 this	 error	 on	 its
“Help	 and	 Support”	 web	 site,	 claiming	 that	 “the	 disadvantages	 of
[correcting	the	problem]	outweigh	the	advantages.”

(d)	 	 	According	 to	Reuters	 (March	 22,	 2004),	 the	 computer	 display	 in	 the
2004	 Pontiac	 Grand	 Prix	 shows	 the	 wrong	 day	 of	 the	 week	 because
engineers	overlooked	the	fact	that	2004	is	a	leap	year.

(e)			Similarly,	Zune®,	Microsoft’s	portable	media	player,	failed	(according	to
the	New	York	Times	of	 January	 1,	 2009)	 because	 the	 software	 did	 not
treat	 2008	 as	 a	 leap	 year.	 In	 fact,	 Zune’s	 code	 to	 compute	 the	 present



year	from	the	number	of	days	elapsed	since	January	1,	1980	would	go
into	an	infinite	loop	on	the	last	day	of	any	leap	year.

(f)	 	 	 Again	 according	 to	 the	 New	 York	 Times	 (March	 1,	 2010),	 Sony
Playstation	3®	 code	 considered	 2010	 a	 leap	 year,	 an	 error	 that	 caused
problems	for	gamers	on	March	1—some	games	would	not	 load,	others
lost	records	of	trophies,	and	online	connections	failed.

6.			The	calculation	of	holidays	and	special	dates	is	a	source	of	confusion:
(a)	 	 	According	 to	 the	New	York	Times	of	 January	 12,	 1999,	 for	 example,

Microsoft	Windows®	 95,	 98,	 and	 NT	 get	 the	 start	 of	 daylight	 saving
time	wrong	for	years,	 like	2001,	 in	which	April	1	is	a	Sunday;	 in	such
cases	 Windows	 has	 daylight	 saving	 time	 starting	 on	 April	 8.	 An
estimated	 40	million	 to	 50	million	 computers	were	 affected,	 including
some	in	hotels	that	were	used	for	wake-up	calls.

(b)	 	 	Microsoft	Outlook®	98	had	the	wrong	date	for	U.S.	Memorial	Day	 in
1999,	giving	it	as	May	24,	1999,	instead	of	May	31,	1999.	It	gave	wrong
dates	 for	 U.S.	 Thanksgiving	 Day	 for	 1997–2000.	 Outlook®	 2000
corrected	 the	Memorial	Day	 error,	 but	 compounded	 the	 Thanksgiving
Day	error	by	giving	 two	dates	 for	Thanksgiving	 for	1998–2000.	Their
2015	Web	App	 has	 incorrect	 dates	 for	 the	Hebrew	 calendar	 fast	 days
Tzom	Tammuz	and	Tishah	be-Av.

(c)			Various	programs	calculate	the	Hebrew	calendar	by	first	determining	the
date	 of	 Passover	 using	 Gauss’s	 method	 [6]	 (see	 [14]);	 this	 method	 is
correct	only	when	sufficient	precision	is	used,	and	thus	such	an	approach
often	leads	to	errors.

(d)			Delrina	Technology’s	1994	Daily	Planner	had	three	days	instead	of	two
for	Rosh	ha-Shanah.

(e)	 	 	 Israeli	daylight	saving	 time	has	ended	at	various	dates	over	 the	years,
but	Microsoft’s	Windows	Vista®	always	ended	it	on	September	2.



7			At	least	one	modern,	standard,	source	for	calendrical	matters,	Parise	[12],	has
many	errors,	some	of	which	are	presumably	due	not	to	sloppy	editing,	but	to
the	 algorithms	 used	 to	 produce	 the	 tables.	 For	 example,	 the	 Mayan	 date
8.1.19.0.0	 is	given	incorrectly	as	February	14,	80	(Gregorian)	on	page	290;
the	dates	given	on	pages	325–327	for	Easter	 for	 the	years	 1116,	 1152,	 and
1582	are	not	Sundays;	 the	epact	 for	1986	on	page	354	 is	wrongly	given	as
20;	Chinese	New	Year	is	wrong	for	many	years;	 the	epoch	is	wrong	for	the
Ethiopic	calendar,	and	hence	that	entire	table	is	flawed.

8	 	 	 Even	 the	 Astronomical	 Applications	 Department	 of	 the	 U.S.	 Naval
Observatory	is	not	immune	to	calendrical	errors!	They	gave	Sunday,	April	9,
2028	 and	 Thursday,	 March	 29,	 2029	 for	 Passover	 on	 their	 web	 site
aa.usno.navy.mil/faq/docs/passover.html,	 instead	 of	 the	 correct	 dates
Tuesday,	April	11,	2028	and	Saturday,	March	31,	2029,	respectively.	The	site
was	corrected	on	March	10,	2004.
Finally,	the	computer	world	is	plagued	with	unintelligible	code	that	seems

to	work	by	magic.	Consider	the	following	Unix	script	for	calculating	the	date	of
Easter:

1		echo	$*	’[ddsf[lfp[too	early]Pq]s@1583>@	

2		ddd19%1+sg100/1+d3*4/12-sx8*5+25/5-sz5*4/lx-10-	

3		sdlg11*20+lz+lx-30%d[30+]s@0>@d[[1+]s@lg11<@]s@25=@d[1+]	

4		s@24=@se44le-d[30+]s@21>@dld+7%-7+	

5		[March	]smd[31-[April	]sm]s@31<@psnlmPpsn1z>p]splpx’	|	dc

We	want	to	provide	transparent	algorithms	to	replace	the	gobbledegook	that	is	so
common.

Our	 algorithms	 are	 carefully	 crafted,	 fully	 explained,	 and	 (in	 almost	 all
cases)	 endogenous.	 They	 illustrate	 all	 the	 basic	 features	 of	 calendars:	 fidelity
only	 to	 solar	 events	 (Gregorian,	Persian,	French),	 fidelity	 only	 to	 lunar	 events
(Islamic),	and	fidelity	to	both	solar	and	lunar	events	(Hebrew,	Chinese,	Hindu);
intricate	 cycles	 disconnected	 from	 solar	 and	 lunar	 events	 (Mayan,	 Balinese);



simultaneous	intercalation	and	extraculation	yielding	irregular	cycles	of	days	of
the	 month	 and	 months	 of	 the	 year	 (Hindu).	 We	 hope	 that	 in	 the	 process	 of
reworking	 classical	 calendrical	 calculations	 and	 rephrasing	 them	 in	 the
algorithmic	 language	of	 the	computer	age	we	have	also	succeeded	in	affording
the	reader	a	glimpse	of	the	beauty	and	individuality	of	diverse	cultures	past	and
present.

The	Ultimate	Edition
How	I	labored	day	and	night	for	almost	ten	years	straight	composing	this	work.	Great	scholars	as
yourselves	will	understand	what	I	have	accomplished,	having	gathered	statements	that	were
distant	and	dispersed	among	the	hills	and	mountains	…	For	these	reasons,	it	is	appropriate	for
one	to	examine	my	statements,	to	scrutinize,	and	to	investigate	after	me.	The	reader	of	this
composition	should	not	say,	who	am	I	…	I	hereby	grant	him	my	permission	…	You,	in	your
wisdom,	have	done	me	a	great	favor.	Likewise,	anyone	who	finds	a	problem	and	informs	me	will
be	rendering	me	a	favor,	lest	there	remain	any	stumbling	block.

Maimonides:	Letter	to	Jonathan	ben	David	Hakohen	of	Lunel	(1199)

After	the	first	edition	of	the	book	was	published	in	1997	we	continued	to	gather
material,	 polish	 the	 algorithms,	 and	 keep	 track	 of	 errors.	 Because	 the	 second
edition	was	to	be	published	in	the	year	2000,	some	wag	at	Cambridge	University
Press	 dubbed	 it	 “The	 Millennium	 Edition,”	 and	 that	 title	 got	 used	 in
prepublication	catalogs,	creating	a	fait	accompli.	The	Millennium	Edition	was	a
comprehensive	 revision	 of	 the	 first	 edition,	 and	 the	 third	 edition	 was	 a
comprehensive	revision	of	the	Millennium	Edition.	Since	the	publication	of	the
third	 edition	 we	 have	 continued	 to	 gather	 new	 material	 and	 polish	 existing
material;	 this	 fourth	edition	 is,	once	again,	a	comprehensive	 revision.	We	have
called	 this	“The	Ultimate	Edition”	 for	 several	 reasons.	First,	 and	 foremost,	we
have	no	intention	of	ever	producing	another	edition	of	this	book	(though	minor
changes	may	be	made	in	subsequent	printings).	Second,	because	we	have	strived
to	be	as	comprehensive	as	possible,	we	are	sanguine	that	we	have	covered	all	the



world’s	 calendar	 types	 (though	 not,	 of	 course,	 all	 variations).	 Finally,	 this

material	has	undergone	continuous	refinement	for	over	30	years	and	diminishing
returns	have	set	in:	future	refinements	are	unlikely	to	yield	much	benefit.

In	 preparing	 this	 Ultimate	 Edition	 we	 have	 corrected	 all	 known	 errors
(fortunately,	 only	minor	 errors	were	 ever	 reported	 in	 the	 third	 edition),	 added
much	new	material,	reworked	and	rearranged	some	discussions	to	accommodate
the	new	material,	improved	the	robustness	of	some	functions,	added	many	new
references,	and	made	an	enormous	number	of	small	 improvements.	Among	 the
new	material	the	reader	will	find	much	more	use	of	the	mixed-radix	notation	of
[9,	 sec.	 4.1],	 use	 of	 the	 generalized	 modulo	 interval	 notation	 of	 [4],	 and
presentations	of	Unix	dates,	Italian	time,	and	the	Akan,	Icelandic,	Saudi	Arabian
Umm	 al-Qura	 (an	 approximation	 of	 the	 Observational	 Islamic	 calendar),	 and
Babylonian	 calendars;	 there	 are	 also	 expanded	 treatments	 of	 the	 observational
Islamic	 and	 Hebrew	 calendars	 and	 brief	 discussions	 of	 the	 Samaritan	 and
Nepalese	calendars.	Several	of	the	astronomical	functions	of	Chapter	chap:timee
been	rewritten	to	produce	more	accurate	results	(causing	occasional	changes	in
astronomically-based	 calendar	 computations,	 such	 as	 the	 Persian	 and	 the
Chinese).	We	 have	 added	 calculations	 of	moonrise	 and	moonset,	 as	well	 as	 a
function	to	invert	the	molad	in	the	Hebrew	calendar	chapter.	The	sample	data	in
Appendix	 C	 has	 been	 correspondingly	 updated	 and	 expanded	 (changes	 in
hardware	 and	 software	 since	 the	 preparation	 of	 the	 third	 edition	 have	 caused
minor	changes	in	some	sample	values	compared	with	that	edition;	the	revision	of
what	we	called	 the	“Future	Bahá’í	calendar”	has	caused	significant	changes	 to
some	of	those	sample	values).	Sample	dates	of	many	of	the	holidays	we	discuss
have	 also	 been	 added.	A	 cross	 reference	 list	 for	 the	 functions	 has	 been	 added
(Appendix	B)	showing	the	dependencies	among	the	functions.	Despite	requests
from	some	readers,	we	have	not	added	oddities	such	as	the	World	Calendar	[1],



Star	 Trek’s	 stardate	 [11],	 Knuth’s	 Potrzebie	 calendar	 [8],	 the	 pataphysique
calendar	[7],	or	the	Martian	calendar	[5]!

Algorithmically	sophisticated	readers	of	the	first	edition	of	this	book	could,
with	 only	 slight	 difficulty,	 jump	 right	 into	 the	 descriptions	 of	 the	 various
calendars,	 skipping	 the	 introductory	 chapter	 on	 “Calendar	 Basics.”	With	 each
successive	 edition	 such	 an	 omission	 became	 more	 difficult	 as	 various
commonalities	 were	 moved	 to	 that	 chapter	 and	 the	 notations	 became	 more
specialized.	As	much	as	we	 regret	 it,	 failing	 to	 read	 the	 introduction	now	may
cause	 even	 a	 sophisticated	 reader	 bafflement	 in	 later	 chapters.	 So,	 for	 those
without	 the	 patience	 to	 read	 the	 introductory	 chapter,	 we	 suggest	 at	 least	 a
careful	perusing	of	the	“Mathematical	Notations”	table	on	pages	xxi–xxiv.

I	determined,	therefore,	to	attempt	the	reformation;	I	consulted	the	best	lawyers	and	the	most
skilled	astronomers,	and	we	cooked	up	a	bill	for	that	purpose.	But	then	my	difficulty	began:	I	was
to	bring	in	this	bill,	which	was	necessarily	composed	of	law	jargon	and	astronomical
calculations,	to	both	of	which	I	am	an	utter	stranger.	However,	it	was	absolutely	necessary	to
make	the	House	of	Lords	think	that	I	knew	something	of	the	matter;	and	also	to	make	them	believe
that	they	knew	something	themselves,	which	they	do	not.	For	my	own	part,	I	could	just	as	soon
have	talked	Celtic	or	Sclavonian	to	them,	as	astronomy,	and	could	have	understood	me	full	as
well;	so	I	resolved	…	to	please	instead	of	informing	them.	I	gave	them,	therefore,	only	an
historical	account	of	calendars,	from	the	Egyptian	down	to	the	Gregorian,	amusing	them	now	and
then	with	little	episodes	…	They	thought	I	was	informed,	because	I	pleased	them;	and	many	of
them	said,	that	I	had	made	the	whole	story	very	clear	to	them;	when,	God	knows,	I	had	not	even
attempted	it.

Letter	from	Philip	Dormer	Stanhope	(Fourth	Earl	of
Chesterfield,	the	man	who	in	1751	introduced	the	bill	in

Parliament	for	reforming	the	calendar	in	England)	to	his	son,
March	18,	1751	C.E.	(Julian),	the	day	of	the	Second	Reading	debate

Calendrical	Tabulations
A	man	who	possessed	a	calendar	and	could	read	it	was	an	important	member	of	the	village
community,	certain	to	be	widely	consulted	and	suitably	awarded.

K.	Tseng:	“Balinese	Calendar,”	Myths	&	Symbols	in	Indonesian	Art	(1991)



A	companion	volume	by	the	authors,	Calendrical	Tabulations,	is	also	available.
It	contains	tables	for	easy	conversion	of	dates	and	some	holidays	on	the	world’s
major	calendars	(Gregorian,	Hebrew,	Islamic,	Hindu,	Chinese,	Coptic/Ethiopic,
and	 Persian)	 for	 the	 years	 1900–2200.	 These	 tables	 were	 computed	 using	 the
Lisp	functions	from	Appendix	B	of	the	Millennium	Edition	and	typeset	directly
from	 	 output	 produced	 by	 driver	 code.	 Small	 changes	 made	 to	 the
astronomical	 code	 in	 the	 interim	 can	 cause	 minor	 discrepancies	 in	 dates	 and
times.1

The	Cambridge	University	Press	Web	Site
Exegi	monumentum	aere	perennius.	[I	have	created	a	monument	more	lasting	than	bronze.]

Horace:	Odes,	III,	xxx

www.cambridge.org/calendricalcalculations

This	web	site	contains	links	to	files	related	to	this	book,	including	the	Lisp	code
from	 Appendix	 D	 for	 the	 calendar	 functions	 and	 the	 sample	 data	 from
Appendix	C.

The	Authors’	Web	Page
The	author	has	tried	to	indicate	every	known	blemish	in	[2];	and	he	hopes	that	nobody	will	ever
scrutinize	any	of	his	own	writings	as	meticulously	as	he	and	others	have	examined	the	ALGOL
report.

Donald	E.	Knuth:	“The	Remaining	Trouble	Spots	in	ALGOL	60,”

Communications	of	the	ACM	(1967)

Visit	us	at

www.calendarists.com

http://www.cambridge.org/calendricalcalculations
http://www.calendarists.com


Among	other	things,	one	can	find	errata	for	this	book	at	this	address.	Try	as	we
have,	at	least	one	error	remains	in	this	book.
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THE	END.
This	work	was	completed	on	the	17th	or	27th	day	of	May,	1618;	but	Book	v	was	reread	(while	the
type	was	being	set)	on	the	9th	or	19th	of	February,	1619.	At	Linz,	the	capital	of	Austria—above
the	Enns.

Johannes	Kepler:	Harmonies	of	the	World

I	have	not	always	executed	my	own	scheme,	or	satisfied	my	own	expectations	…	[But	]	I	look	with
pleasure	on	my	book	however	defective	and	deliver	it	to	the	world	with	the	spirit	of	a	man	that
has	endeavored	well	…	When	it	shall	be	found	that	much	is	omitted,	let	it	not	be	forgotten	that
much	likewise	has	been	performed.



Samuel	Johnson:	Preface	to	his	Dictionary

R.D.	736520
Chicago,	Illinois
Tel	Aviv,	Israel

E.M.R.
N.D.

References
A	book	without	a	preface	is	like	a	body	without	a	soul.

Hebrew	proverb

[1]			The	World	Calendar	Association,	www.theworldcalendar.org.
[2]			A.	Birashk,	A	Comparative	Calendar	of	the	Iranian,	Muslim	Lunar,	and

Christian	Eras	for	Three	Thousand	Years,	Mazda	Publishers	(in
association	with	Bibliotheca	Persica),	Costa	Mesa,	CA,	1993.

[3]			N.	Dershowitz	and	E.	M.	Reingold,	“Calendrical	Calculations,”	Software
—Practice	and	Experience,	vol.	20,	no.	9,	pp.	899–928,	September	1990.

[4]			N.	Dershowitz	and	E.	M.	Reingold,	“Modulo	Intervals:	A	Proposed
Notation,”	ACM	SIGACT	News,	vol.	43,	no.	3,	pp.	60–64,	2012.

[5]			N.	Dershowitz	and	E.	M.	Reingold,	“A	Terrestrial	Calendar	for	Mars
(Abstract),”	Program	Book	of	The	Founding	Convention	of	the	Mars
Society,	The	University	of	Colorado	at	Boulder,	pp.	117–118,	1998.

[6]			C.	F.	Gauss,	“Berechnung	des	jüdischen	Osterfestes,”	Monatliche
Correspondenz	zur	Beförderung	der	Erd-	und	Himmelskunde,	vol.	5
(1802),	pp.	435–437.	Reprinted	in	Gauss’s	Werke,	Herausgegeben	von	der
Königlichen	Gesellschaft	der	Wissenschaften,	Göttingen,	vol.	VI,	pp.	80–
81,	1874;	republished,	Georg	Olms	Verlag,	Hildesheim,	1981.

[7]			A.	Jarry,	Ubu	à	l’Anvers,	Rossaert,	Antwerp,	1997.
[8]			D.	E.	Knuth,	“The	Potrzebie	System	of	Weights	and	Measures,”	MAD

Magazine,	vol.	1,	no.	33,	pp.	36–37,	June	1957.	Reprinted	in	Knuth’s
Selected	Papers	on	Fun	&	Games,	Center	for	the	Study	of	Language	and
Information,	Stanford	University,	Stanford,	CA,	2011.

[9]			D.	E.	Knuth,	The	Art	of	Computer	Programming,	vol.	2:	Seminumerical

http://www.theworldcalendar.org


Algorithms,	3rd	edn.,	Addison-Wesley	Publishing	Company,	Reading,
MA,	1998.

[10]			P.	G.	Neumann,	“Inside	Risks:	The	Clock	Grows	at	Midnight,”
Communications	of	the	ACM,	vol.	34,	no.	1,	p.	170,	January	1991.

[11]			M.	Okuda,	and	D.	Okuda,	Star	Trek	Chronology:	The	History	of	the
Future,	revised	edn.,	Pocket	Books,	NY,	1996.

[12]			F.	Parise,	ed.,	The	Book	of	Calendars,	Facts	on	File,	New	York,	1982.
[13]			E.	M.	Reingold,	N.	Dershowitz,	and	S.	M.	Clamen,	“Calendrical

Calculations,	Part	II:	Three	Historical	Calendars,”	Software—Practice
and	Experience,	vol.	23,	no.	4,	pp.	383–404,	April	1993.

[14]			I.	Rhodes,	“Computation	of	the	Dates	of	the	Hebrew	New	Year	and
Passover,”	Computers	&	Mathematics	with	Applications,	vol.	3,	pp.	183–
190,	1977.

[15]			R.	M.	Stallman,	GNU	Emacs	Manual,	13th	edn.,	Free	Software
Foundation,	Cambridge,	MA,	1997.

[16]			G.	L.	Steele,	Jr.,	G.	L.	Steele,	Jr.,	Common	LISP:	The	Language,	2nd
edn.,	Digital	Press,	Bedford,	MA,	1990.

[17]			K.	Wilkins,	Letter	to	Nachum	Dershowitz	from	a	Customer	Relations
Representative,	Lotus	Development	Corporation,	Cambridge,	MA,	April
21,	1992.
La	dernière	chose	qu’on	trouve	en	faisant	un	ouvrage,	est	de	savoir	celle	qu’il	faut	mettre	la
première.	[The	last	thing	one	settles	in	writing	a	book	is	what	one	should	put	in	first.]

Blaise	Pascal:	Pensées	sur	l’esprit	et	le	style	(1660)

1			The	following	minor	errors	regarding	lunar	phases	in	Calendrical	Tabulations	bear	noting:	First,	the
dust	jacket	uses	a	negative	image	of	the	calendar	pages;	this	has	the	effect	of	interchanging	the	full/new
moon	symbols	and	the	first	quarter/last	quarter	symbols	visible	in	the	Gregorian	calendar	at	the	middle
bottom.	Second,	when	a	lunar	phase	(or	equinox	or	solstice)	occurs	seconds	before	midnight,	the	date	is
correctly	indicated,	but	the	time	is	rounded	up	to	midnight	and	shown	as	0:00	instead	of	24:00.	Finally,
when	two	lunar	phases	occur	during	the	same	week,	the	times	given	in	the	right	margin	are	in	reverse	order.



Credits

Whoever	relates	something	in	the	name	of	its	author	brings	redemption	to	the	world.

Midrash	Tanḥuma	(Numbers,	27)

Photograph	 of	 Edward	M.	 Reingold	 on	 the	 dust	 jacket	 is	 by	 Photography	 by
Rick	&	Rich	(Northbrook,	IL,	2014);	used	with	permission.

Photograph	 of	Nachum	Dershowitz	 on	 the	 dust	 jacket	 is	 by	Olivier	 Toussaint
(Nancy,	2011);	used	with	permission.

Quote	 on	 page	 xxxi	 from	Epistles	 of	 Maimonides:	Crisis	 and	 Leadership,	 A.
Halkin,	trans.,	Jewish	Publication	Society,	1993;	used	with	permission.

Translation	of	Scaliger’s	comment	on	the	Roman	calendar	on	page	75	is	from	A.
T.	Grafton,	Joseph	Scaliger:	A	Study	in	the	History	of	Classical	Scholarship,	vol.
II,	Historical	Chronography,	Oxford	University	Press,	Oxford,	1993;	used	with
permission.

Translation	of	Ptolemy	III’s	Canopus	Decree	on	page	92	is	from	page	90	of	R.
Hannah,	Greek	&	Roman	Calendars,	Gerald	Duckworth	&	Co.,	London,	2005;
used	with	permission.

Translation	on	page	114	of	Scaliger’s	comment	on	the	Hebrew	calendar	(found
on	 page	 294	 of	 Book	 7	 in	 the	 1593	 Frankfort	 edition	 of	 De	 Emendatione
Temporum)	is	by	H.	Jacobson;	used	with	permission.



Translation	 of	 “The	Synodal	Letter”	 on	 page	 143	 (found	 in	Gelasius,	Historia
Concilii	Nicæni,	 book	 II,	 Chapter	 xxxiii)	 is	 from	 J.	 K.	 Fotheringham,	 “The
Calendar,”	in	The	Nautical	Almanac	and	Astronomical	Ephemeris,	His	Majesty’s
Stationery	 Office,	 London,	 1931–1934;	 revised	 1935–1938;	 abridged	 1939–
1941.

Translation	of	the	extract	from	Canon	6	of	Gregorian	reform	on	page	145	is	by
M.	H.	Deckers;	used	with	permission.

Translation	 of	 the	Quintus	Curtius	Rufus	 quotation	 on	 page	 257	 is	 from	 J.	 C.
Rolfe,	History	of	Alexander,	Harvard	University	Press,	Cambridge,	MA,	1946.

Translation	of	Ovid	 quotation	 on	 page	 259	 is	 from	 J.	G.	 Frazer,	Ovid’s	 Fasti,
Harvard	University	Press,	Cambridge,	MA,	1931.

Letter	on	page	273	reprinted	with	permission.
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representation	 or	 for	 any	 inaccuracy	 shall	 be	 a	 refund	 of	 the	 price	 of	 this
book.	Some	States	 in	 the	U.S.A.	do	not	allow	 the	exclusion	or	 limitation	of
liability	 for	 incidental	 or	 consequential	 damages,	 and	 thus	 the	 preceding
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Publisher:
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1

Calendar	Basics
◈

A	learned	man	once	asked	me	regarding	the	eras	used	by	different	nations,	and	regarding	the
difference	of	their	roots,	that	is,	the	epochs	where	they	begin,	and	of	their	branches,	that	is,	the
months	and	years,	on	which	they	are	based;	further	regarding	the	causes	which	led	to	such
difference,	and	the	famous	festivals	and	commemoration-days	for	certain	times	and	events,	and
regarding	whatever	else	one	nation	practices	differently	from	another.	He	urged	me	to	give	an
explanation,	the	clearest	possible,	of	all	this,	so	as	to	be	easily	intelligible	to	the	mind	of	the
reader,	and	to	free	him	from	the	necessity	of	wading	through	widely	scattered	books,	and	of
consulting	their	authors.	Now	I	was	quite	aware	that	this	was	a	task	difficult	to	handle,	an	object
not	easily	to	be	attained	or	managed	by	anyone,	who	wants	to	treat	it	as	a	matter	of	logical
sequence,	regarding	which	the	mind	of	the	student	is	not	agitated	by	doubt.

Abū-Raiḥān	Muḥammad	ibn	’Aḥmad	al-Bīrūnī:
Al-Āthār	al-Bāqiyah	‘an	al-Qurūn	al-Khāliyah	(1000)

Calendrical	 calculations	 are	 ubiquitous.	 Banks	 need	 to	 calculate	 interest	 on	 a
daily	 basis.	 Corporations	 issue	 paychecks	 on	 weekly,	 biweekly,	 or	 monthly
schedules.	 Bills	 and	 statements	 must	 be	 generated	 periodically.	 Computer
operating	 systems	 need	 to	 switch	 to	 and	 from	 daylight	 saving	 time.	 Dates	 of
secular	 and	 religious	holidays	must	be	computed	 for	 consideration	 in	planning
events.	Most	of	these	calculations	are	not	difficult	because	the	rules	of	our	civil
calendar	(the	Gregorian	calendar)	are	straightforward.

Complications	begin	when	we	need	to	know	the	day	of	the	week	on	which	a
given	 date	 falls	 or	 when	 various	 religious	 holidays	 based	 on	 other	 calendars
occur.	 These	 complications	 lead	 to	 difficult	 programming	 tasks—not	 often



difficult	in	an	algorithmic	sense	but	difficult	because	it	can	be	extremely	tedious
to	 delve	 into,	 for	 example,	 the	 complexities	 of	 the	 Hebrew	 calendar	 and	 its
relation	to	the	civil	calendar.

The	purpose	of	this	book	is	to	present,	in	a	unified,	completely	algorithmic
form,	 a	 description	 of	 over	 three	 dozen	 calendars	 and	 how	 they	 relate	 to	 one
another.	Among	 them	 are	 included	 the	 present	 civil	 calendar	 (Gregorian);	 the
recent	 ISO	 commercial	 calendar;	 the	 old	 civil	 calendar	 (Julian);	 the	 ancient
Egyptian	 calendar	 and	 its	 Armenian	 equivalent;	 the	 Coptic	 and	 the	 virtually
identical	Ethiopic	calendars;	the	Akan	(African)	calendar,	the	Islamic	(Muslim)
calendar	 (the	 arithmetical	 version,	 one	based	on	 calculated	 lunar	observability,
and	 a	Saudi	Arabian	 variant);	 the	modern	 Persian	 calendar	 (both	 astronomical
and	 arithmetic	 forms);	 the	 Bahá’í	 calendar,	 both	 arithmetic	 and	 astronomical
forms;	 the	Hebrew	 (Jewish)	 calendar,	 both	 its	 present	 arithmetical	 form	 and	 a
speculative	 observational	 form;	 the	 three	 Mayan	 calendars	 and	 two	 virtually
identical	 Aztec	 calendars;	 the	 Pawukon	 calendar	 from	 Bali;	 the	 French
Revolutionary	 calendar	 (both	 astronomical	 and	 arithmetic	 forms);	 the	Chinese
calendar	and	the	virtually	identical	Japanese,	Korean,	and	Vietnamese	calendars;
both	the	old	(mean)	and	new	(true)	Hindu	(Indian)	solar	and	lunisolar	calendars;
and	 the	 Tibetan	 calendar.	 Information	 that	 is	 sufficiently	 detailed	 to	 allow
computer	implementation	is	difficult	to	find	for	most	of	these	calendars	because
the	published	material	is	often	inaccessible,	ecclesiastically	oriented,	incomplete,
inaccurate,	 based	 on	 extensive	 tables,	 overburdened	 with	 extraneous	 material,
focused	on	shortcuts	for	hand	calculation	to	avoid	complicated	arithmetic	or	to
check	 results,	or	difficult	 to	 find	 in	English.	Most	 existing	computer	programs
are	proprietary,	incomplete,	or	inaccurate.

The	need	for	such	a	secular,	widely	available	presentation	was	made	clear
to	us	when	we	(primarily	E.M.R.,	with	contributions	by	N.D.),	in	implementing
a	calendar/diary	feature	for	GNU	Emacs	[44],	found	difficulty	in	gathering	and



interpreting	 appropriate	 source	 materials	 that	 describe	 the	 interrelationships
among	 the	 various	 calendars	 and	 the	 determination	 of	 the	 dates	 of	 holidays.
Some	 of	 the	 calendars	 (Chinese,	 Japanese,	 Korean,	 Vietnamese,	 Hindu,	 and
Tibetan)	had	never	had	full	algorithmic	descriptions	published	in	English.

The	 calendar	 algorithms	 in	 this	 book	 are	 presented	 as	 mathematical
function	 definitions	 in	 standard	 mathematical	 format.	 Appendix	 A	 gives	 the
types	(ranges	and	domains)	of	all	functions	and	constants	we	use;	Appendix	B	is
a	 cross	 reference	 list	 that	 gives	 all	 dependencies	 among	 the	 functions	 and
constants.	In	Appendix	C	we	tabulate	results	of	the	calendar	calculations	for	33
sample	 dates	 and	 44	 holidays;	 this	 will	 aid	 those	 who	 develop	 their	 own
implementations	 of	 our	 calendar	 functions.	 To	 ensure	 correctness,	 all	 calendar
functions	were	automatically	typeset1	directly	 from	the	working	Common	Lisp
[46]	functions	given	in	Appendix	D.2

We	chose	mathematical	notation	as	the	vehicle	for	presentation	because	of
its	universality	and	easy	convertibility	 to	any	programming	 language.	We	have
endeavored	 to	 simplify	 the	calculations	as	much	as	possible	without	obscuring
the	intuition.	Many	of	the	algorithms	we	provide	are	considerably	more	concise
than	previously	published	ones;	this	is	particularly	true	of	the	arithmetic	Persian,
Hebrew,	and	old	Hindu	calendars.

We	 chose	 Lisp	 as	 the	 vehicle	 for	 implementation	 because	 it	 encourages
functional	programming	and	has	a	 trivial	syntax,	nearly	self-evident	semantics,
historical	 durability,	 and	 wide	 distribution;	 moreover,	 Lisp	 was	 amenable	 to
translation	into	ordinary	mathematical	notation.	Except	for	a	few	short	macros,
the	code	uses	only	a	very	simple,	side-effect-free,	subset	of	Lisp.	We	emphasize
that	our	choice	of	Lisp	should	be	considered	 irrelevant	 to	most	 readers,	whom
we	expect	to	follow	the	mathematical	notation	used	in	the	text,	not	to	delve	into
the	code.



It	 is	not	 the	purpose	of	 this	book	to	give	a	detailed	historical	 treatment	of
the	 material,	 nor,	 for	 that	 matter,	 a	 mathematical	 one;	 our	 goal	 is	 to	 give	 a
logical,	 thorough,	 computational	 treatment.	 Thus,	 although	 we	 give	 much
historical,	 religious,	 mathematical,	 and	 astronomical	 data	 to	 leaven	 the
discussion,	 the	 focus	 of	 the	 presentation	 is	 algorithmic.	 Full	 historical	 and
religious	details	as	well	as	the	mathematical	and	astronomical	underpinnings	of
the	calendars	can	be	pursued	in	the	references.

In	 this	 chapter,	 we	 describe	 the	 underlying	 unifying	 theme	 of	 all	 the
calculations	along	with	some	useful	mathematical	 facts.	The	details	of	 specific
calendars	are	presented	in	subsequent	chapters.	Historically,	the	oldest	calendars
that	we	consider	are	 the	Egyptian	 (more	 than	3000	years	old)	and	Babylonian.
The	 Chinese	 and	 Mayan	 calendars	 also	 derive	 from	 millennia-old	 calendars.
Next	are	the	classical	(observation-based)	Hebrew,	the	Julian	(the	roots	of	which
date	back	to	the	ancient	Roman	empire),	the	Coptic	and	Ethiopic	(third	century),
the	current	Hebrew	(fourth	century)	and	the	old	Hindu	(fifth	century),	followed
by	 the	 Islamic	 calendar	 (seventh	 century),	 the	 newer	 Hindu	 calendars	 (tenth
century),	 the	 Persian	 and	 Tibetan	 calendars	 (eleventh	 century),	 the	 Gregorian
modification	to	the	Julian	calendar	(sixteenth	century),	the	French	Revolutionary
calendar	 (eighteenth	 century),	 and	 the	 Bahá’í	 calendar	 (nineteenth	 century).
Finally,	 the	 International	 Organization	 for	 Standardization’s	 ISO	 calendar	 and
the	arithmetic	Persian	calendar	are	of	twentieth-century	origin.

For	expository	purposes,	however,	we	present	the	Gregorian	calendar	first,
in	Part	 I,	because	 it	 is	 the	most	popular	calendar	currently	 in	use.	Because	 the
Julian	 calendar	 is	 so	 close	 in	 substance	 to	 the	 Gregorian,	 we	 present	 it	 next,
followed	by	 the	very	 similar	Coptic	 and	Ethiopic	 calendars.	Then	we	give	 the
ISO	 calendar	 and	 the	 Icelandic	 calendar,	 which	 are	 trivial	 to	 implement	 and
depend	wholly	on	the	Gregorian.	The	arithmetic	Islamic	calendar,	which	because
of	 its	 simplicity	 is	 easy	 to	 implement,	 follows.	 Next,	 we	 present	 the	 Hebrew



calendar,	one	of	the	more	complicated	and	difficult	calendars	to	implement.	This
is	followed	by	a	chapter	on	the	computation	of	Easter,	which	is	lunisolar	like	the
Hebrew	calendar.	The	ancient	Hindu	solar	and	lunisolar	calendars	are	described
next;	 these	 are	 simple	 versions	 of	 the	 modern	 Hindu	 solar	 and	 lunisolar
calendars	described	in	Part	II.	Next	come	the	Mayan	and	similar	Aztec	calendars
of	 historical	 interest,	 which	 have	 several	 unique	 computational	 aspects.	 These
are	 followed	by	 the	Balinese	Pawukon	calendar.	All	 the	calendars	described	 in
Part	 I	 are	 “arithmetical”	 in	 that	 they	 operate	 by	 straightforward	 integer-based
rules.	 We	 conclude	 Part	 I	 with	 a	 chapter	 describing	 the	 generic	 arithmetic
calendar	schemata	that	apply	to	many	calendars	in	this	part.

In	Part	II	we	present	calendars	that	are	controlled	by	irregular	astronomical
events	(or	close	approximations	to	them),	although	these	calendars	may	have	an
arithmetical	 component	 as	well.	Because	 the	 calendars	 in	Part	 II	 require	 some
understanding	 of	 astronomical	 events	 such	 as	 solstices,	 equinoxes,	 and	 lunar
phases,	we	begin	Part	II	with	a	chapter	introducing	the	topics	and	algorithms	that
will	 be	 needed.	We	 then	 give	 the	modern	 Persian	 calendar	 in	 its	 astronomical
and	arithmetic	forms	followed	by	the	Bahá’í	calendar,	also	in	two	versions:	the
former	Western	 (arithmetic)	 version,	which	 depends	wholly	 on	 the	Gregorian,
and	the	new	astronomical	version.	Next	we	describe	the	original	(astronomical)
and	modified	(arithmetic)	forms	of	the	French	Revolutionary	calendar.	All	these
calendars	are	computationally	simple,	provided	that	certain	astronomical	values
are	available.	Next	we	describe	some	astronomical	calendars	based	on	the	moon:
the	 Babylonian	 calendar,	 a	 proposed	 astronomical	 calculation	 of	 Easter,	 the
observational	Islamic	calendar,	and	the	classical	Hebrew	calendar.	We	continue
with	 the	Chinese	 lunisolar	 calendar	 and	 its	 Japanese,	Korean,	 and	Vietnamese
versions.	We	 then	 describe	 the	modern	Hindu	 calendars,	which	 are	 by	 far	 the
most	 complicated	of	 the	 calendars	 in	 this	book.	We	conclude	with	 the	Tibetan
calendar.



We	also	 provide	 algorithms	 for	 computing	holidays	 based	on	most	 of	 the
calendars.	 In	 this	 regard	 we	 take	 the	 ethnocentric	 view	 that	 our	 task	 is	 to
compute	 the	dates	of	holidays	 in	a	given	Gregorian	year;	 there	 is	 clearly	 little
difficulty	in	finding	the	dates	of,	say,	Islamic	New	Year	in	a	given	Islamic	year!
In	 general	 we	 have	 tried	 to	 mention	 significant	 holidays	 on	 the	 calendars	 we
cover	but	have	not	attempted	to	be	exhaustive	and	to	include	all	variations.	The
interested	reader	can	find	extensive	holiday	definitions	in	[22],	[23],	and	[24].

The	 selection	 of	 calendars	 we	 present	 was	 chosen	with	 two	 purposes:	 to
include	 all	 common	modern	 calendars	 and	 to	 cover	 all	 calendrical	 techniques.
We	 do	 not	 give	 all	 variants	 of	 the	 calendars	 we	 discuss,	 but	 we	 have	 given
enough	details	to	make	any	calendar	easy	to	implement.

1.1 Calendar	Units	and	Taxonomy
Teach	us	to	number	our	days,	that	we	may	attain	a	wise	heart.

Psalms	90:12

The	 sun	 moves	 from	 east	 to	 west,	 and	 night	 follows	 day	 with	 predictable
regularity.	This	apparent	motion	of	the	sun	as	viewed	by	an	earthbound	observer
provided	 the	 earliest	 time-keeping	 standard	 for	 humankind.	 The	 day	 is,
accordingly,	the	basic	unit	of	time	underlying	all	calendars,	but	various	calendars
use	 different	 conventions	 to	 structure	 days	 into	 larger	 units:	 weeks,	 months,
years,	 and	cycles	of	years.	Different	calendars	also	begin	 their	day	at	different
times:	 the	 French	 Revolutionary	 day,	 for	 example,	 begins	 at	 true	 (apparent)
midnight;	the	Islamic,	Bahá’í,	and	Hebrew	days	begin	at	sunset;	the	Hindu	day
begins	at	sunrise.	The	various	definitions	of	day	are	surveyed	in	Section	14.3.

The	 purpose	 of	 a	 calendar	 is	 to	 give	 a	 name	 to	 each	 day.	 The
mathematically	 simplest	 naming	 convention	 would	 be	 to	 assign	 an	 integer	 to
each	 day;	 fixing	 day	 1	would	 determine	 the	whole	 calendar.	 The	Babylonians



had	 such	 a	 day	 count	 (in	 base	 60).	 Such	 diurnal	 calendars	 are	 used	 by

astronomers	 (see	 Section	 14.3)	 and	 by	 calendarists	 (see,	 for	 example,	 Section
10.1);	 we	 use	 a	 day	 numbering	 in	 this	 book	 as	 an	 intermediate	 device	 for
converting	 from	 one	 calendar	 to	 another	 (see	 the	 following	 section).	 Day-
numbering	schemes	can	be	complicated	by	using	a	mixed-radix	system	[28]	 in
which	the	day	number	is	given	as	a	sequence	of	numbers	or	names	(see	Section
1.10).	The	Mayans,	for	example,	utilized	such	a	method	(see	Section	11.1).

Calendar	day	names	are	generally	distinct,	but	 this	 is	not	always	the	case.
For	example,	the	day	of	the	week	is	a	calendar,	in	a	trivial	sense,	with	infinitely
many	days	having	the	same	day	name	(see	Section	1.12).	A	7-day	week	is	almost
universal	 today.	 In	many	 cultures,	 the	 days	 of	 the	week	were	 named	 after	 the
seven	 “wandering	 stars”	 (or	 after	 the	 gods	 associated	 with	 those	 heavenly
bodies),	namely,	the	sun,	the	moon,	and	the	five	planets	visible	to	the	naked	eye
—Mercury,	 Venus,	 Mars,	 Jupiter,	 and	 Saturn.	 In	 some	 languages—Arabic,
Lithuanian,	 Portuguese,	Ukrainian,	 and	Hebrew	 are	 examples—some	 or	 all	 of
the	days	of	 the	week	are	numbered,	not	named.	 In	 the	Armenian	 calendar,	 for
example,	the	days	of	the	week	are	named	as	follows	[22,	vol.	3,	p.	70]:

Sunday Kiraki	(or	Miashabathi)

Monday Erkoushabathi

Tuesday Erekhshabathi

Wednesday Chorekhshabathi

Thursday Hingshabathi

Friday Urbath	(or	Vetsshabathi)

Saturday Shabath



“Shabath”	means	“day	of	rest”	(from	the	Hebrew),	“Miashabathi”	means	the	first
day	following	the	day	of	rest,	“Erkoushabathi”	 is	 the	second	day	following	the
day	 of	 rest,	 and	 so	 on.	 The	 Armenian	 Christian	 church	 later	 renamed
“Vetsshabathi”	 as	 “Urbath,”	 meaning	 “to	 get	 ready	 for	 the	 day	 of	 rest.”
Subsequently,	they	declared	the	first	day	of	the	week	as	“Kiraki”	or	“the	Lord’s
day.”

Other	 cycles	 of	 days	 have	 also	 been	 used,	 including	 4-day	weeks	 (in	 the
Congo),	5-day	weeks	(in	other	parts	of	Africa,	in	Bali,	and	in	Russia	in	1929),	6-
day	weeks	(Japan),	8-day	weeks	(in	yet	other	parts	of	Africa	and	in	the	Roman
Republic),	and	10-day	weeks	(in	ancient	Egypt	and	in	France	at	 the	end	of	 the
eighteenth	 century;	 see	 page	 282).	 The	 mathematics	 of	 cycles	 of	 days	 are
described	in	Section	1.12	Many	calendars	repeat	after	one	or	more	years.	In	one
of	the	Mayan	calendars	(see	Section	11.2),and	in	many	preliterate	societies,	day
names	are	recycled	every	year.	The	Chinese	calendar	uses	a	repeating	60-name
scheme	for	days	and	years,	and	at	one	time	used	it	to	name	months.

An	interesting	variation	in	some	calendars	is	the	use	of	two	or	more	cycles
running	simultaneously.	For	example,	the	Mayan	tzolkin	calendar	(Section	11.2)
combines	a	cycle	of	13	names	with	a	cycle	of	20	numbers.	The	Chinese	cycle	of
60	 names	 for	 years	 is	 actually	 composed	 of	 cycles	 of	 length	 10	 and	 12	 (see
Section	 19.4).	 The	 Balinese	 calendar	 takes	 this	 idea	 to	 an	 extreme;	 see
Chapter	12.	The	mathematics	of	simultaneous	cycles	is	described	in	Section	1.13

The	notions	of	“month”	and	“year,”	like	the	day,	were	originally	based	on
observations	 of	 heavenly	 phenomena,	 namely	 the	 waxing	 and	 waning	 of	 the
moon,	and	 the	cycle	of	seasons,	 respectively.	The	 lunar	cycle	 formed	 the	basis
for	 the	 palaeolithic	 marking	 of	 time	 (see	 [32]	 and	 [13]),	 and	 many	 calendars
today	 begin	 each	 month	 with	 the	 new	 moon,	 when	 the	 crescent	 moon	 first
becomes	visible	(as	in	the	Hebrew	calendar	of	classical	times	and	in	the	religious
calendar	of	the	Muslims	today—	Sections	14.9	and	18.4);others	begin	the	month



at	 full	moon	 (in	northern	 India,	 for	 example)—see	 page	 160.	For	 calendars	 in
which	 the	 month	 begins	 with	 the	 observed	 new	 moon,	 beginning	 the	 day	 at
sunset	is	natural.

Over	 the	course	of	history,	many	different	schemes	have	been	devised	for
determining	 the	 start	 of	 the	 year,	 usually	 based	 on	 the	 solar	 cycle.3	 Some	 are
astronomical,	 beginning	 at	 the	 autumnal	or	 spring	 equinox,	or	 at	 the	winter	or
summer	solstice.	Solstices	are	more	readily	observable;	either	one	can	note	when
the	midday	shadow	of	a	gnomon	is	longest	(at	the	winter	solstice	in	the	northern
hemisphere)	or	shortest	(at	the	summer	solstice)	or	one	can	note	the	point	in	time
when	the	sun	rises	or	sets	the	farthest	south	during	the	course	of	the	year	(which
is	the	start	of	winter	in	the	northern	hemisphere)	or	the	farthest	north	(the	start	of
summer).	 The	 ancient	 Egyptians	 began	 their	 year	 with	 the	 heliacal	 rising	 of
Sirius—that	is,	on	the	day	when	the	Dog	Star	Sirius	(the	brightest	fixed	star	in
the	sky)	can	first	be	seen	 in	 the	morning	after	a	period	during	which	 the	sun’s
proximity	 to	 Sirius	 makes	 the	 latter	 invisible	 to	 the	 naked	 eye.	 The	 Pleiades
(“Seven	 Sisters”)	 were	 used	 by	 the	 Maoris	 and	 other	 peoples	 for	 the	 same
purpose.	Various	other	natural	phenomena	such	as	harvests	or	the	rutting	seasons
of	certain	animals	have	been	used	among	North	American	tribes	[9]	to	establish
the	 onset	 of	 a	 new	year.	And	 not	 just	 humans	 use	 such	 phenomena:	 the	 lunar
cycle	determines	life	cycle	events	for	certain	corals	[7],	birds	[43],	and	monkeys
[30].	It	has	also	been	suggested	[10]	that	the	pink	“skylight”	on	the	crown	of	the
head	 of	 leatherback	 turtles	 serves	 to	 allow	 them	 to	 determine	 when	 in	 late
summer	the	lengths	of	day	and	night	are	equal	(taking	refraction	into	account),	at
which	point	foraging	turtles	turn	south.

Calendars	have,	of	necessity,	an	integral	number	of	days	in	a	month	and	an
integral	number	of	months	in	a	year.	However,	these	astronomical	periods—day,
month,	 and	 year—are	 incommensurate:	 their	 periods	 do	 not	 form	 integral



multiples	of	one	another.	The	lunar	month	is	about	 	days	long,	and	the	solar
year	 is	 about	 	 days	 long	 (Chapter	 14	 has	 precise	 definitions	 and	 values).
How	 exactly	 one	 coordinates	 these	 time	 periods	 and	 the	 accuracy	with	which
they	 approximate	 their	 astronomical	 values	 is	what	 differentiates	 one	 calendar
from	another.

Broadly	 speaking,	 solar	 calendars—including	 the	 Egyptian,	 Armenian,
Persian,	 Gregorian,	 Julian,	 Coptic,	 Ethiopic,	 ISO,	 French	 Revolutionary,	 and
Bahá’í	 —are	 based	 on	 the	 yearly	 solar	 cycle,	 whereas	 lunar	 and	 lunisolar
calendars—such	as	the	Islamic,	Hebrew,	Hindu,	Tibetan,	and	Chinese—take	the
monthly	 lunar	 cycle	 as	 their	 basic	 building	 block.	 Most	 solar	 calendars	 are
divided	into	months,	but	these	months	are	divorced	from	the	lunar	events;	they
are	 sometimes	 related	 to	 the	movement	of	 the	 sun	 through	 the	12	 signs	of	 the
zodiac,	notably	in	the	Hindu	solar	calendars	(see	Chapter	20)

Because	observational	methods	suffer	from	vagaries	of	weather	and	chance,
they	have	for	the	most	part	been	supplanted	by	calculations.	The	simplest	option
is	to	approximate	the	length	of	the	year,	of	the	month,	or	of	both.	Originally,	the
Babylonian	solar	calendar	was	based	on	12	months	of	30	days	each	(see	[26]),
overestimating	 the	 length	 of	 the	 month	 and	 underestimating	 the	 year;	 see
Figure	 1.1.	 Such	 a	 calendar	 is	 easy	 to	 calculate,	 but	 each	 month	 begins	 at	 a
slightly	 later	 lunar	 phase	 than	 the	 previous,	 and	 the	 seasons	 move	 forward
slowly	 through	 the	 year.	 The	 ancient	 Egyptian	 calendar	 achieved	 greater
accuracy	 by	 having	 12	 months	 of	 30	 days	 plus	 5	 extra	 days—Egyptian
mythology	includes	a	tale	of	how	the	calendar	came	to	have	these	five	extra	days
[3].	 Conversions	 for	 this	 calendar	 are	 illustrated	 in	 Section	 1.11.	 To	 achieve
better	correlation	with	the	motion	of	the	moon,	one	can	instead	alternate	months
of	 29	 and	 30	 days.	 Twelve	 such	months,	 however,	 amount	 to	 354	 days–more
than	11	days	short	of	the	solar	year.



Figure	1.1	
A	small	( 	cm)	bone	plaque	found	in	Tel	‘Aroer,	an	Iron	Age	II	(8th—6th
century	B.C.E.)	caravan	town	in	the	Negev,	Israel.	It	is	conjectured	to	be	a
calendar	counter:	a	peg	could	move	daily	through	the	30	holes	in	the	three	right-
hand	columns	of	10	holes	each,	while	another	peg	moved	monthly	through	the
12	holes	in	the	first	column.	It	could	have	been	used	either	as	a	schematic	360-
day	calendar	or	as	a	lunar	calendar,	in	which	case	some	months	would	end	after
29	days	[14].	(Reproduced	courtesy	of	the	Hebrew	Union	College,	Jerusalem.)

Almost	 every	 calendar	 in	 this	 book	 and	 virtually	 all	 other	 calendars
incorporate	a	notion	of	“leap”	year	to	deal	with	the	cumulative	error	caused	by
approximating	 a	 year	 by	 an	 integral	 number	 of	 days	 and	 months.4	 Solar
calendars	add	a	day	every	few	years	to	keep	up	with	the	astronomical	year.	The



calculations	 are	 simplest	 when	 the	 leap	 years	 are	 evenly	 distributed	 and	 the
numbers	 involved	 are	 small;	 for	 instance,	 the	 Julian,	 Coptic,	 and	 Ethiopic
calendars	add	1	day	every	4	years.	Formulas	for	the	evenly	distributed	case,	such
as	 when	 one	 has	 a	 leap	 year	 every	 fourth	 or	 fifth	 year,	 are	 derived	 in
Section	1.14.	The	old	Hindu	solar	calendar	(Chapter	10)	follows	such	a	pattern;
the	arithmetical	Persian	calendar	 almost	does	 (see	Chapter	15).	The	Gregorian
calendar,	 however,	 uses	 an	 uneven	 distribution	 of	 leap	 years	 but	 a	 relatively
easy-to-remember	 rule	 (see	 Chapter	 2).	 The	 modified	 French	 Revolutionary
calendar	(Chapter	17)	included	an	even	more	accurate	but	uneven	rule.

Most	 lunar	 calendars	 incorporate	 the	 notion	 of	 a	 year.	 Purely	 lunar
calendars	 may	 approximate	 the	 solar	 year	 with	 12	 lunar	 months	 (as	 does	 the
Islamic),	 though	this	 is	about	11	days	short	of	 the	astronomical	year.	Lunisolar
calendars	invariably	alternate	12-	and	13-month	years,	according	either	to	some
fixed	rule	(as	in	the	Hebrew	calendar)	or	to	an	astronomically	determined	pattern
(Chinese	 and	 modern	 Hindu).	 The	 so-called	 Metonic	 cycle	 is	 based	 on	 the
observation	 that	 19	 solar	 years	 contain	 almost	 exactly	 235	 lunar	months.	 This
correspondence,	named	after	the	Athenian	astronomer	Meton	(who	published	it
in	 432	 B.C.E.)	 and	 known	 much	 earlier	 to	 ancient	 Babylonian	 and	 Chinese
astronomers,	makes	 a	 relatively	 simple	 and	 accurate	 fixed	 solar/lunar	 calendar
feasible.	The	 	months	in	the	cycle	are	divided	into	12	years
of	12	months	and	7	leap	years	of	13	months.	The	Metonic	cycle	 is	used	in	 the
Hebrew	calendar	(Chapter	8)	and	for	the	calculation	of	Easter	Easter	(Chapter	9).

The	more	precise	 the	mean	year,	 the	 larger	 the	underlying	constants	must
be.	For	example	the	Metonic	cycle	is	currently	accurate	to	within	6.5	minutes	a
year,	but	other	lunisolar	cycles	are	conceivable:	3	solar	years	are	approximately
37	lunar	months	with	an	error	of	1	day	per	year;	8	years	are	approximately	99
months	with	an	error	of	5	hours	per	year;	11	years	are	approximately	136	months
with	an	error	of	3	hours	per	year;	and	334	years	are	4131	months	with	an	error	of



7.27	 seconds	 per	 year.	 The	 old	 Hindu	 calendar	 is	 even	 more	 accurate,
comprising	 2226389	 months	 in	 a	 cycle	 of	 180000	 years	 (see	 Chapter	 10)	 to
which	 the	 leap-year	 formulas	 of	 Section	 1.14	 apply,	 and	 errs	 by	 less	 than	 8
seconds	per	year.

The	placement	of	leap	years	must	make	a	trade-off	between	two	conflicting
requirements:	 small	 constants	 defining	 a	 simple	 leap	 year	 rule	 of	 limited
accuracy	 versus	 greater	 accuracy	 at	 the	 expense	 of	 larger	 constants,	 as	 the
examples	in	the	last	paragraph	suggest.	The	choice	of	the	constants	is	aided	by
taking	the	continued	fraction	(see	[27])	of	the	desired	ratio	and	choosing	among
the	convergents	(where	to	stop	in	evaluating	the	fraction).	In	the	case	of	lunisolar
calendars,	the	solar	year	is	about	365.24244	days,	while	the	lunar	month	is	about
29.53059	days,	so	we	write

By	 choosing	 further	 and	 further	 stopping	 points,	 we	 get	 better	 and	 better
approximations	to	the	true	ratio.	For	example,

while



and

These	 are	 the	 ratios	 of	 the	 previous	 paragraph.	 Not	 all	 approximations	 must
come	from	continued	fractions,	however:	84	years	are	approximately	1039	lunar
months	 with	 an	 error	 of	 33	 minutes	 per	 year,	 but	 this	 is	 not	 one	 of	 the
convergents.

Continued	 fractions	 can	 be	 used	 to	 get	 approximations	 to	 solar	 calendars
too.	The	number	of	days	per	solar	year	is	about	365.242177,	which	we	can	write
as



The	convergents	are	 	(the	basis	of	the	Julian,	Coptic,	and	Ethiopic	calendars),	
,	 	 (possibly	 used	 for	 an	 ancient	 Persian	 calendar),	 ,	 and	

(used	 in	 our	 implementation	 of	 the	 arithmetical	 Persian	 calendar—see
Chapter	15).

Table	1.1	gives	 for	comparison	 the	values	 for	 the	mean	 length	of	 the	year
and	month	as	implemented	by	the	various	solar,	lunar,	and	lunisolar	calendars	in
this	book.	The	true	values	change	over	time,	as	explained	in	Chapter	14.

Table	1.1		Length	in	days	of	mean	years	on	solar	and	lunisolar	calendars	and
length	in	days	of	mean	lunar	months	on	lunar	and	lunisolar	calendars.	The	year
length	is	given	in	italics	when	the	sidereal,	rather	than	the	tropical,	value	is
intended.	These	may	be	compared	with	the	astronomical	values	given	for	various
millennial	points–in	solar	days	current	at	the	indicated	time.	No	values	are	given
here	for	the	Chinese,	astronomical	Persian,	observational	Islamic,	astronomical
Bahá’í,	and	(original)	French	Revolutionary	calendars	because	they	are	self-
adjusting.	The	implicit	Mayan	values	come	from	other	values	that	they	knew;
see	the	footnote	on	page	171.



1.2 Fixed	Day	Numbers
May	those	who	calculate	a	fixed	date	…	perish.5

Morris	Braude:	Conscience	on	Trial:	Three	
Public	Religious	Disputations	

between	Christians	and	Jews	in	the	
Thirteenth	and	Fifteenth	Centuries	(1952)

Over	the	centuries,	human	beings	have	devised	an	enormous	variety	of	methods
for	specifying	dates.6	None	are	ideal	computationally,	however,	because	all	have
idiosyncrasies	 resulting	 from	 attempts	 to	 coordinate	 a	 convenient	 human
labeling	with	lunar	and	solar	phenomena.



(1.1)

For	a	computer	implementation,	the	easiest	way	to	reckon	time	is	simply	to
count	days.	Fix	an	arbitrary	starting	point	as	day	1	and	specify	a	date	by	giving	a
day	 number	 relative	 to	 that	 starting	 point;	 a	 single	 32-bit	 integer	 allows	 the
representation	 of	 more	 than	 11.7	 million	 years.	 Such	 a	 reckoning	 of	 time	 is,
evidently,	 extremely	 awkward	 for	 human	 beings	 and	 is	 not	 in	 common	 use,
except	 among	 astronomers,	who	 use	 julian	 day	 numbers	 to	 specify	 dates	 (see
Section	 1.5),	 and	 calendarists,	 who	 use	 them	 to	 facilitate	 conversion	 among
calendars—see	 equation	 (10.2)	 for	 the	 ancient	 Indian	 method	 and	 for	 a	 more
modern	example	see	[41].	The	day-count	can	be	augmented	by	a	fractional	part
to	give	a	specific	moment	during	the	day;	for	example,	noon	on	day	i,	where	i	is
an	integer,	would	be	specified	by	 .

We	have	chosen	midnight	at	the	onset	of	Monday,	January	1,	1	(Gregorian)
as	our	fixed	date	1,	which	we	abbreviate	as	R.D.	1,7	and	we	count	forward	day-
by-day	from	there.	Of	course,	this	is	anachronistic	because	there	was	no	year	1
on	 the	 Gregorian	 calendar—the	 Gregorian	 calendar	 was	 devised	 only	 in	 the
sixteenth	century—thus	by	January	1,	1	(Gregorian)	we	mean	the	day	we	get	if
we	 extrapolate	 backwards	 from	 the	 present;	 this	 day	 turns	 out	 to	 be	Monday,
January	 3,	 1	C.E.8	 (Julian);	 this	 too	 is	 anachronistic.	We	 call	 an	R.D.	 that	 has	 a
fractional	part	giving	the	time	of	day	a	“moment.”

The	 date	Monday,	 January	 1,	 1	 (Gregorian),	 though	 arbitrarily	 chosen	 as
our	starting	point,	has	a	desirable	characteristic:	It	is	early	enough	that	almost	all
dates	of	interest	are	represented	by	positive	integers	of	moderate	size.	We	have
been	careful	 to	write	our	 functions	 in	such	a	way	 that	all	dependencies	on	 this
choice	of	starting	point	are	explicit.	To	change	the	origin	of	the	calculations	we
have	provided	a	function

where



epoch	=	0

which	defines	the	origin,	 .	Changing	 this	definition	 to	 ,	 for
example,	 would	 make	 Monday,	 November	 12,	 1945	 (Gregorian)	 the	 starting
point.

We	should	thus	think	of	the	passage	of	time	in	terms	of	a	sequence	of	days
numbered	…,	 ,	 ,	0,	1,	2,	3,	…,	which	the	various	human-oriented	calendars
label	differently.	For	example,	R.D.	710347	is	called

Monday,	November	12,	1945,	on	the	Gregorian	calendar.

October	30,	1945	C.E.,	on	the	Julian	calendar,	which	would	be	called	ante
diem	III	Kalendas	Novembris	in	the	Roman	nomenclature.

Julian	day	number	2431772	(at	noon).

Modified	julian	day	number	31771.

Month	7,	day	10,	2694,	on	the	ancient	Egyptian	calendar.

Trē	5,	1395,	on	the	Armenian	calendar.

Fodwo	on	the	Akan	calendar.

Day	1	of	week	46	of	year	1945,	on	the	ISO	calendar.

Mánudagur	of	week	3	of	winter	of	year	1945,	on	the	Icelandic	calendar.

Athōr	3,	1662,	Era	of	the	Martyrs,	on	the	Coptic	calendar	(until	sunset).

edār	3,	1938,	on	the	Ethiopic	calendar	(until	sunset).

Dhu	al-Ḥijja	6,	1364,	on	the	arithmetic	and	observational	Islamic
calendars	(until	sunset).

Kislev	7,	5706,	on	the	Hebrew	calendar,	but	Kislev	6,	5706,	on	the
observational	Hebrew	calendar	(until	sunset	in	both	cases).



12.16.11.16.9	in	the	Mayan	long	count.

7	Zac	on	the	Mayan	haab	calendar.

11	Muluc	on	the	Mayan	tzolkin	calendar.

Panquetzaliztli	1	on	the	Aztec	xihuitl	calendar.

11	Atl	on	the	Aztec	tonalpohualli	calendar.

Luang,	Pepet,	Pasah,	Sri,	Pon,	Tungleh,	Coma	of	Gumbreg,	Ludra,
Urungan,	Pati	on	the	Balinese	Pawukon	calendar.

Tulā	29,	5046,	Kali	Yuga	Era	(elapsed)	on	the	old	Hindu	solar	calendar
(after	sunrise).

Day	8	in	the	bright	half	of	Kārtika,	5046,	Kali	Yuga	Era	(elapsed)	on	the
old	Hindu	lunisolar	calendar	(after	sunrise).

Abān	21,	1324,	on	the	modern	Persian	arithmetic	and	astronomical
calendars.

The	day	of	Asmā’,	of	the	month	of	Qudrat,	of	the	year	Abad,	of	the	sixth
Vahid,	of	the	first	Kull-i-Shay	on	the	Bahá’í	calendar	(until	sunset).

Décade	III,	Primidi	de	Brumaire	de	l’Année	154	de	la	République	on	the
arithmetical	and	astronomical	French	Revolutionary	calendars.

Day	8	of	the	tenth	month	in	the	year	Yǐyǒu	on	the	Chinese	calendar.

Kārtika	27,	1867,	Śaka	Era	(elapsed)	on	the	modern	and	astronomical
Hindu	solar	calendars	(after	sunrise).

Day	7	in	the	bright	half	of	Kārtika,	2002,	Vikrama	Era	(elapsed)	on	the
modern	and	astronomical	Hindu	lunisolar	calendars	(after	sunrise).

Arakhsamna	6,	2256	on	the	Babylonian	calendar.



All	 that	 is	 required	 for	 calendrical	 conversion	 is	 to	 be	 able	 to	 convert	 each
calendar	to	and	from	this	fixed-date	R.D.	calendar.	Because	some	calendars	begin
their	day	at	midnight	and	others	at	sunrise	or	sunset,

Figure	1.2	shows	the	relationships	of	various	calendar’s	times	for	the	beginning
and	ending	of	days.

Figure	1.2	
Meaning	of	a	“day”	in	various	calendars.	Conversion	from	a	date	on	a	calendar
to	an	R.D.	date	is	done	as	of	noon;	the	rectangles	indicate	the	day	of	a	calendar
that	gets	converted	to	R.D.	i.	For	example,	the	Hebrew	date	corresponding	to
fixed	date	i	is	the	Hebrew	day	that	begins	at	sunset	of	the	evening	of	fixed	date	

	and	ends	at	sunset	of	the	evening	of	fixed	date	i.	Similarly,	the	Hindu	date
corresponding	to	fixed	date	i	is	the	Hindu	day	that	begins	at	sunrise	in	the
morning	of	fixed	i	and	ends	at	sunrise	of	the	morning	of	fixed	date	 .	The

Day	7	of	the	tenth	month,	2072	on	the	Tibetan	calendar.



JD	corresponding	to	fixed	date	i	begins	at	noon	of	fixed	date	i	and	ends	at	noon
of	fixed	date	 .

In	 subsequent	 chapters	 we	 give	 functions	 to	 do	 the	 conversions	 for	 the
various	calendars.	For	each	calendar	x,	we	write	a	function	fixed-from-x(x-date)
to	convert	a	given	date	x-date	on	that	calendar	to	the	corresponding	R.D.	date,	and
a	 function	x-from-fixed(date)	 to	 do	 the	 inverse	 operation,	 taking	 the	R.D.	 date
and	 computing	 its	 representation	 in	 calendar	 x.	 One	 direction	 is	 often	 much
simpler	 to	calculate	 than	 the	other,	and	occasionally	we	resort	 to	considering	a
range	of	possible	dates	on	calendar	x,	searching	for	the	one	that	converts	to	the
given	R.D.	date	 (see	Section	1.8).To	convert	 from	calendar	x	 to	 calendar	y,	one
need	only	compose	these	two	functions:

Each	calendar	has	an	epoch,	 the	first	day	of	 the	first	year	of	 that	calendar
(see	Section	1.4).We	assign	an	integer	R.D.	date	to	an	epoch,	even	if	the	calendar
in	 question	 begins	 its	 days	 at	 a	 time	 other	 than	midnight.	 Such	 assignment	 is
done	 as	 per	 Figure	 1.2.	 All	 the	 algorithms	 given	 in	 this	 book	 give
mathematically	sensible	results	for	dates	prior	to	a	calendar’s	epoch.

1.3 Negative	Years
Quis	enim	potest	intelligere	dies	et	tempora	et	annos,	nisi	per	numerum?	[Who	can	understand
days	and	seasons	and	years,	save	by	number?]

Attributed	to	the	Venerable	Bede:	De	Computo	Dialogus

We	cannot	 avoid	dealing	with	dates	 before	 the	 common	era.	For	 example,	 the
Hebrew	calendar	begins	at	sunset	on	Sunday,	September	6,	 	 (Gregorian);



scholarly	 literature	 is	 replete	with	 such	 statements.	Thus,	 to	 aid	 the	 reader,	we

now	explain	how	years	before	the	common	era	are	conventionally	handled.	This
convention	is	often	a	source	of	confusion,	even	among	professional	historians.

It	 is	 computationally	 convenient,	 and	 mathematically	 sensible,	 to	 label
years	with	the	sequence	of	integers	…,	 ,	 ,	 ,	0,	1,	2,	3,	…,	so	that	year	0
precedes	 year	 1;	 we	 do	 this	 when	 extrapolating	 backward	 on	 the	 Gregorian
calendar,	so	the	same	leap-year	rule	based	on	divisibility	by	4,	100,	and	400	will
apply	(see	Chapter	2).	However,	on	the	Julian	calendar	it	is	customary	to	refer	to
the	year	preceding	1	C.E.	as	1	B.C.E.,9	counting	it	as	a	leap	year	in	accordance	with
the	every-fourth-year	 leap-year	rule	of	 the	Julian	calendar.	Thus,	 the	beginning
of	the	Hebrew	calendar	can	alternatively	be	referred	to	as	sunset	on	October	6,
3761	B.C.E.	 (Julian).	 To	 highlight	 this	 asymmetry,	 in	 the	 rest	 of	 this	 book	 we
append	 “B.C.E.”	 only	 to	 Julian	 calendar	 years,	 reserving	 the	 minus	 sign	 for
Gregorian	calendar	years.10	Care	must	therefore	be	taken	when	doing	arithmetic
with	year	numbers.	For	 ,	the	rough	present-day	alignment	of	the	Julian	and
Gregorian	calendars	gives

and,	for	 ,

1.4 Epochs
My	son,	take	occasional	lessons	on	calendrical	calculations	from	R.	Aaron	for	it	is	a	necessary
wisdom.

Judah	ibn	Tibbon:	Ethical	Will	(circa	1180)



Every	calendar	has	an	epoch	or	starting	date.	This	date	is	virtually	never	the	date
the	calendar	was	adopted	but	rather	a	hypothetical	starting	point	for	the	first	day.
For	example,	 the	Gregorian	calendar	was	devised	and	adopted	 in	 the	 sixteenth
century,	but	its	epoch	is	January	1,	1.	Because	days	begin	at	different	hours	on
different	calendars,	we	follow	the	convention	that	a	calendar’s	epoch	is	the	onset
of	the	civil	day	(the	mean	solar	day,	beginning	at	midnight)	containing	the	first
noon	(see	Figure	1.2).	For	example,	we	take	midnight	at	the	onset	of	September
7,	 	(Gregorian)	as	the	epoch	of	the	Hebrew	calendar,	which	was	codified
in	the	fourth	century,	though	the	first	Hebrew	day	began	at	sunset	the	preceding
evening.	For	calendars	like	the	Akan	or	Balinese	Pawukon,	in	which	cycles	are
unnumbered,	 the	choice	of	epoch	is	arbitrary;	 the	first	day	of	any	cycle	can	be
used.

Table	1.2	gives	the	epochs	of	the	calendars	discussed	in	this	book.	With	the
exception	of	the	Julian	day	number,	we	express	the	epochs	of	all	the	calendars	as
integer	R.D.	dates,	that	is,	the	integer	R.D.	day	number	at	noon	of	the	first	day	of
the	calendar	(again,	see	Figure	1.2).	Thus,	the	epoch	for	the	Gregorian	calendar
is	R.D.	1,	and	that	for	the	Hebrew	calendar	is	R.D.	–1373427.	Using	this	form	of
calendar	epochs	is	convenient	because

For	example,

and	hence



Because,	for	the	most	part,	our	formulas	depend	on	the	number	of	days	elapsed
on	 some	 calendar,	 we	 often	 use	 the	 expression	 	 in	 our
calendar	formulas.

Table	1.2	Epochs	for	various	calendars.

Calendar Epoch	(R.D.) Equivalents

Julian	day	number Noon,	November	24,	
(Gregorian)

Noon,	January	1,	4713	B.C.E.	(Julian)

Hebrew September	7,	 	(Gregorian)

October	7,	3761	B.C.E.	(Julian)

Mayan August	11,	 	(Gregorian)

September	6,	3114	B.C.E.	(Julian)

Hindu	(Kali	Yuga) January	23,	 	(Gregorian)

February	18,	3102	B.C.E.	(Julian)

Chinese February	15,	 	(Gregorian)

March	8,	2637	B.C.E.	(Julian)

Samaritan March	3,	 	(Gregorian)

March	15,	1639	B.C.E.	(Julian)

Egyptian February	18,	 	(Gregorian)

February	26,	747	B.C.E.	(Julian)



Babylonian March	29,	 	(Gregorian)

April	3,	311	B.C.E.	(Julian)

Tibetan December	7,	 	(Gregorian)

December	10,	128	B.C.E.	(Julian)

Julian December	30,	0	(Gregorian)

January	1,	1	C.E.	(Julian)

Gregorian 1 January	1,	1	(Gregorian)

January	3,	1	C.E.	(Julian)

ISO 1 January	1,	1	(Gregorian)

January	3,	1	C.E.	(Julian)

Akan 37 February	6,	1	(Gregorian)

February	8,	1	C.E.	(Julian)

Ethiopic 2796 August	27,	8	(Gregorian)

August	29,	8	C.E.	(Julian)

Coptic 103605 August	29,	284	(Gregorian)

August	29,	284	C.E.	(Julian)

Armenian 201443 July	13,	552	(Gregorian)

July	11,	552	C.E.	(Julian)

Persian 226896 March	22,	622	(Gregorian)

March	19,	622	C.E.	(Julian)



Islamic 227015 July	19,	622	(Gregorian)

July	16,	622	C.E.	(Julian)

Zoroastrian 230638 June	19,	632	(Gregorian)

June	16,	632	C.E.	(Julian)

French	Revolutionary 654415 September	22,	1792	(Gregorian)

September	11,	1792	C.E.	(Julian)

Bahá’í 673222 March	21,	1844	(Gregorian)

March	9,	1844	C.E.	(Julian)

Modified	julian	day
number

678576 November	17,	1858	(Gregorian)

November	5,	1858	C.E.	(Julian)

Unix 719163 January	1,	1970	(Gregorian)

December	19,	1969	C.E.	(Julian)

For	many	calendars,	including	the	Gregorian,	the	same	calendar	rules	were
used	 with	 different	 eras	 and	 different	 month	 names	 at	 different	 times	 and	 in
different	places.	In	Taiwan,	for	instance,	the	Gregorian	calendar	is	used	with	an
era	beginning	with	 the	founding	of	 the	republic	 in	1912.	An	often-encountered
era	from	the	second	century	B.C.E.	until	recent	times—used	with	many	calendars
—was	the	Era	of	Alexander,	or	the	Seleucid	Era,	in	which	year	1	corresponds	to
312	B.C.E.	 In	general,	we	will	 avoid	describing	 the	details	 of	 trivial	 variants	of
calendars.



1.5 Julian	Day	Numbers
Iulianam	vocauimus:	quia	ad	annum	Iulianum	dumtaxat	accommodata	est.	[I	have	called	this	the
Julian	period	because	it	is	fitted	to	the	Julian	year.]

Joseph	Justus	Scaliger:	De	Emendatione	Temporum,	end	of	introduction	to	Book	V	(1583)

Astronomers	 in	 recent	 centuries	 have	 avoided	 the	 confusing	 situation	 of	 date
references	 on	 different	 calendars,	 each	 with	 its	 idiosyncrasies,	 by	 specifying
moments	 in	 time	 by	 giving	 them	 in	 “julian	 days”	 or	 JD	 (sometimes	 “julian
astronomical	days”	or	J.A.D.).	The	“Julian	period,”	published	in	1583	by	Joseph
Justus	Scaliger,	was	originally	 a	 counting	of	years	 in	 a	 repeating	pattern	7980
years	long,	starting	from	4713	B.C.E.	(Julian).	It	is	often	claimed	([1,	page	431],
for	 example)	 that	 Scaliger	 named	 the	 period	 after	 his	 father,	 the	 Renaissance
physician	Julius	Cæsar	Scaliger,	but	this	claim	is	not	borne	out	by	examination
of	 Scaliger’s	 great	work,	De	Emendatione	 Temporum,	 from	which	 the	 section
quote	 above	 is	 taken.	 Grafton	 [17]	 gives	 a	 full	 history	 of	 De	 Emendatione
Temporum.	The	details	of	the	derivation	for	the	value	7980	are	given	in	[39];	the
roots	of	the	7980-year	cycle	are	much	earlier	than	Scaliger,	however,	dating	back
to	 the	 twelfth	 century	 [38].	 In	 the	mid-nineteenth	 century,	Herschel	 [25,	 page
532]	 adapted	 the	 system	 into	 a	 strict	 counting	 of	 days	backward	 and	 forward
from

A	 fractional	 part	 of	 a	 julian11	 date	 gives	 the	 fraction	 of	 a	 day	 beyond	 noon;
switching	 dates	 at	 noon	 makes	 sense	 for	 astronomers	 who	 work	 through	 the
night.	In	this	system,	for	example,	sunset	on	the	first	day	of	the	Hebrew	calendar
occurred	at	 about	 JD	 347997.25	 (local	 time),	which	 is	1/4	of	 a	day	after	noon.
The	 literature	on	 the	Mayan	calendar	commonly	specifies	 the	beginning	of	 the
calendar	in	julian	days.	Because	noon	of	R.D.	0	is	JD	1721425,	it	follows	that



(1.3)

(1.4)

(1.5)

(1.6)

(1.7)

(1.2)

In	other	words,

We	do	not	use	 julian	days	directly,	 as	 suggested	 in	 [21],	 because	we	want	 our
days	 to	 begin	 at	 civil	midnight.	We	 also	 use	 fractional	 days	when	we	 need	 to
calculate	with	time,	but	we	begin	each	day	at	midnight.

To	 distinguish	 clearly	 between	 the	 Julian	 calendar	 and	 julian	 days	 in	 our
functions,	we	use	the	abbreviation	“jd”	instead	of	“julian.”	We	have

where	 jd	 can	 be	 a	 fraction	 representing	 time	 as	 well	 as	 date.	 As	 used	 by
historians,	julian	day	numbers	are	defined	as	 	(see	[33,	vol.	3,	p.	1064],
for	example).	Thus	our	 function	 fixed-from-jd	 gives	 the	R.D.	 date	 intended	 by
historians	when	they	refer	to	julian	dates.12

For	dates	near	the	present,	the	julian	day	number	is	inconvenient	because	at
least	 7-digit	 accuracy	 is	 needed.	Astronomers	occasionally	use	modified	 julian
day	numbers,	or	MJD,	defined	as

which	counts	days	from	midnight,	Wednesday,	November	17,	1858	(Gregorian).
This	is	equivalent	to	defining



(1.8)

(1.9)

(1.10)

(1.11)

We	do	not	use	modified	julian	days	directly	because	we	want	positive	numbers
for	dates	within	recent	history.

1.6 Unix	Time	Representation
Unix	is	simple	and	coherent,	but	it	takes	a	genius	(or	at	any	rate,	a	programmer)	to	understand
and	appreciate	the	simplicity.

Dennis	Ritchie:	“Unix:	A	Dialectic,”	The	Australian	UNIX
systems	User	Group	Newsletter	(1989)

In	 the	Unix	operating	 system,	and	 its	derivatives,	 time	 is	measured	 in	 seconds
after	midnight	Universal	Time	(see	Section	14.2)	on	January	1,	1970,	 ignoring
leap	seconds.	Unix	 time	 simply	 counts	60	 seconds	per	minute,	 60	minutes	per
hour,	24	hours	per	day.	Hence	we	define

The	equivalent	R.D.	moment	of	a	Unix	time	is	easily	computed,

as	is	the	Unix	time	of	an	R.D.	moment,

On	 computers	 that	 represent	 integers	 with	 signed	 32-bit	 words,	 only
moments	from	20:45:53	December	13,	1908	until	3:14:07	on	January	19,	2038
can	 be	 represented.	With	 64	 bits,	 the	 range	 is	 greater	 than	 ±292	 billion	 years
from	the	present.



(1.12)

(1.13)

(1.14)

(1.15)

1.7 Mathematical	Notation
The	best	notation	is	no	notation.

Paul	Halmos:	How	to	Write	Mathematics	(1970)

We	 use	 the	 following	 mathematical	 notation	 (see	 [18])	 when	 describing	 the
calendar	calculations:	The	 floor	function,	 ,	gives	 the	largest	 integer	 less	 than
or	equal	 to	x.	For	example,	 .	The	 similar	ceiling	 function,	 ,	 gives	 the
smallest	integer	greater	than	or	equal	to	x.	For	example,	 	and	 .
In	general,	 ,	so	for	example	 .	For	integers	n,	 .
Using	the	floor	function,	we	can	convert	a	moment	into	an	R.D.	date	by

Similarly,	we	can	convert	a	moment	given	in	julian	days	to	an	R.D.	date,	with	no
fractional	part	by

The	inverse	is	simply	the	same	as	jd-from-moment:

Occasionally	we	need	to	round	values	to	the	nearest	integer.	We	can	express
this	using	the	floor	function	as

which	is	either	 	or	 .
We	use	a	single	 large	 left-hand	brace	 to	 indicate	a	conditional	expression,

one	whose	value	depends	on	two	or	more	conditions.	For	example,	in



(1.16)

(1.17)

(1.18)

the	 conditions	 are	 examined	 in	 order,	 from	 top	 down.	 Thus	 the	 value	 of	 x	 is	
	if	 	is	true,	 	if	 	is	false	but	 	is	true,	and	
	 if	 both	 conditions	 are	 false.	 Note	 that	 if	 both	 conditions	 are	 true,	 the

sequential	evaluation	of	them	means	that	the	value	of	the	expression	is	 .	As
a	simple	example	of	such	a	conditional	expression	we	define	the	sign	function

The	remainder,	or	modulus,	function,	 ,	is	defined	for	 	as

which	is	the	remainder	when	x	is	divided	by	y	(x	and	y	need	not	be	integers).	For
example,	 ,	 ,	 ,	 and	 .
Definition	 (1.17)	 makes	 sense	 for	 any	 nonzero	 value	 of	 y;	 for	 example,	

.	In	particular,	when	 ,	 	is	the	fractional	part	of	x,
allowing	us	to	obtain	the	time	of	day	as	a	fraction	from	a	moment	by

In	 programming	 languages	 (including	 C,	 C ,	 and	 Pascal)	 without	 a	 built-in
remainder	 function	 that	 works	 for	 nonintegers,	 the	 definition	 given	 in	 (1.17)
must	be	used	instead.

There	are	five	important	consequences	of	definition	(1.17).	First,



(1.22)

(1.19)

(1.20)

(1.21)

for	 all	 x,	 even	 for	 negative	 values	 of	 x;	 we	 use	 this	 property	 throughout	 our
calculations.	 Care	 must	 thus	 be	 exercised	 in	 implementing	 our	 algorithms	 in
computer	languages	such	as	C	and	C 	in	which	the	mod	operator	%	may	have	
	%	 	for	 .	It	follows	from	(1.17)	that

for	 	and	 .	The	 third	consequence	 is	 that	 the	definition	of	 the
mod	function	implies	that	for	 	and	 ,

Setting	 	then	gives

as	a	special	case.	Fourth,

Finally,	 the	 fifth	 consequence	 is	 a	 generalization	of	 the	 first	 consequence:	 for	
,

The	 	 function	 allows	 us	 to	 define	 two	 other	 important	 functions,	 the
greatest	common	divisor	and	 the	 least	common	multiple.	The	greatest	common
divisor	of	two	positive	integers,	x	and	y	is	defined	as

and	their	least	common	multiple	as



(1.23)

(1.24)

(1.25)

(1.26)

We	make	extensive	use	of	an	extension	of	the	standard	modulus	notation	of
[11]	which	 takes	 an	 interval	as	 the	modulus,	 rather	 than	 a	 divisor;	we	 use	 the
“double-dot”	notation	“ ”	 for	 interval	 ranges,	 as	 suggested	by	C.	A.	R.	Hoare
and	L.	Ramshaw;	see	[18,	p.	73]).	Then	we	can	write	the	interval	modulus	as

which	shifts	a	real-valued	x	into	the	half-open	(meaning	one	end	point,	indicated
by	 the	right-hand	parenthesis,	 is	not	 included)	 real	 interval	 	by	adding	a
multiple	of	the	length	 .	We	define

or,	equivalently,

This	definition	works	perfectly	well	when	the	interval	is	given	backward,	that	is,
,	 yielding	 a	 modulus	 in	 the	 half-open	 interval	 .	 It	 follows	 that	

	 if	 ,	 but	 	 when	 .	 This
notation	conveniently	supports	addition	and	multiplication:

On	a	few	occasions	(especially	in	Chapter	20)	we	will	want	to	recenter	the
remainder;	 this	 is	 easy	 with	 the	 interval	 modulus	 notation.	 For	 example,	 to



(1.28)

(1.30)

(1.27)

(1.29)

convert	an	angle	α	to	the	range	 ,	we	just	write

We	frequently	need	a	special	case	of	the	interval	modulus	in	order	to	shift
an	integer	into	the	range	 ,	where	b	is	also	an	integer.	We	call
this	 the	 adjusted	 remainder	 function,	 ,	 and	 it	 can	 be	 defined	 for	

	as

This	function	is	equivalently	defined	by

Though	 this	 definition	works	 equally	well	 for	 real	 numbers,	we	will	 need	 this
adjusted	remainder	only	for	integers	x	and	b.

Finally,	we	use	a	special	summation	operator,

whose	 value	 is	 that	 obtained	 when	 	 is	 summed	 for	 all	
continuing	only	as	long	as	the	condition	 	holds.	This	operator	can	be	defined
recursively	as	follows:

Thus,	the	sum	is	0	when	 	is	false.	The	analogous	product	operator



(1.31)

(1.32)

can	be	defined	as	follows:

1.8 Search
…	as	two	grains	of	wheat	hid	in	two	bushels	of	chaff:	you	shall	seek	all	day	ere	you	find	them,	and
when	you	have	them,	they	are	not	worth	the	search.

William	Shakespeare:	Merchant	of	Venice,	Act	I,	scene	i	(1600)

In	many	calendar	computations,	 it	 is	easy	 to	compute	an	approximate	date	and
easy	to	check	whether	a	date	in	question	is	correct,	but	difficult	to	compute	the
correct	date	directly.	In	such	cases,	we	compute	a	lower	bound	 	on	the	possible
date	 and	 then	 perform	 a	 linear	 search,	 day	 by	 day,	 until	 the	 correct	 date	 d	 is
reached.	For	that	purpose	we	use	the	operator

which	searches	for	the	smallest	d	in	 the	sequence	 ,	…	such	 that
the	condition	 	holds	true	for	d.	In	other	words,	using	the	symbol	“ ”	for	logical
negation,	 we	 have	 ,	 …,	 ,	 but	 .	 The
operator	 	is	defined	formally	as

It	is	undefined	and	does	not	terminate	if	the	predicate	 	does	not	become	true
eventually,	so	care	must	be	taken	in	its	use.



(1.33)

(1.34)

Occasionally,	we	search	the	sequence	for	 the	day	prior	 to	 the	first	 	 such
that	 	and	use	instead

With	 this	 operator,	 we	 have	 ,	 …,	 ,	 but	
	 is	 undefined	 and	 its	 computation	 does	 not	 terminate	 if	 the

predicate	 	does	not	eventually	become	false.	This	 	operator	is	defined
formally	as

When	 	is	already	false,	 .
In	the	absence	of	explicit	methods	for	calculating	the	inverse	of	a	function	f,

that	is,	for	calculating	a	value	x	such	that	 	given	the	value	of	y,	we	will
need	 to	 search	 an	 interval	 	 for	 the	point	x,	 ,	when	 .	 To
express	such	a	calculation,	we	write

In	other	words,	 	is	a	value	 	such	that	there	is	some	 	for
which	 ,	precisely,	and	 ,	where	 	0	is	some	small	tolerance
within	which	the	result	is	acceptable.

When	 the	 function	 in	 question	 f	 is	 increasing,	 binary	 search	 [42,	 Section
3.2]	can	be	an	effective	means	of	inverting	f.	Hence



(1.35)

That	is,	we	search	for	a	y	satisfying	the	definiens	(defining	expression)	under	the
assumption	 that	 the	region	 	 can	be	 split	 into	 two	 intervals	 ,	up	 to
but	not	including	x,	and	 ,	 such	 that	 	 is	 false	 throughout	 the	former	and
true	 in	 the	 latter.	 Then	y	must	 be	 close	 enough	 to	 x	 that	 it	 lies	 in	 an	 interval	

,	sandwiching	x,	small	enough	to	satisfy	the	test	 .	If	 	 is	 true	of	the
midpoint	 ξ,	 then	we	go	 left	 and	 let	 the	new	upper	bound	ν	be	ξ.	On	 the	other
hand,	 if	 	 is	 false,	 then	we	go	 right	and	 let	 the	new	 lower	bound	μ	be	ξ.	This
process	 continues	 until	 the	 interval	 	 is	 small	 enough	 that	 φ	 is	 true,	 at
which	point	 the	midpoint	 is	 returned.	At	each	stage	of	 the	search,	 	 is	 false
and	 	 is	 true.	 We	 implement	 the	 definition	 using	 a	 straightforward	 binary
search	of	the	interval	 	that	behaves	as	follows:

where

To	 determine	 the	 time	 of	 astronomical	 events,	 for	 example	 equinoxes	 or
solstices,	 we	 need	 to	 invert	 astronomical	 functions,	 such	 as	 the	 celestial
longitude	 of	 the	 sun	 in	 Section	 14.4.	 These	 astronomical	 functions	 f	 take
moments	 and	 return	 values	 in	 the	 range	 .	We	 use	 binary	 search	 to
invert	such	functions.	That	is,	given	a	desired	value	y,	here	in	degrees,	we	search
for	a	moment	x,	within	 some	given	 range,	 such	 that	 .	Since	 the	 search
interval	will	always	be	relatively	small,	we	sidestep	the	discontinuity	at	
by	searching	 for	 the	 first	moment	at	which	 	modulo	360	becomes	 tiny.
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Using	binary	search,	this	is	achieved	as	follows:

The	 process	 terminates	 when	 the	 moment	 is	 ascertained	 within	 one	 ten-
thousandth	of	a	day,	which	is	less	than	one	second.

1.9 Dates	and	Lists
The	 list	 could	 surely	 go	 on,	 and	 there	 is	 nothing	 more	 wonderful	 than	 a	 list,	 instrument	 of
wondrous	hypotyposis.

Umberto	Eco:	The	Name	of	the	Rose	(1983)

We	represent	calendar	dates	by	fixed-length	records	with	fields	(components)—
in	 descending	 order	 of	 significance—which	we	 draw	 as	 a	 sequence	 of	 boxes,
usually	having	the	form

in	which	year,	month,	 and	 day	 are	 all	 integers.	We	 use	 boldface	 subscripts	 to
select	fields;	for	example,	if

then	 .	The	 fields	 of	 dates	 differ	 for	 some	 calendars;	we	 explain	 those
particular	forms	in	the	individual	discussions	and	use	analogously	named	indices
for	extracting	individual	components.

We	also	have	occasion	to	use	lists	of	dates	or	of	other	items.	Our	use	of	lists
requires	manipulations	 such	as	 forming	 lists,	 selecting	elements	 from	a	 list,	 or
concatenating	 lists.	 We	 use	 the	 following	 notation	 for	 lists	 in	 our	 calendar
functions.
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The	identity	under	concatenation	is	 ;	that	is,	the	concatenation	of	 	with
any	list	leaves	the	list	unchanged.
A	 recursive	 traversal	 of	 a	 list	 can	 be	 used,	 for	 example,	 to	 convert	 each

element	of	a	list	of	moments	into	a	fixed	date,	using	the	earlier	function	fixed-
from-moment	(1.12):

The	empty	list	 	gives	an	empty	list,	while	a	nonempty	list	is	composed	of	its
first	element,	 ,	converted	to	a	fixed	date,	followed	by	the	converted	remainder
of	the	list.

We	 use	 the	 notation	 	 to	 represent	 an	 interval	 of	 time	 beginning	 at
moment	 a	 and	 ending	 at	 moment	 b	 (inclusive).	 To	 indicate	 that	 a	 given
R.D.	moment	t	is	within	a	range	 ,	in	other	words,	that	 ,	we	write

Angle	brackets	indicate	list	construction,	that	is,	the	formation	of	a	list
from	individual	components.	For	example,	 	is	a	list	of	the
three	components	1945,	11,	and	12,	respectively.

Subscripts	in	square	brackets	indicate	list	element	selection,	with	the
indices	of	the	elements	0-based.	Thus	if	 	then	 	is
1945,	 	is	11,	and	 	is	12.

Empty	angle	brackets,	 ,	indicate	the	list	with	no	elements.

Double	bars	indicate	the	concatenation	of	lists,	and	thus
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The	same	notation	is	used	for	an	occurrence	within	half-open	intervals:

The	 determination	 of	 non-Gregorian	 holidays	 occurring	 in	 a	 given
Gregorian	year	 can	 require	generating	a	 list	of	 the	R.D.	 dates	of	 those	holidays
over	some	longer	interval	and	then	scanning	the	list	to	filter	out	those	not	in	the
given	Gregorian	year.	To	cull	a	list	of	dates	for	those	that	occur	in	a	given	(half-
open)	range,	we	use	the	following	recursive	process:

where

To	collect	all	occurrences	of	events,	such	as	holidays,	in	an	interval	of	time,
like	a	Gregorian	year,	we	write	a	generic	function	to	find	the	first	occurrence	on
or	after	a	given	moment	of	the	pth	moment	in	a	c-day	cycle,	 ,	and	then
recursively	find	the	remaining	occurrences:

where



Here	Δ	is	congruent	modulo	c	to	the	position	of	R.D.	moment	0	in	the	repeating
cycle,	 and	 date	 is	 the	 first	 occurrence	 of	 position	 p	 in	 the	 interval	 range,
computed	using	the	interval	modulus	function	(1.24).

1.10 Mixed-Radix	Notations
It	is	interesting	to	note	that	nearly	all	MIX	programs	can	be	expressed	without	knowing	whether
binary	or	decimal	notation	is	being	used–even	when	we	are	doing	calculations	involving	multiple-
precision	 arithmetic.	 Thus	 we	 find	 that	 the	 choice	 of	 radix	 does	 not	 significantly	 influence
computer	programming.

Donald	E.	Knuth,	The	Art	of	Computer	Programming,	vol.	2,
Seminumerical	Algorithms	(1998)

Mixed-radix	notation,	in	which	the	radix	can	differ	from	position	to	position,	is	a
generalization	 of	 ordinary	 positional	 notation,	 such	 as	 decimal,	 binary,	 and
sexagesimal	 (base	 60).	We	 represent	 numbers	 in	mixed-radix	 notation	 as	 lists,
following	 the	 notation	 in	 [28,	 Section	 4.1]:	 for	 example,	 4	 weeks,	 1	 day,	 12
hours,	 44	 minutes,	 and	 2.88	 seconds	 is	 written	 	 in	 base	

,	where	the	semicolon	separates	the	integer	part	of	the	base	from	the
fractional	 part.	 Each	 (rational)	 number	 	 in	 the	 base	 determines	 the	 range	

	of	values	that	may	appear	in	position	i.	There	will	always	be	one	more
element	 in	 the	 number	 than	 in	 the	 base,	 for	 the	most	 significant	 position;	 this
position	has	no	maximal	value.	The	most	significant	position	of	a	date	given	in
mixed-radix	 notation	 can	 be	 negative.	Also,	 the	 least	 significant	 position	 need
not	be	a	whole	number,	as	in	the	above	example,	 .

To	evaluate	the	mixed-radix	number

written	in	base
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we	define	the	symbol	 	by

In	 the	 opposite	 direction,	 to	 convert	 a	 number	 x	 into	 base	
	we	define	the	symbol	 	by

where

We	 use	 mixed-radix	 numbers	 for	 the	 Gregorian	 (Section	 2.3),	 Icelandic
(Chapter	6),	Hebrew	(Section	8.3),	and	Mayan	(Section	11.1)	calendars.

When	referring	 to	durations	of	 time,	we	use	base	 	and	 indicate
positions	with	superscripts;	for	example,
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is	i	days,	j	hours,	k	minutes,	and	l	seconds.	Thus,	a	fifth	of	a	day	is	 ,	or	
,	 for	 short,	 and	 	 is	 represented	 as	 the	 list	

.
To	 convert	 the	 usual	 clock	 time—also	 expressed	 in	 base	 	 but

without	any	whole	days—into	a	fraction	of	a	day,	we	use

The	following	function	converts	the	fractional	part	of	R.D.	moment	 t	 into	hours,
minutes,	 and	 seconds	 on	 a	 24-hour	 clock,	 taking	 midnight	 as	 ,	 that	 is,
0:00:00	hours:

The	 first	 component	 of	 ,	 which	 contains	 whole	 days,	 is
removed.	To	round	to	the	nearest	second,	apply	clock-from-moment	to

instead	of	 .
Angles	can	be	described	in	terms	of	a	list	of	degrees,	arc	minutes,	and	arc

seconds	in	base	 :
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Given	angle	α	as	a	real	number	of	degrees,	we	can	convert	it	to	a	list	of	degrees,
arc	minutes,	and	arc	seconds	with

where

Negative	 angles	 (such	 as	 southern	 latitudes)	 are	 given	 as	 a	 list	 of	 negative
numbers	of	degrees,	arc	minutes,	 and	arc	 seconds.	The	 function	 	 returns	 the
absolute	value	of	the	angle	α.

1.11 A	Simple	Calendar
This	calendar	is,	indeed,	the	only	intelligent	calendar	which	ever	existed	in	human	history.

Otto	Neugebauer:	The	Exact	Sciences	in	Antiquity	(1952)

A	simple	solar	calendar	with	365	days	each	year	and	no	leap-year	rule	was	in	use
in	 Egypt	 for	 millennia	 before	 the	 adoption	 of	 the	 Julian	 calendar	 in	 the	 third
century	C.E.	and	was	also	used	in	Babylon	and	Persia.13	The	development	of	this
calendar	is	discussed	in	[37]	([8]	has	extensive	source	documents);	 it	served	as
the	canonical	calendar	for	astronomers	until	the	sixteenth	century,	and	it	is	to	this
calendar	that	Neugebauer	refers	in	the	preceding	quotation.	Each	month	had	30
days,	 except	 for	 the	 last	 5	 days	 of	 the	 year,	 called	 epagomenæ,	 which	 were
considered	an	unlucky	period	and	which	we	can	treat	as	a	short	thirteenth	month.
The	month	names	with	their	hieroglyphs,	according	to	[4],	were:
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Variants	of	these	month	names	are	still	used	in	the	Coptic	calendar	(see	Section
4.1).Days	began	at	dawn.	We	use	this	calendar	as	a	simple	example	of	calendar
conversion	 functions.	Our	 calendar	 functions	 always	 use	 numbers	 to	 represent
months;	we	provide	tables	of	names,	when	known,	for	each	calendar.

The	epoch	chosen	by	the	famous	Alexandrian	astronomer	Ptolemy,	author
of	 the	 Almagest,	 for	 this	 calendar,	 and	 called	 the	 Nabonassar	 Era	 after	 the
Chaldean	king	Nabonassar,	is	given	by	[33]	as	JD	1448638:

which	corresponds	to	R.D.	–272787,	or	February	26,	747	B.C.E.	(Julian).	Because
all	years	have	fixed	length,	converting	Egyptian	dates	into	fixed	dates	is	trivial:
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(1.49)

The	short	last	month	causes	no	problem,	because	we	only	count	the	number	of
days	in	prior	months.

In	 the	 astronomical	 code	 and	 elsewhere	 we	 use	 a	 vector	 notation	 within
summations.	For	example,

where

performs	 the	 same	 calculation	 as	 fixed-from-egyptian.	 Each	 of	 the	 three
components	of	the	Egyptian	date	 	is	decremented	by	1	and	then	multiplied
by	 the	 corresponding	 element	 of	 	 to	 give	 the	 total	 number	 of
elapsed	days	since	the	epoch.

For	 the	 inverse,	 converting	 fixed	 dates	 to	 Egyptian	 dates,	 we	 make
straightforward	use	of	the	floor	and	mod	functions:

where
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The	rules	of	the	Armenian	calendar	were	identical	to	those	of	the	Egyptian;
the	only	difference	is	the	epoch	(see	[31]):

which	corresponds	to	July	11,	552	C.E.	(Julian).	To	convert	R.D.	dates	to	and	from
the	Armenian	calendar,	we	simply	adjust	by	the	difference	in	epochs:

In	the	other	direction	we	have

The	12	Armenian	months	were	called

(1) Nawasardi 		(7) Mehekani

(2) Ho i 		(8) Areg

(3) Sahmi 		(9) Ahekani

(4) Trē (10) Mareri

(5) K‘aloch (11) Margach

(6) Arach (12) Hrotich

and	the	epagomenæ	were	called	aweleach.



The	 Zoroastrian	 calendar	 has	 an	 identical	 structure	 to	 that	 of	 the	 ancient
Egyptian	calendar,	but	with	a	different	epoch	(see	Table	1.2)	and	different	month
names.	In	the	past,	the	Persians	used	individual	names	for	each	of	the	days	of	the
month;	these	Persian	names	were

and	the	epagomenæ	were	sometimes	named:

(1)	Ahnad

(2)	Ashnad

(3)	Esfandārmud

(4)	Axshatar

(5)	Behesht



(1.53)
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(1.58)

(1.59)

(1.60)

The	Mandean	calendar	also	follows	the	same	structure,	but	its	epagomenæ
lie	between	the	eighth	and	ninth	months	[47].

1.12 Cycles	of	Days
And	day	by	day	I’ll	do	this	heavy	task.

Shakespeare:	Titus	Andronicus,	Act	V,	scene	ii	(1594)

Because	R.D.	1	is	a	Monday,	determining	the	day	of	the	week	amounts	to	taking
the	R.D.	date	modulo	7:	0	 is	Sunday,	1	 is	Monday,	and	so	 forth.	We	define	 the
seven	constants

and	determine	the	day	of	the	week	with

We	include	the	superfluous	terms	–R.D.	to	make	this	function	independent	of	any
particular	 choice	 of	 epoch	 for	 fixed	 dates,	 and	 for	 that	 reason	 we	 use	 this
function	in	the	formulas	that	follow.
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(1.61)

Many	 holidays	 are	 on	 the	 nth	 occurrence	 of	 a	 given	 day	 of	 the	 week,
counted	forward	or	backward	from	some	date.	For	example,	Thanksgiving	in	the
United	States	 is	 the	fourth	Thursday	 in	November,	 that	 is,	 the	 fourth	Thursday
on	or	after	November	1.	We	handle	such	specifications	by	writing	a	function	that
encapsulates	the	formula

to	find	the	kth	day	of	the	week	(k	=	0	for	Sunday,	and	so	on)	that	falls	in	the	7-
day	period	ending	on	R.D.	date.	Using	equations	(1.25)	and	(1.26)	we	 find	 that
(1.61)	is	equivalent	to

To	incorporate	the	possibility	that	day	0	of	the	day	count	is	other	than	a	Sunday,
we	use	the	function	day-of-week-from-fixed	(1.60):

We	generally	use	the	parameter	date	for	R.D.	dates.
Formula	(1.61)	 is	 an	 instance	 of	 a	more	 general	 principle	 for	 finding	 the

occurrence	of	 the	kth	day	of	 a	 repeating	m-day	 cycle	 that	 is	 closest	 to	but	 not
past	day	number	d,	where	day	number	0	is	day	Δ	of	the	m-day	cycle:

This	formula	works	equally	well	for	negative	and	nonintegral	dates	d	(that	is,	for
a	time	of	day)	and	for	nonintegral	positions	k,	shifts	Δ,	and	periods	m.	We	use



(1.65)
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(1.67)

(1.68)

(1.64)

(1.69)

such	computations	extensively	for	the	Hindu	calendars	(Chapter	10),	the	Mayan
calendars	(Chapter	11),	and	the	Balinese	Pawukon	calendar	(Chapter	12).

Note	that	formula	(1.63)	for	the	last	k-label	day	on	or	before	day	number	d
remains	correct	even	if	the	cycle	of	labels	is	 	(that	is,	based
at	a	instead	of	0).	We	use	this	in	the	Chinese	calendar	(Chapter	19)	for	 ,	that
is,	for	1-based	cycles	of	labels,	and	also	for	Balinese	dates	(Chapter	12).

Similarly,	the	first	k-labeled	moment	at	or	after	moment	d	is

We	can	write	a	function	kday-on-or-after	R.D.	d	by	applying	kday-on-or-
before	to	 .	Similarly,	applying	it	 to	 	gives	the	kday-nearest	to	R.D.	d,
applying	it	 to	 	gives	the	kday-before	R.D.	d,	and	applying	 it	 to	 	gives
the	kday-after	R.D.	d:

Equations	(1.62)	 and	 (1.65)–(1.68)	 are	 specific	 instances	 of	more	 general
calculations	 that	 occur	 in	 cyclical	 calendars	 such	 as	 the	 Mayan,	 Aztec,	 and
Balinese.	The	general	form	can	be	expressed	as

where	the	length	of	the	repeating	cycle	is	m,	k	is	the	desired	position	in	the	cycle,
R.D.	0	is	at	position	Δ	in	the	cycle,	and	the	function	 	is	chosen	according	to
Table	1.3.



Table	1.3	Functions	 	for	use	in	formula	(1.69)

Relation	to	date	d δ(d)

before	d

on	or	before	d d

after	d

on	or	after	d

nearest	to	d

1.13 Simultaneous	Cycles
In	the	year	4-House	of	the	eighth	sheaf	of	years	of	the	Mexican	era	the	Emperor	Moteçuçuma	the
Younger	had	 a	 great	 fright.	 We	 know	 this	 year	 as	 1509.	 The	Mexicans	 counted	 their	 time	 in
“sheafs”	of	fifty-two	years,	and	in	order	to	designate	them	without	error	or	ambiguity,	a	system
had	been	adopted	which	can	be	best	understood	by	reference	to	a	pack	of	cards:	as	if	we	were	to
call	our	years	one	of	spades,	two	of	hearts,	three	of	diamonds,	four	of	clubs,	five	of	spades,	six	of
hearts,	seven	of	diamonds,	eight	of	clubs,	etc.	It	 is	clear	that	 the	series	or	“sheaf”	would	begin
again	every	fifty-two	years.	The	Mexican	calendar	divided	 the	 fifty-two	years	of	a	“sheaf”	 into
four	sets	or	“colours”	of	thirteen	years,	i.e.,	rabbits,	reeds,	flints	and	houses.

Salvador	de	Madariaga:	Hernán	Cortés:	Conqueror	of	Mexico	(1942)

Some	calendars	employ	two	cycles	running	simultaneously.	Each	day	is	labeled
by	a	pair	of	numbers	 ,	beginning	with	 ,	followed	by	 ,	and	so
on.	Suppose	the	first	component	repeats	after	c	days	and	the	second	after	d	days,
with	 ;	then	after	day	 	come	days	 ,	and	so	on
until	 ,	which	is	followed	by	 .	If	day	 	of	the	calendar	is
labeled	 	 then	 day	 n	 is	 .	 The	 Chinese	 use	 such	 pairs	 to
identify	 years	 (see	 Section	 19.4),	with	 cycles	 of	 length	 	 and	 	 but,
because	the	first	component	ranges	from	1	to	10,	inclusive,	and	the	second	from
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1	 to	 12,	 we	 would	 use	 the	 adjusted	 remainder	 function:	

More	generally,	for	arbitrary	positive	integers	c	and	d,	if	the	label	of	day	0
is	 	then	day	n	is	labeled

For	the	Mayan	tzolkin	calendar,	with	 ,	and	beginning
the	cycles	with	1	instead	of	0,	this	is	 .
It	follows	that	day	1	of	the	Mayan	calendar	is	labeled	 	(see	Section	11.2).

How	many	distinct	day	names	does	such	a	scheme	provide?	If	m	is	the	least
common	multiple	(lcm)	of	c	and	d,	then	such	a	calendar	repeats	after	m	days.	If
the	cycle	lengths	c	and	d	are	 relatively	prime	(that	 is,	no	 integer	greater	 than	1
divides	 both	 c	 and	 d	without	 remainder),	 then	 it	 repeats	 after	 	 days.
Thus,	for	the	Mayan	tzolkin	calendar,	with	 	and	 ,	m	 is	 .	For	 the
Chinese	year	names,	lcm(10,	12)	=	60	yielding	a	sexagesimal	cycle.

Inverting	this	representation	is	harder.	Suppose	first	that	 .	Given	a
pair	 ,	where	a	is	an	integer	in	the	range	 	and	b	is	an	integer	in	the
range	 ,	we	are	 looking	 for	an	n,	 ,	 such	 that	 	 and	

.	 This	 requires	 the	 solution	 to	 a	 pair	 of	 simultaneous	 linear
congruences	 (this	 is	 an	 instance	 of	 the	 Chinese	 Remainder	 Theorem;	 see,	 for
example,	[28]):

The	first	congruence	means	that
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for	 some	 integer	 i.	 Substituting	 this	 for	 n	 in	 the	 second	 congruence	 and
transposing,	we	get

Let	g	be	the	greatest	common	divisor	(gcd)	of	c	and	d	and	let	 	and	
,	so	that	u	and	v	are	relatively	prime.	Now	let	k	be	the	multiplicative	inverse	of	u
modulo	v;	that	is,

We	can	use	the	Fermat-Euler	Theorem	[19,	Theorem	72,	p.	63],	because	u	and	v
are	relatively	prime:

where	the	totient	function	 	counts	the	number	of	integers	i,	 ,	that	are
relatively	prime	to	v.	(The	multiplicative	inverse	k	can	also	be	determined	using
the	Euclidean	algorithm;	see	[34]	for	details.)	Now,

Then

Using	this	value	of	i	in	equation	(1.71),	we	get	day	number

When	day	0	is	labeled	 ,	we	must	subtract	Γ	from	a	and	Δ	from	b.	To	make
sure	that	n	is	in	the	range	 ,	we	use



(1.73)
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For	 example,	 if	 	 and	 ,	 as	 in	 the	 Chinese	 calendar,	 then	
,	 and	 	 because	 .	 Using	

,	 but	 counting	 from	 1	 instead	 of	 0,	we	 find	 that	 Chinese	 year	 name	
	corresponds	to	year	number

of	 the	 sexagesimal	 cycle;	 we	 use	 this	 formula	 in	 Section	 19.4.	We	 use	 other
derivations	of	this	sort	for	the	Hebrew	calendar	in	Section	sec-moladr	the	Mayan
calendars	in	Section	sec-haabd	for	the	Balinese	calendar	in	Chapter	chap-Bali

Note	 that	 some	combinations	 	 are	 impossible.	 In	 general,	 there	 is	 no
solution	(1.73)	unless

or,	equivalently,

For	 example,	 with	 the	 Chinese	 scheme,	 the	 odd-even	 parity	 of	 the	 two
components	must	be	the	same	because	c	and	d	are	both	even,	and	only	60	of	the
120	conceivable	pairs	are	possible.

Equation	 (1.73)	 is	 all	 we	 need	 to	 implement	 the	 calendar	 of	 the	 Akan
people	of	Ghana	[5],	[29],	[35],	which	is	based	on	a	42-day	cycle	of	day	names
formed	by	two	simultaneous	cycles	of	six	prefixes	and	seven	stems.	It	is	similar
to	the	Mayan	tzolkin	calendar	(Section	11.2)	and	the	Chinese	sexagesimal	names
(Section	19.4).	The	prefixes	of	the	Akan	calendar	are



	 (1) Nwona	(care,	wellness,	surpass,	innocence)

	 (2) Nkyi	(passing,	no	restrictions)

	 (3) Kuru	(sacred,	complete)

	 (4) Kwa	(ordinary,	empty,	freedom)

	 (5) Mono	(fresh,	new)

	 (6) Fo	(generous,	calm,	love	to	another)

and	the	stems	are

	 (1) Wukuo	(cleansing,	advocate,	mean-spirited)

	 (2) Yaw	(pain,	suffering,	bravery)

	 (3) Fie	(depart	from,	come	forth,	travel)

	 (4) Memene	(digest,	satiety,	creation,	ancient)

	 (5) Kwasi	(freedom,	purify,	smoke)

	 (6) Dwo	(peaceful,	cool,	calm)

	 (7) Bene	(well-cooked)

Together	 these	 prefixes	 and	 suffixes	 form	 a	 sequence	 of	 42	 day	 names,
Nwonawukuo,	Nkyiyaw,	…,	Fobene.	Representing	Akan	day	names	as	pairs	of
positive	integers,



(1.76)

(1.77)

(1.78)

(1.79)

where	prefix	and	stem	are	integers	in	the	ranges	1	to	6	and	1	to	7,	respectively,
the	nth	Akan	day	name	is	given	by

Applying	formula	(1.73)	with	 	but	counting	from	1	instead
of	0,	we	find	that	the	Akan	name	 	corresponds	to	name	number

Determination	of	the	number	of	names	between	given	Akan	names	is	thus	given
by

where

Computing	backwards	from	known	dates	in	the	present,	we	find	that	a	cycle
began	on	R.D.	37,	so	that	we	have

which	allows	us	to	write

Now	we	can	apply	formula	(1.63)	to	compute	the	R.D.	date	of	the	last	date	with	a
given	Akan	name	before	a	given	R.D.	date:



(1.80)

1.14 Cycles	of	Years
An	ordinary	person	cannot	count	each	day,	and	say	this	is	so	many	and	so	many	days.	Instead,	the
count	uses	a	significant	unit,	that	is,	years.

T.	Schvarcz:	Zichron	Menachem,	5673	A.M.	(=	1913–14);
from	a	talk	given	in	June	1907	to	honor	the	fortieth

anniversary	of	Franz	Josef	I’s	rule	of	Hungary

We	now	derive	some	general	formulas	that	are	useful	in	calendar	conversions	for
the	Julian,	Islamic,	Coptic,	Hebrew,	arithmetic	Persian,	and	old	Hindu	lunisolar
calendars	 (although	 not	 in	 the	 same	 way	 for	 the	 Gregorian	 calendar,
unfortunately),	as	well	as	serving	as	the	basis	for	the	generic	solar	and	lunisolar
calendars	in	Chapter	13.	All	of	these	calendars	have	in	common	that	they	follow
a	 simple	 type	 of	 leap-year	 rule	 in	 which	 leap	 years	 are	 spread	 as	 evenly	 as
possible	over	a	cycle	of	years;	the	particular	constants	that	define	these	leap-year
rules	are	given	 in	Table	1.4.	The	formulas	 in	 this	section	are	closely	related	 to
Bresenham’s	“midpoint	line	algorithm”	for	drawing	lines	in	two	dimensions	on	a
discrete	raster	graphics	image	[20],	[47].

Table	1.4		Constants	describing	the	simple	leap-year	structure	of	various
calendars;	c	is	the	length	of	the	leap-year	cycle,	l	is	the	number	of	leap	years	in
that	cycle	of	c	years,	Δ	is	the	position	in	the	cycle	of	year	0,	L	is	the	length	of	an
ordinary	year	(hence	 	is	the	length	of	a	leap	year),	 	is	the
average	length	of	a	year,	and	 	is	the	time	of	day	or	month	(as	a
fraction	of	the	day	or	month,	respectively)	when	mean	year	0	begins.	This	cyclic
pattern	also	applies	to	Islamic	months,	and	approximately	to	the
Gregorian/Julian	months.



(1.81)

Suppose	we	have	a	sequence	of	years	 	and	we	want	to
place	l	leap	years	in	a	cycle	of	c	years,	with	year	0	as	the	first	year	of	the	cycle.
How	can	we	spread	the	leap	years	evenly	over	 the	cycle?	If	l	 is	a	divisor	of	c,
our	problem	is	easy:	Let	year	numbers	that	are	multiples	of	 	be	leap	years.	If	l
is	not	a	divisor	of	c,	however,	the	best	we	can	do	is	to	let	year	numbers	that	are
roughly	 multiples	 of	 	 be	 leap	 years—specifically,	 we	 have	 a	 leap	 year
whenever	the	year	number	has	reached,	or	just	passed,	a	multiple	of	 .	Let	y	be
a	year	number;	then	it	is	a	leap	year	if

for	some	integer	k.	Rearranging	this	inequality,	we	get

which	is	the	same	as	saying	that



(1.82)

Multiplying	by	l	and	using	equation	(1.19),	we	obtain

Because	our	cycles	always	have	length	 ,	the	definition	of	the	mod	function
guarantees	that	 ,	so	we	can	drop	that	part	of	the	inequality	to	get



(1.83)

For	example,	on	the	Julian	calendar	for	years	C.E.	(see	Chapter	3)	we	want	
leap	year	in	the	cycle	of	 	years;	then	year	 	is	a	leap	year	if

or,	in	other	words,	if

We	 can	 complicate	 the	 leap-year	 situation	 by	 insisting	 that	 year	 0	 be	 in
position	Δ	 in	 the	cycle	of	c	years.	 In	 this	 case,	we	have	 the	 same	analysis	but
pretend	that	the	cycle	begins	at	year	0	and	ask	about	year	 .	Inequality	(1.82)
becomes

For	 example,	 the	 Julian	 calendar	 for	 years	 B.C.E.	 (Chapter	 3)	 and	 the	 Coptic
calendar	(Chapter	4)	have	a	cycle	of	 	years	containing	 	leap	years	with	

.	Inequality	(1.83)	becomes

this	is	equivalent	to

The	Islamic	calendar	 (Chapter	 7)	 has	 a	 cycle	 of	 	years	 containing	
leap	years	with	 	(some	Muslims	have	a	different	leap-year	structure,	which
corresponds	to	 ;	see	page	107),	so	the	test	for	an	Islamic	leap	year	is

Spreading	 11	 leap	 years	 evenly	 over	 30	 years	 implies	 gaps	 of	 2	 or	 3	 years
between	leap	years.	Because	 ,	3	of	 the	11	leap	years	each	occur	after	a



(1.84)

(1.85)

(1.86)

gap	of	only	2	years.	If	we	associate	each	leap	year	with	the	gap	preceding	it	and
number	the	gaps	0,	1,	…	10,	these	three	short	gaps	are	numbers	2,	6,	and	9,	to
which	formula	(1.83)	could	also	be	applied	(with	 ,	and	 ).

If	 ,	inequality	(1.81)	implies	that

is	 the	number	of	 leap	years	 in	 the	 range	of	years	 .	When	 ,	we	 again
pretend	that	the	cycle	begins	at	year	0	and	ask	about	year	 	instead	of	year	y.
Thus,	the	number	of	leap	years	in	the	range	 	for	 	is	the	same	as	the
number	of	leap	years	in	the	unshifted	range	of	years	 	(whether	y
is	positive	or	negative),	namely,

the	number	of	years	in	the	unshifted	range	 	minus	the	number	in	the
unshifted	 range	 .	 For	 example,	 	 is	 the	 number	 of	 leap	 years
before	 year	 y	 on	 the	 Julian	 calendar	 (counting	 from	 the	 Julian	 epoch),	

	is	the	number	of	leap	years	prior	to	year	y	on	the	Islamic	calendar,
and	 	is	the	number	of	leap	years	prior	to	year	y	on	the	Coptic	calendar.

Using	 formula	 (1.85),	 we	 immediately	 get	 the	 following	 formula	 for	 the
number	of	days	 in	 the	years	before	year	y—that	 is,	 the	 number	 of	 days	 in	 the
years	1,	2,	3,	…,	 ,	assuming	there	are	L	days	in	an	ordinary	year	and	
days	in	a	leap	year:



(1.87)

(1.88)

For	example,	 for	 the	 Julian	calendar	 this	yields	 ,	 for	 the
Coptic	 calendar	 this	 yields	 ,	 and	 for	 the	 Islamic	 calendar	 it
yields	 .	 Because	 the	 Hebrew	 calendar	 (and	 lunisolar
calendars	 in	 general)	 adds	 leap	months,	 formula	 (1.86)does	 not	 apply	 to	 days,
but	it	does	apply	to	months:	The	number	of	months	prior	to	year	y	on	the	Hebrew
calendar	is	 .

Formula	(1.86)	works	for	 .	In	this	case	it	computes	the	number	of	days
in	years	 	as	a	negative	number.

Finally,	we	can	derive	an	inverse	to	formula	(1.86)	to	find	the	year	at	day	n,
counting	day	 	 as	 the	 first	 day	 of	 year	 1	 (the	 epoch).	Because	 there	 are	L
days	in	an	ordinary	year	and	 	days	in	a	leap	year,	the	average	year	length	is

In	the	simple	case	that	 ,	year	y	begins	on	day

by	using	formula	(1.84)	and	simplifying.	Day	n	is	in	year	y	provided	that	it	is	on
or	after	the	first	day	of	year	y	and	before	the	first	day	of	year	 ;	that	is,

The	sequence	 	is	called	the	spectrum	of	 	(see	[18,	sec.	3.2]);
in	 our	 case,	 they	 are	 the	 initial	 day	 numbers	 of	 successive	 years.	 Inequality
(1.88)	is	equivalent	to



(1.89)

(1.90)

from	which	it	follows	that

In	general,	when	 ,	we	must	 shift	Δ	years	backward;	 that	 is,	 shift	 the
first	 day	 of	 year	 1	 to	 the	 first	 day	 of	 year	 .	The	 number	 of	 days	 in	 the
shifted	years	 	is	the	same	as	the	number	of	days	in	the	unshifted	years

,	which	is	computed	by	adding	the	L	ordinary	days	in	each	of	those	Δ	years,
plus	the	 	leap	days	in	those	years	as	given	by	(1.84).	The	shift	of	Δ	years
thus	corresponds	to	a	shift	of	 	days.	So	the	shifted	form	of	(1.89)
is

which	is	the	same	as

We	 usually	 prefer	 the	 latter	 form	 because	 the	 floor	 function	 is	 more	 readily
available	than	the	ceiling	function	in	computer	languages.

For	the	Julian	calendar,	formula	(1.90)	gives	day	n	occurring	in	year

for	the	Coptic	calendar	it	gives	year



(1.91)

(1.92)

and	for	the	Islamic	calendar	it	gives	year

Formula	 (1.90)does	 not	 apply	 to	 days	 on	 the	 Hebrew	 calendar	 but	 rather	 to
months,	giving	the	formula

for	the	year	in	which	month	n	occurs;	we	use	this	formula	in	Section	8.3	get	the
month/year	corresponding	to	elapsed-months	in	fixed-from-molad.

Formula	(1.90)	makes	sense	when	 ,	too.	In	this	case	it	gives	the	correct
year	as	a	negative	number	(but,	as	discussed	earlier,	this	is	off	by	one	for	Julian
B.C.E.	years).

A	more	general	approach	to	leap-year	distribution	is	to	imagine	a	sequence
of	mean	years	of	 (noninteger)	 length	 ,	with	year	 1	 starting	on	day	0	 at	 time	

,	where	δ	expresses	time	as	a	fraction	of	a	day.	We	define	a	calendar
year	y	to	begin	at	the	start	of	the	day	on	which	mean	year	y	begins;	that	is,	mean
year	y	begins	at	moment	 ,	and	thus	calendar	year	y	begins	on	day

Calendar	year	y	is	an	ordinary	year	if

and	a	leap	year	if



(1.93)

By	definition	 (1.17),	 this	 latter	 equation	 tells	 us	 that	 calendar	 year	 y	 is	 a	 leap
year	if

or,	equivalently,	if

For	 the	 old	Hindu	 lunisolar	 calendar,	 with	 the	 year	 count	 beginning	 at	 0
(not	1),	average	year	length	of

months,	and

inequality	(1.93)	means	that	y	is	a	leap	year	if

or,	equivalently,

(See	page	163.)	However,	this	test	is	not	needed	for	other	calculations	on	the	old
Hindu	calendar.

When	 ,	 mean	 year	 1	 and	 calendar	 year	 1	 both	 begin	 at	 the	 same
moment,	and	equation	(1.92)	tells	us	that	leap	years	follow	the	same	pattern	as
for	 	in	our	earlier	discussion.	More	generally,	given	any	Δ,	if	we	choose



(1.94)

(1.95)

the	 leap-year	 test	 (1.93)	 simplifies	 to	 (1.83),	 and	 thus	we	have	 the	 same	 leap-
year	structure.	For	example,	the	Coptic	calendar	has	 .

Our	δ	 formulas	generalize	our	Δ	 formulas	because	 formula	 (1.94)	gives	a
corresponding	value	of	δ	for	each	Δ.	However,	there	need	not	be	a	value	of	Δ	for
arbitrary	 	and	δ;	indeed,	there	is	no	such	Δ	for	calendars	in	which	the	mean	and
calendar	years	never	begin	at	exactly	the	same	moment.	Given	 	and	δ,	we	have	

,	 and	 (1.94)	means	 that	 Δ	 exists	 only	 if	 δ	 is	 an	 integer	multiple,
modulo	1,	of	 .	In	the	old	Hindu	lunisolar	calendar,	for	example,	formula	(1.83)
cannot	be	used	directly:	 	 	66389/180000,	and	we	must	have	an	integer	Δ
such	that

or

No	 such	Δ	 exists	 because	 796668	 and	2160000	 are	 both	 even,	 but	 2093611	 is
odd.	When	 	is	rational,	and	 	for	relatively	prime	l	and	c,	then	we	can	use
formulas	 (1.83)–(1.90),withΔ	such	 that	 .	For	example,	 for	 the
old	Hindu	lunisolar	calendar	we	can	use	 	and

.	However,	 the	 δ	 formula	 is	more	 general	 in	 that	 it	 applies	 even	 if
average	year	length	is	not	rational.

The	 generalization	 of	 formula	 (1.90)	 in	 terms	 of	 δ	 follows	 by	 solving
equation	(1.92)	for	y,	to	yield



For	the	Coptic	calendar,	this	becomes

as	we	knew	before.
For	the	old	Hindu	lunisolar	calendar,	in	every	180000-year	cycle	there	are

66389	evenly	distributed	leap	years	of	13	months.	Because	the	year	count	begins
with	year	0,	month	m	falls	in	year

The	 application	 of	 these	 formulas	 to	 the	 old	 Hindu	 lunisolar	 calendar	 is
discussed	in	Chapter	10.

In	the	foregoing	discussion	we	have	counted	days	beginning	with	the	epoch
of	 the	 calendars,	 and	 thus	 when	 formulas	 (1.86)	 and	 (1.90)	 are	 used	 in	 our
calendrical	 functions,	 the	 epoch	 must	 be	 added	 or	 subtracted	 to	 refer	 to
R.D.	dates.	For	example,	to	compute	the	Islamic	year	of	R.D.	d,	we	must	write

because	R.D.	d	is	 	elapsed	days	on	the	Islamic	calendar.

1.15 Approximating	the	Year	Number
At	the	expiration	of	the	years,	come	challenge	me.

Shakespeare:	Love’s	Labour’s	Lost,	Act	V,	scene	ii	(1598)

For	 calendars	 that	 do	not	 follow	 the	 strict	 paradigm	of	 the	 previous	 section,	 a
useful	method	to	determine	the	exact	year	number	of	a	fixed	date	d	is	to	estimate



the	 year	 number	 and	 then	 correct	 it	 if	 necessary.	 Let	 Y	 be	 the	 average	 year
length.	Given	 ,	the	(actual	or	approximate)	first	day	of	year	1	on	the	calendar,
the	mean	new	year	 	of	year	j,	for	any	year	j,	is	simply

Conversely,	 for	 any	 moment	 d,	 the	 approximate	 year	 number	 y	 can	 be
determined	by	division:

For	all	years	j,	let	 	be	the	actual	fixed	date	of	the	start	of	the	year	on	the
calendar.	Assuming	that	the	actual	date	 	 is	within	a	year	of	 the	mean	date	 ,
we	need	only	check	whether	the	above	estimate	y	is	off	by	1:

The	 calculation	 of	 the	 exact	 new	year	 can	 be	 relatively	 expensive,	 so	we
would	like	to	avoid	computing	 	and	 	whenever	possible.	Suppose	that	we
can	bound	the	difference	between	the	mean	dates,	 ,	and	the	actual	dates,	 ,	so
that	it	is	guaranteed	that

for	bounds	 	and	 ;	suppose	further	that	these	bounds	hold	for	all	years	j
—or	at	least	for	all	years	within	a	100	centuries	of	the	current	date	(which	is	all
that	 we	 demand	 of	 our	 algorithms).	 Then,	 whenever	 the	 given	 date	 d	 is	 far
enough	away	from	the	two	mean	new	years	 	and	 ,	we	can	be	sure	that	the
approximation	y	is	accurate.

Let	 .	If	 ,	then	d	falls	 in	 the	“twilight	zone”	and	we
need	to	check	whether	 ;	if	so	then	the	estimate	is	actually	wrong,	and	the



(1.96)

correct	year	is	 .	Similarly,	if	 ,	then	d	is	too	close	to	the	end	of	year
y	for	us	to	be	certain,	and	we	need	to	check	if	 ,	in	which	case	the	correct
year	is	 .	The	test	for	 	may	be	omitted	if	 	(Δ	is	nonnegative,	and	if	

,	 then	 y	 must	 be	 exactly	 ,	 in	 which	 case	
).	 Likewise,	 the	 test	 for	 	 may	 be

omitted	 if	 	 (because	 ).	 By	 shifting	 the	 initial	 estimate	 ,	 one	 can
ensure	that	 ;	then	we	get	the	precise	year	number	for	fixed	date	d	with

where

We	 use	 this	 method	 for	 Gregorian	 calendar	 years	 in	 (2.30),	 for	 Hebrew
calendar	years	in	(8.28),	and	arithmetic	French	Revolutionary	calendar	years	 in
(17.10).

1.16 Warnings	about	the	Calculations
Caveat	emptor.	[Let	the	buyer	beware.]

Latin	motto

We	have	been	careful	 to	ensure	 that	our	conversion	functions	work	for	at	 least
±10000	 years	 from	 the	 present,	 if	 not	 forever.	We	 have	worked	 hard	 to	make
sure	that	our	conversion	algorithms	do	not	suffer	from	a	Y10K	problem!

Many	holiday	calculations	assume	that	the	Gregorian	year	and	the	true	solar
year,	 and/or	 the	 mean	 year	 length	 of	 a	 specific	 calendar,	 maintain	 the	 same
alignment,	which	will	not	remain	the	case	over	millennia.	We	have	endeavored



(1.97)

to	make	 these	calculations	robust	 for	at	 least	±2000	years	from	the	present.	Of

course,	the	dates	of	most	holidays	will	not	be	historically	correct	over	that	range.
The	astronomical	code	we	use	 is	not	 the	best	available	but	 it	works	quite

well	 in	 practice,	 especially	 for	 dates	 near	 the	 present	 time,	 around	 which	 its
approximations	are	centered.	More	precise	code	would	be	more	time-consuming
and	 complex	 and	 would	 not	 necessarily	 yield	 more	 accurate	 results	 for	 those
calendars	 that	 depended	 on	 observations,	 tables,	 or	 less	 accurate	 calculations.
Thus,	the	correctness	of	a	date	on	any	of	the	astronomical	calendars	is	contingent
on	the	historical	accuracy	of	the	astronomical	code	used	in	its	calculation.

We	 have	 chosen	 not	 to	 optimize	 the	 algorithms	 at	 the	 expense	 of	 clarity;
consequently,	 considerable	 improvements	 in	 economy	 are	 possible,	 some	 of
which	 are	 pointed	 out.	 In	 particular,	 our	 algorithms	 are	 designed	 to	 convert
individual	dates	from	one	calendar	to	another;	thus	the	preparation	of	monthly	or
yearly	 calendars	would	 benefit	 enormously	 if	 intermediate	 results	were	 stored
and	 used	 for	 subsequent	 days.	 This	 standard	 algorithmic	 technique	 (called
“caching”	or	“memoization”)	is	ignored	in	this	book.

We	 do	 not	 do	 error	 checking	 in	 the	 code.	 If	 one	 asks	 for	 the	 R.D.	 date
corresponding	to	a	date	in	Julian	year	0,	or	to	February	29,	1990,	an	answer	will
be	forthcoming	despite	 the	nonexistence	of	such	dates.	Similarly,	 the	code	will
not	object	to	the	absurdity	of	asking	for	the	R.D.	date	corresponding	to	December
39,	or	even	the	 thirty-ninth	day	of	 the	 thirteenth	month.	 In	other	cases,	we	use
the	special	constant

to	indicate	that	a	calendar	date,	holiday,	or	astronomical	event	is	nonexistent.	For
each	calendar	x,	the	validity	of	a	date	x-date	on	that	calendar	can	be	checked	by
a	function



All	 our	 functions	 give	 “correct”	 (mathematically	 sensible)	 results	 for
negative	 years	 and	 for	 dates	 prior	 to	 the	 epoch	 of	 a	 calendar.	However,	 these
results	may	be	culturally	wrong	in	the	sense	that,	say,	the	Copts	may	not	refer	to
a	year	0	or	 .	It	may	be	considered	heretical	on	some	calendars	to	refer	to	years
before	the	creation	of	the	world.

All	Gregorian	dates	before	the	Common	Era	that	appear	in	this	book	follow
the	astronomical	convention	of	using	nonpositive	year	numbers—including	0	for
the	year	preceding	the	onset	of	the	era.	(The	varying	conventions	with	regard	to
Gregorian	year	0	have	led	to	many	errors	in	the	converting	of	historical	dates.)
Year	0	is	assumed	to	exist	for	all	calendars	except	the	Julian	(Chapter	3)	and	the
Persian	(Chapter	15).

Except	 for	 our	 summation	 and	 product	 operators	 (page	 23)	 and	 search
functions	 (page	 23),	 we	 avoid	 iteration	 and	 instead	 use	 recursion,	 which	 is
natural	because	we	use	functional	notation.	The	use	of	recursion,	however,	is	not
essential:	it	is	invariably	“tail”	recursion	and	can	easily	be	replaced	by	iteration.

Our	algorithms	assume	that	 if	 ,	 then	 	 for	 all	x,	even	for
negative	 values	 of	 x.	 Thus,	 as	 we	 stated	 in	 Section	 1.7,	 care	 must	 thus	 be
exercised	in	implementing	our	algorithms	in	computer	languages	like	C	or	C ,
in	which	the	built-in	mod	function	(often	the	%	operator)	may	give	
for	 ,	 .	We	 also	 assume,	 in	 the	 case	 of	 some	 functions,	 that	
works	for	real	numbers	x	and	y,	as	well	as	for	integers.

Care	must	 be	 taken	 with	 indices	 of	 arrays	 and	 cycles.	 Our	 arrays	 are	 0-
based,	while	some	programming	languages	begin	with	index	1.	However,	when
we	speak	of	elements	of	a	sequence	as	“first,”	“second,”	and	so	on,	we	 intend
standard	 English	 usage	 with	 no	 zeroth	 element.	 Most	 calendars	 number	 their
days,	months,	and	years	starting	with	1,	but	 there	are	exceptions—Hindu	years



and	Mayan	 days,	 for	 example.	 Some	 cycle	 formulas	 in	 this	 chapter	 work	 for
arbitrary	 starting	 points;	 others	 require	 adjustment	when	 the	 first	 element	 of	 a
cycle	is	not	0.

Checking	 the	 results	 of	 conversions	 against	 the	 historical	 record	 is
sometimes	 misleading	 because	 the	 different	 calendars	 begin	 their	 days	 at
different	 times.	 For	 example,	 a	 person	 who	 died	 in	 the	 evening	 will	 have	 a
different	Hebrew	date	of	death	than	if	he	or	she	had	died	in	the	morning	of	the
same	Gregorian	calendar	date;	gravestone	 inscriptions	often	err	 in	 this.	All	our
conversions	are	as	of	noon.

Some	 of	 our	 calculations	 require	 extremely	 large	 numbers;	 other
calculations	 depend	 on	 numerically	 accurate	 approximations	 to	 lunar	 or	 solar
events.	All	 functions	 for	 the	 calendars	 in	 Part	 I,	 except	 the	 old	 Hindu,	 work
properly	(for	dates	within	thousands	of	years	from	the	present)	in	32-bit	integer
arithmetic;	the	Hebrew	calendar	approaches	this	limit,	so	we	have	indicated	how
to	rephrase	the	calculations	to	use	only	small	numbers—one	exception	is	fixed-
from-molad	(page	126)	which	requires	64-bit	integers.	On	the	other	hand,	64-bit
arithmetic	 is	 needed	 to	 reproduce	 accurately	 the	 results	 of	 the	 astronomical
calculations	 done	 in	 Part	 II.	We	 use	 exact	 rational	 arithmetic,	with	 very	 large
numbers,	for	the	Hindu	calendars;	64-bit	arithmetic	can	be	used	to	approximate
their	calculation.

We	use	degree-based	trigonometric	functions	throughout	for	simplicity.	For
programming	languages	in	which	these	functions	are	radian-based,	conversions
are	 necessary—see	 our	 Lisp	 code	 (page	 513),	 for	 an	 example	 of	 such
conversions.

Finally,	 floating	 point	 calculations	 are	 platform-dependent.	 The	 values
given	 for	 the	 sample	 data	 of	 Appendix	 C	 will	 differ	 slightly	 for	 different
languages,	 implementations,	 or	 platforms.	 Double	 precision	 is	 necessary,
however,	for	accurate	results;	furthermore,	 in	some	cases,	 low	precision	results



when	 low-	 and	 high-precision	 real	 numbers	 are	 combined—this	 can	 have
seriously	 deleterious	 effects.	To	 avoid	 such	 problems,	 all	 real	 numbers	 should
have	maximal	(double)	precision,	as	they	have	in	our	Lisp	code.	For	details,	see
the	introduction	to	Appendix	C.
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If	you	steal	from	one	author	it’s	plagiarism;	if	you	steal	from	many,	it’s	research.

Attributed	to	Wilson	Mizner

1			This	has	meant	some	sacrifice	in	the	typography	of	the	book;	we	hope	readers	sympathize	with	our
decision.

2			The	Lisp	code	is	available	through	a	Cambridge	University	Press	web	site	
www.cambridge.org/calendricalcalculations	under	the	terms	of	the	License	Agreements	and	Limited
Warranty	on	page	xli.	Any	errata	are	available	over	the	World	Wide	Web	at	www.calendarists.com.

2			It	has	been	claimed	that	in	equatorial	regions,	where	the	tropical	year	is	not	of	paramount	agricultural
importance,	arbitrary	year	lengths	are	more	prevalent,	such	as	are	found	in	the	210-day	Balinese	Pawukon
calendar	(Chapter	12)	and	the	260-day	Mayan	divine	year	(Section	11.2).

http://www.cambridge.org/calendricalcalculations
http://www.calendarists.com


3			See	[6,	pp.	677–678]	for	a	discussion	of	the	etymology	of	the	term	“leap.”
4			This	is	a	loose	translation	of	a	famous	dictum	from	the	Babylonian	Talmud	Sanhedrin	97b.	The

omitted	words	from	Braude’s	translation	(p.	112	of	his	book)	are	“for	the	coming	of	the	Messiah.”	The
exact	Talmudic	wording	is	“Blasted	be	the	bones	of	those	who	calculate	the	end.”	Braude	was	the	uncle	of
E.M.R.’s	mother-in-law,	a	connection	we	discovered	long	after	the	first	edition	of	this	book	was	published!

5			The	best	reference	is	still	Ginzel’s	monumental	three-volume	work	[16],	in	German.	An	exceptional
survey	can	be	found	in	the	Encyclopædia	of	Religion	and	Ethics	[22,	vol.	III,	pp.	61–141	and	vol.	V,
pp.	835–894].	Useful	modern	summaries	are	[6],	[12],	[40],	and	[45];	[6]	and	[40]	have	extensive
bibliographies.	The	incomparable	tables	of	Schram	[41]	are	the	best	available	for	converting	dates	by	hand,
whereas	those	in	Parise	[36]	are	best	avoided	because	of	an	embarrassingly	large	numbers	of	errors.

6			Rata	Die,	or	fixed	date.	We	are	indebted	to	Howard	Jacobson	for	this	coinage.
7			Common	Era,	or	A.D.
8			Before	the	Common	Era,	or	B.C.
9			Historically	scholars	have	mixed	the	notations,	using	negative	years	for	the	Julian	calendar	and	the

B.C.E./C.E.	(B.C./A.D.)	notation	for	Gregorian	years,	so	one	must	be	cautious	in	interpreting	what	a	particular
author	means.	The	ambiguity	has	led	to	confusion	and	errors.

10			We	use	lowercase	here	to	avoid	any	confusion	between	a	julian	day	number	and	a	date	on	the	Julian
calendar.

11			“Note	that	Julian	date	is	sometimes	used	as	a	synonym	for	day	of	year,	but	this	is	not	correct	usage.
Day	of	year	ranges	from	1	to	365	(366	for	leap	years)	whereas	Julian	dates	are	a	continuous	count	of	days”
[2].

12			The	ancient	Egyptians	are	also	believed	to	have	used	a	lunar	calendar	with	months	beginning	the
first	morning	of	invisibility	of	the	old	moon	[37].



Part	I
◈

Arithmetical	Calendars

	



Swedish	almanac	pages	for	February,	1712,	showing	a	30-day	month.	The
Swedish	date	is	on	the	left,	the	Gregorian	on	the	right.	Friday,	February	30
(Swedish)	is	given	as	March	11	(Gregorian)	=	February	29	(Julian).	The	word
next	to	the	“30”	is	“Tillökad,”	that	is,	“added.”	The	word	“Snöö,”	that	is,	the
weather	prediction	“snow,”	is	to	the	left	of	the	“11.”	(Courtesy	of	The	Royal
Library,	National	Library	of	Sweden,	Stockholm.)



2

The	Gregorian	Calendar
◈

For	 some	 ridiculous	 reason,	 to	 which,	 however,	 I’ve	 no	 desire	 to	 be	 disloyal,Some	 person	 in
authority,	I	don’t	know	who,	very	likely	the	Astronomer	Royal,Has	decided	that,	although	for	such
a	beastly	month	as	February,	twenty-eight	as	a	rule	are	plenty.
One	year	in	every	four	his	days	shall	be	reckoned	as	nine-and-twenty.

Gilbert	and	Sullivan:	Pirates	of	Penzance,	Act	II	(1879)

2.1 Structure

The	 calendar	 in	 use	 today	 in	most	 of	 the	world	 is	 the	Gregorian	 or	new-style
calendar	 designed	 by	 a	 commission	 assembled	 by	 Pope	 Gregory	 XIII1	 in	 the
sixteenth	century.	The	main	author	of	the	new	system	was	the	Naples	astronomer
Aloysius	 Lilius;	 see	 [4],	 [6],	 [16],	 and	 [18]	 for	 mathematical	 and	 historical
details.	This	strictly	solar	calendar	is	based	on	a	365-day	common	year	divided
into	12	months	of	lengths	31,	28,	31,	30,	31,	30,	31,	31,	30,	31,	30,	and	31	days
with	366	days	in	leap	years,	the	extra	day	being	added	to	make	the	second	month
29	days	long:

(1)	January 			31	days

(2)	February 			28	{29}	days



(3)	March 			31	days

(4)	April 			30	days

(5)	May 			31	days

(6)	June 			30	days

(7)	July 			31	days

(8)	August 			31	days

(9)	September 			30	days

(10)	October 			31	days

(11)	November 			30	days

(12)	December 			31	days

The	 leap-year	structure	 is	given	 in	curly	brackets.	A	year	 is	a	 leap	year	 if	 it	 is
divisible	by	4	and	is	not	a	century	year	(a	multiple	of	100)	or	if	it	is	divisible	by
400.	 For	 example,	 1900	 is	 not	 a	 leap	 year;	 2000	 is.	 The	 Gregorian	 calendar
differs	 from	 its	 predecessor,	 the	 old-style	 or	 Julian	 calendar,	 only	 in	 that	 the
Julian	calendar	did	not	include	the	century	rule	for	leap	years—all	century	years
were	leap	years.	It	 is	 the	century	rule	 that	causes	 the	 leap	year	structure	 to	fall
outside	 the	 cycle-of-years	 paradigm	 of	 Section	 1.14	 (but	 Gregorian-like	 leap
year	rules	have	their	own	interesting	mathematical	properties;	see	[19]).	Days	on
both	calendars	begin	at	midnight.

Although	the	month	lengths	seem	arbitrarily	arranged,	they	would	precisely
satisfy	the	cyclic	formulas	of	Section	1.14	with	 ,	 ,	 ,	and	 ,
if	February	always	had	30	days.	In	other	words,	 if	we	assume	February	has	30
days,	formula	(1.86)	tells	us	that	there	are



(2.1)

(2.2)

days	in	the	months	 ,	and	formula	(1.90)	tells	us	that	day	n	of	the	year
falls	in	month	number

where,	as	in	the	derivation	of	(1.90),	the	first	day	of	the	year	is	 ;	that	is,	n	is
the	 number	 of	 prior	 days	 in	 the	 year	 rather	 than	 the	 day	 number	 in	 the	 usual
sense.	The	values	 	and	 	leading	to	(2.1)	and	(2.2)	are	obvious:	There
are	12	months	and	the	ordinary	length	is	30	days.	The	value	 	comes	from	the
7	long	months	of	31	days;	the	value	 	forces	January	to	be	month	number	1
(rather	than	0),	necessary	for	the	applicability	of	formulas	(1.86)	and	(1.90).	It	is
a	 simple	 matter	 to	 use	 the	 formulas	 (2.1)	 and	 (2.2)	 and	 to	 correct	 for	 the
mistaken	 assumption	 that	 February	 has	 30	 days;	 we	 do	 just	 that	 in	 the	 next
section.

The	Julian	calendar	dates	 from	January	1,	709	A.U.C.2	 (45	B.C.E.)	and	 is	by
Julius	 Cæsar,	 with	 the	 help	 of	 Alexandrian	 astronomer	 Sosigenes;	 it	 was	 a
modification	 of	 the	 Roman	 Republican	 (see	 [15])	 and	 ancient	 Egyptian
calendars.	 Because	 every	 fourth	 year	 was	 a	 leap	 year,	 a	 cycle	 of	 4	 years
contained	 	 days,	 giving	 an	 average	 length	 of	 year	 of	 365.25
days.	This	is	somewhat	more	than	the	mean	length	of	the	tropical	year	(the	year
measured	 between	 successive	 vernal	 equinoxes),	 and	 over	 the	 centuries	 the
calendar	 slipped	with	 respect	 to	 the	seasons.	By	 the	 sixteenth	 century,	 the	 true
date	 of	 the	 vernal	 (spring)	 equinox	 had	 shifted	 from	 around	March	 21	 in	 the
fourth	 century	 when	 the	 date	 of	 Easter	 was	 fixed	 (see	 Chapter	 9)	 to	 around
March	11.	If	 this	error	were	not	corrected,	 then	Easter,	whose	date	depends	on
the	 ecclesiastical	 approximation	 of	 March	 21	 for	 the	 vernal	 equinox,	 would



gradually	migrate	through	the	seasons,	eventually	to	become	a	summer	holiday.
Pope	Gregory	XIII	instituted	only	a	minor	change	in	the	calendar—century

years	not	divisible	by	400	would	no	longer	be	leap	years.	(He	also	modified	the
rules	 for	 Easter;	 see	 Chapter	 9.)	 Thus,	 3	 out	 of	 4	 century	 years	 are	 common
years,	giving	a	cycle	of	400	years	containing	 	days	and
an	 average	 year	 length	 of	 	 days.	 He	 also	 corrected	 the
accumulated	 10-day	 error	 in	 the	 date	 of	 the	 equinox	 by	 proclaiming	 that
Thursday,	 October	 4,	 1582	 C.E.	 according	 to	 the	 calendar	 then	 in	 use	 (Julian)
would	be	 followed	by	Friday,	October	15,	1582,	 the	 first	day	of	 the	new-style
(Gregorian)	calendar.	Catholic	countries	followed	his	rule:	Spain,	Portugal,	and
Italy	 adopted	 it	 immediately,	 as	 did	 the	Catholic	 states	 in	Germany.	However,
Protestant	countries	resisted.	The	Protestant	parts	of	Germany	waited	until	1700
to	 adopt	 it.	 The	 various	 cantons	 of	 Switzerland	 changed	 at	 different	 times.
Sweden	began	a	gradual	changeover	in	1699,	omitting	February	29	in	1700.	At
that	 point	 the	 plan	was	 abandoned,	 leaving	 the	 Swedish	 calendar	 one	 day	 off
from	the	Julian.	This	was	only	rectified	in	1712	by	adding	a	February	30	to	that
year—see	the	frontispiece	for	this	chapter!	The	Swedish	calendar	stayed	in	tune
with	the	Julian	until	1753,	when	the	Gregorian	was	adopted.3	Great	Britain	and
her	 colonies	 (including	 the	 United	 States)	 waited	 until	 1752	 (see	 [17]	 for	 an
interesting	 description	 of	 the	 effect);	 Russia	 held	 out	 until	 1918,	 after	 the
Bolshevik	Revolution,	which	is	also	known	as	the	October	Revolution	because	it
occurred	 on	 October	 25–26,	 1917	 C.E.	 (Julian)	 =	 November	 7–8,	 1917
(Gregorian).4	Different	parts	of	what	 is	now	the	United	States	changed	over	at
different	dates;	Alaska,	for	example,	changed	only	when	it	was	purchased	by	the
United	States	 in	1867.5	Turkey	did	not	 change	 to	 the	Gregorian	 calendar	 until
1927.	An	 extensive	 list	 of	 dates	 of	 adoption	 of	 the	Gregorian	 calendar	 can	 be
found	in	[1].



The	Gregorian	calendar	is	not	fully	accurate	in	its	alignment	with	the	solar
cycle	 because	 its	 approximation	 to	 the	 year,	 	 is	 slightly	 too
large	(see	the	discussion	in	Section	14.4).	This	was	known	as	early	as	1700,	so
various	modifications	have	been	suggested,	but	none	accepted.	For	example,	the
astronomer	John	Herschel	(and	others)	proposed	making	years	divisible	by	4000
ordinary	years,	not	leap	years;	such	a	modification	is	simple	to	incorporate	into
our	functions	in	the	following	sections.	Isaac	Newton	had	much	earlier	proposed
a	 radically	 different	 approach	 (see	 [3])	with	 a	 5000-year	 cycle	 in	which	 years
divisible	by	4	would	be	leap	years	(February	would	have	29	days),	except	 that
years	divisible	by	100	would	not	be	leap	years,	except	that	years	divisible	by	500
would	be	leap	years;	furthermore,	years	divisible	by	5000	would	be	“double	leap
years”	 with	 30	 days	 in	 February.	 Implementing	 Newton’s	 calendar	 is	 a	 nice
exercise	for	the	reader.

By	 universal	 current	 custom,	 the	 new	 Gregorian	 year	 number	 begins	 on
January	1.	There	have,	however,	been	other	beginnings—parts	of	Europe	began
the	New	Year	variously	on	March	1,	Easter,	September	1,	Christmas,	and	March
25	(see,	for	example,	[11]).	This	is	no	small	matter	in	interpreting	dates	between
January	1	and	the	point	at	which	the	number	of	the	year	changed.	For	example,
in	 England	 under	 the	 Julian	 calendar,	 the	 commencement	 of	 the	 ecclesiastical
year	on	March	25	 in	 the	sixteenth	and	seventeenth	centuries	means	 that	a	date
like	February	1,	1660	leaves	the	meaning	of	 the	year	 in	doubt.	Such	confusion
led	to	 the	practice	of	writing	a	hyphenated	year	giving	both	the	 legal	year	first
and	the	calendar	year	number	second:	February	1,	1660-1.	The	same	ambiguity
occurs	even	today	when	we	speak	of	the	“fiscal	year,”	which	can	run	from	July
to	July	or	from	October	to	October,	but	we	would	always	give	the	calendar	year
number,	not	the	fiscal	year	number	in	specifying	dates.

Although	the	Gregorian	calendar	did	not	exist	prior	to	the	sixteenth	century,
we	can	extrapolate	backwards	using	its	rules	to	obtain	what	is	sometimes	called
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the	 “proleptic	Gregorian	 calendar,”6	 which	 we	 implement	 in	 the	 next	 section.
Unlike	the	Julian	calendar,	we	implement	this	proleptic	calendar	with	a	year	0,
as	is	common	among	astronomers—see	the	footnote	on	page	56.	By	our	choice
of	the	starting	point	of	our	fixed	counting	of	days,	we	define

2.2 Implementation
Les	protestants	de	toutes	les	communions	s’obstinérent	à	ne	pas	recevoir	des	mains	du	pape	une
vérité	qu’il	aurait	fallu	recevoir	des	Turcs,	s’ils	l’avaient	proposée.	[The	Protestants	of	all
denominations	insist	on	rejecting	a	truth	from	the	hands	of	the	Pope,	which	they	would	have
accepted	even	from	the	Turks	had	they	proposed	it.]

Voltaire:	Essai	sur	les	Mœurs	et	l’esprit	des	nations	(1756)

For	convenience,	we	define	12	numerical	constants	by	which	we	will	refer	to	the
12	months	of	the	Gregorian	and	Julian	calendars:
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To	convert	from	a	Gregorian	date	 to	an	R.D.	date,	we	first	need	a	 function
that	tells	us	whether	a	year	is	a	leap	year.	We	write

The	 calculation	 of	 the	 R.D.	 date	 from	 the	 Gregorian	 date	 (which	 was
described	in	[12]	as	“impractical”)	can	now	be	done	by	counting	the	number	of
days	in	prior	years	(both	common	and	leap	years),	 the	number	of	days	in	prior
months	of	the	current	year,	and	the	number	of	days	in	the	current	month:

The	explanation	of	this	function	is	as	follows.	We	start	at	the	R.D.	number	of
the	last	day	before	the	epoch	( ,	but	we	do	it	explicitly	so
that	 the	dependency	on	our	arbitrary	 starting	date	 is	clear);	 to	 this,	we	add	 the
number	 of	 nonleap	 days	 (positive	 for	 positive	 years,	 negative	 otherwise)
between	 R.D.	 0	 and	 the	 last	 day	 of	 the	 year	 preceding	 the	 given	 year,	 the
corresponding	(positive	or	negative)	number	of	leap	days,	the	number	of	days	in
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prior	months	of	the	given	year,	and	the	number	of	days	in	the	given	month	up	to
and	including	the	given	day.	The	number	of	leap	days	between	R.D.	0	and	the	last
day	 of	 the	 year	 preceding	 the	 given	 year	 is	 determined	 by	 the	 mathematical
principle	of	“inclusion	and	exclusion”	[13,	Chapter	4]:	add	all	Julian-leap-year-
rule	leap	days	(multiples	of	4),	subtract	all	the	century	years	(multiples	of	100),
and	then	add	back	all	multiples	of	400.	The	number	of	days	in	prior	months	of
the	given	year	is	determined	by	formula	(2.1),	corrected	by	0,	 ,	or	 	for	the
assumption	that	February	always	has	30	days.

For	example,	to	compute	the	R.D.	date	of	November	12,	1945	(Gregorian),
we	 compute	 	 prior	 nonleap	 days,	
prior	 Julian-rule	 leap	 days	 (multiples	 of	 4),	 	 prior
century	 years,	 	 prior	 400-multiple	 years,	

	 prior	 days,	 corrected	 by	 	 because	 November	 is
beyond	February	and	1945	is	not	a	Gregorian	leap	year.	Adding	these	values	and
the	day	number	12	together	gives	 .

The	function	fixed-from-gregorian	allows	us	to	calculate	the	first	and	last
days	of	the	Gregorian	year,	and	the	range	of	dates	between	them:

We	will	need	 these	functions	 to	determine	holidays	on	other	calendars	 that	 fall
within	a	specific	Gregorian	year	for	example.



(2.21)

Calculating	 the	 Gregorian	 date	 from	 the	 R.D.	 date	 involves	 sequentially
determining	the	year,	month,	and	day	of	the	month.	Because	the	century	rule	for
Gregorian	 leap	 years	 allows	 an	 occasional	 7-year	 gap	 between	 leap	 years,	we
cannot	 use	 the	 methods	 of	 Section	 1.14—in	 particular,	 formula	 (1.90)—to
determine	the	Gregorian	year.	Rather,	exact	determination	of	the	Gregorian	year
from	the	R.D.	date	involves	the	decomposition	of	the	number	of	days	into	units	of
1,	4,	100,	and	400	years.

where

Alternatively,	 the	 year	 may	 be	 calculated	 by	 means	 of	 base	 conversion	 in	 a
mixed-radix	system	(Section	1.10);	see	formula	(2.30)	in	the	next	section.



(2.22)

(2.23)

This	 function	 can	 be	 extended	 to	 compute	 the	 ordinal	 day	 of	 date	 in	 its
Gregorian	year:

That	is,	if	 	or	 ,	then	date	is	the	last	day	of	a	leap	year	(day	146097
of	 the	 400-year	 cycle	 or	 day	 1461	 of	 a	 4-year	 cycle);	 in	 other	words,	date	 is
December	 31	 of	 year.	 Otherwise,	date	 is	 the	 ordinal	 day	 	 in	

.
This	 calculation	 of	 the	 Gregorian	 year	 of	 R.D.	 date	 is	 correct	 even	 for

nonpositive	years.	 In	 that	 case,	 	 gives	 the	 number	 of	 400-year	 cycles	 from
date	until	the	start	of	the	Gregorian	calendar—including	the	current	cycle—as	a
negative	 number	 because	 the	 floor	 function	 always	 gives	 the	 largest	 integer
smaller	than	its	argument.	Then	the	rest	of	the	calculation	yields	the	number	of
years	from	the	beginning	of	that	cycle,	as	a	positive	integer,	because	the	modulus
is	always	nonnegative	for	positive	divisor—see	equations	(1.20)	and	(1.21).

Now	that	we	can	determine	the	year	of	an	R.D.	date,	we	can	find	the	month
by	formula	(2.2),	corrected	by	0,	1,	or	2	for	the	assumption	that	February	always
has	30	days.	Knowing	the	year	and	month,	we	determine	the	day	of	the	month
by	subtraction.	Putting	these	pieces	together,	we	have

where
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We	can	use	our	fixed	numbering	of	days	to	facilitate	the	calculation	of	the
number	of	days	difference	between	two	Gregorian	dates:

This	function	can	then	be	used	to	compute	the	ordinal	day	number	of	a	date	on
the	Gregorian	calendar	within	its	year:

The	ordinal	day	number	could	also	be	computed	directly	using	equation	(2.22)	in
a	modified	 version	 of	 gregorian-year-from-fixed.	 It	 is	 easy	 to	 determine	 the
number	of	days	remaining	after	a	given	date	in	the	Gregorian	year:

Finally,	we	can	compute	the	last	day	of	a	Gregorian	month	in	a	similar	fashion:



(2.27)

2.3 Alternative	Formulas
…	premature,	unnecessary,	and	likely	to	produce	upheavals,	and	bewilderment	of	mind	and
conscience	among	the	people.

Prince	Carl	Christoph	von	Lievenin	in	his	denouncement	to	the	Tsar	of	a	plan	to	switch	Russia	to
the	Gregorian	calendar	(1829)

We	noted	in	Section	2.1	that	if	we	pretend	that	February	always	has	30	days	and
we	count	months	starting	from	December,	the	month	lengths	satisfy	the	cycle-of-
years	formulas	of	Section	1.14	with	 ,	 ,	 ,	and	 ;	we	used	the
resulting	formulas	(2.1)	and	(2.2)	 to	convert	Gregorian	dates	 to	and	from	fixed
dates.	The	fraction	 	occurring	on	the	left-hand	side	of	(2.1)	is	not	critical;	we
will	see	below	that	we	can	use	the	fraction	 	instead.	This	leads	us	to	see	that
the	values	 ,	 ,	 ,	and	 	also	work,	and	thus	we	could	substitute

and

respectively,	 for	 (2.1)	and	(2.2)	 in	 fixed-from-gregorian	 and	gregorian-from-
fixed.



The	justification	of	the	change	of	 	to	 	 is	worth	examining	in	detail
because	 it	 is	 typical	 of	 arguments	 used	 to	 derive	 and	 simplify	 calendrical
formulas.	Note	that	formulas	(2.1)	and	(2.2)	are	applied	only	to	month	numbers
1	 through	12.	The	sum	on	 the	 left-hand	side	of	equation	 (2.1)	has	 a	 corrective
term,	the	floor	of

This	has	values

which	we	show	as	a	 set	of	points	 	 in	Figure	2.1.	Each	point	 can	be
moved	upward	by	any	amount	less	than	1	without	changing	the	value	of	 ;
each	range	is	represented	as	a	half-open	vertical	line	segment	in	the	figure.	The
problem	is	to	determine	lines	 	such	that	 	for	the	12
integer	values,	 .	 In	other	words,	we	want	 to	determine	 the	 lines	 that
transect	each	of	the	12	half-open	line	segments	in	the	figure.	The	line	we	know
about,	 ,	is	shown	dashed.	The	critical	line	segments,	shown	in
bold,	are	[[(2,	1)	.	.	(2,	2)),	[(7,	3)	.	.	(7,	4)),	and	[(9,	5)	.	.	(9,	6)).	To	cut	both	the
half-open	 line	 segments	 [(7,	 3)	 .	 .	 (7,	 4))	 and	 [(9,	 5)	 .	 .	 (9,	 6)),	 a	 line	

	must	have	slope	 ;	to	cut	both	the	half-open	line	segments
[(2,	 1)	 .	 .	 (2,	 2))	 and	 [(7,	 3)	 .	 .	 (7,	 4)),	 a	 line	 	must	 have	 slope	

.	The	fraction	 	has	the	smallest	denominator	in	the	acceptable	range.	It
is	 clear	 from	 the	 figure	 that	 any	 slope	 	 (the	 shaded	 region)	 is
possible—take	the	line	of	the	desired	slope	that	goes	through	the	point	(7,	4).	We
make	 this	 precise	 by	 giving	 an	 explicit	 line	 for	 each	 slope	 in	 that	 range:	

,	 	 works	 for	 ,	 and	 ,	



works	for	 .	Because	 ,	there	exists	a	b	for	each
value	of	a,	 .

Figure	2.1	
The	12	half-open	line	segments	giving	the	ranges	that	the	corrective	line	must
transect,	along	with	the	correction	of	equation	(2.1),	that	is,	the	dashed	line	

.	The	limiting	line	segments,	[(2,	1)	.	.	(2,	2)),	[(7,	3)	.	.	(7,
4)),	and	[(9,	5)	.	.	(9,	6)),	are	shown	darker	than	the	others.	The	limiting	region,
bounded	by	slopes	 	and	 ,	is	shaded	light	gray.	(Suggested	by	M.	H.
Deckers.)

More	significant	use	of	the	cycle-of-years	formulas	is	also	possible.	Instead
of	pretending	that	February	has	30	days	and	correcting	for	the	pretense,	we	could
instead	consider	 the	annual	period	from	March	1	 to	 the	end	of	February	of	 the
following	year	(see,	for	example,	[2]	and	[21]).	For	this	shifted	year,	the	cycle-
of-years	 formulas	with	 ,	 ,	 ,	 and	 	work	 perfectly	 because
the	formulas	are	never	applied	in	cases	for	which	the	length	of	February	matters.



Again,	as	above,	 the	fraction	 	can	be	 replaced	by	any	 fraction	 in	 the	open
range	 ;	the	fraction	of	smallest	denominator	in	the	allowable	range,	 ,
leads	to	 ,	 ,	 ,	and	 .	The	well-known	“Zeller’s	congruence,”
[22],	 [23],	 derived	 in	 the	 next	 section,	 is	 based	 on	 this	 idea,	 as	 are	 calendar
formulas	such	as	[20]	(see	[14,	pp.	61–63]),	and	many	others.

The	shifted-year	formulas	are	then	applied	as	follows.	The	number	of	days
in	months	starting	in	March	prior	 to	month	m	 (where	March	 is	 ,	April	 is	

,	…,	February	is	 )	is

To	consider	March	 ( )	 of	 	 to	 be	month	 	of	year	 ,
April	( )	of	 	to	be	month	 	of	year	 ,	…,	February	(

)	 of	 	 to	 be	 month	 	 of	 year	 ,	 we	 shift	 the
month	numbers	using

and	adjust	the	year	using

We	 can	 simplify	 this	 further	 by	 expressing	 the	 calculations	 in	 terms	 of	
	and	 	calculated	as

Because	there	are	306	days	in	the	period	March–December,	we	can	write



(2.28)
where

The	number	of	 leap	years	under	 the	Gregorian	 rule	depends	on	 the	number	of
quadrennia,	centuries,	and	400-year	periods.	We	compute	the	number	of	elapsed
periods	of	4,	100,	and	400	years,	using	the	mixed-radix	notation	of	Section	1.10.
Accordingly,	the	approximation	for	the	year	is	expressed	in	base	 ,	 there
being	4	years	in	a	quadrennium,	25	quadrennia	in	a	century,	and	4	centuries	in
400	years.	Each	 quadrennium	 contributes	 1	 leap	 day,	 each	 century	 contributes
24,	every	400	years	contribute	97,	while	an	ordinary	year	contributes	none.	So
we	count	the	total	number	of	leap	days	by	taking	the	sum	of	the	products	of	the
individual	contributions	 	with	the	corresponding	components	of	

,	which	is	the	year	number	expressed	in	base	 	using
the	same	variable	names	as	in	equation	(2.21)	for	the	counts.	To	avoid	subscripts
the	 formula	 employs	 vector	 notation,	 ,	 with	 the	 intention	 that	 the
operation	 in	 the	 sum	 is	 performed	 on	 like-indexed	 elements	 of	 	 and	 	 (as
explained	on	page	31).

In	the	reverse	direction,	the	same	ideas	lead	to
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where

All	 these	alternative	 functions	are	simpler	 in	appearance	 than	our	original
functions	converting	Gregorian	dates	 to	and	from	fixed	dates,	but	 intuition	has
been	 lost	 with	 a	 negligible	 gain	 in	 efficiency.	 Versions	 of	 these	 alternative
functions	are	the	basis	for	the	conversion	algorithms	in	[7]	(see	[5,	p.	604])	and
many	 others	 because,	 by	 using	 formulas	 (1.17)	 and	 (1.29)	 to	 eliminate	 the
modulus	 and	 adjusted-remainder	 operators,	 alt-fixed-from-gregorian	 and	 alt-
gregorian-from-fixed	 can	be	written	 as	 single	 arithmetic	 expressions	over	 the
integer	operations	of	addition,	 subtraction,	multiplication,	and	division	with	no
conditionals.

Finally,	we	 can	 give	 an	 alternative	 version	 of	gregorian-year-from-fixed
by	doing	 a	 simple	 but	 approximate	 calculation	 and	 correcting	 it	when	needed.
The	approximate	year	is	found	by	dividing	the	number	of	days	from	the	epoch
until	2	days	after	the	given	fixed	date	by	the	average	Gregorian	year	length.	The
fixed	date	of	the	start	of	the	next	year	is	then	found;	if	the	given	date	is	before
the	 start	 of	 that	 next	 year,	 then	 the	 approximation	 is	 correct;	 otherwise	 the
correct	year	is	the	year	after	the	approximation:
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where

The	 adjustment	 by	 2	 days	 is	 needed	 because	 the	 number	 of	 days	 in	 years	 1
through	n	 of	 the	 400-year	 cycle	 can	 fall	 short	 of	 	 by	 as	much	 as
1.4775	 days	 (for	 ).	 Thus	 2	 is	 the	 smallest	 integer	 we	 can	 add	 that
guarantees	that,	for	the	first	day	of	any	year	n,	 .

2.4 The	Zeller	Congruence
These	examples	[of	errors	in	published	works]	show	that,	even	for	the	possessor	of	such	reference
books,	formulæ	are	not	completely	superfluous,	as	they	make	it	possible	to	double	check	the
handbooks	by	means	of	calculations,	without	very	much	trouble.

Rektor	Chr.	Zeller:	“Kalender-Formeln,”	Mathematisch-naturwissenschaftliche	Mitteilungen	des
mathematisch-naturwissenschaftlichen	Vereins	in	Württemberg	(1885)

Zeller’s	 congruence	 [22],	 [23]	 (see	 [21]),	 due	 to	 Christian	 Zeller,	 a	 Protestant
minister	and	seminary	director	in	Germany	in	the	second	half	of	the	nineteenth



(2.31)

century,	is	a	relatively	simple	method—often	used	in	feats	of	“mental	agility”—

for	 determining	 the	 day	 of	 the	week,	 given	 any	Gregorian	 calendar	 date.	 The
main	 idea	 is	 to	add	up	elapsed	days	 from	 the	epoch	of	 the	Gregorian	until	 the
day	in	question	but,	since	we	are	interested	only	in	the	day	of	the	week,	always
discarding	multiples	of	7,	leaving	numbers	in	the	range	0–6	to	represent	Sunday
through	Saturday.

We	can	use	the	simplification	of	fixed-from-gregorian	suggested	on	page
65	to	derive	Zeller’s	congruence.	We	substitute	the	number	of	elapsed	days	into
the	 definition	 of	 day-of-week-from-fixed	 from	 page	 33,	 ignoring	 the	 zero-
valued

to	obtain	the	day	of	the	week

taken	modulo	7,	where

Zeller	 used	month	 numbers	 3–14	 for	March–February	 (that	 is,	 he	 renumbered
January	as	13	and	February	as	14),	and	dealt	 separately	with	centuries	and	 the
year	within	a	century:



Making	these	substitutions	in	(2.31)	we	get

taken	 modulo	 7.	 Discarding	 multiples	 of	 7,	 dividing	 by	 10	 instead	 of	 5,	 and
regrouping,	this	becomes

Finally,	rearranging	terms,	we	get

taken	modulo	7,	which	is	Zeller’s	congruence	as	he	wrote	it	in	[23],	except	that
he	numbered	the	days	Sunday–Saturday	1–7	so	he	had	day	not	 .

Other	versions	of	this	formula	often	attributed	to	Zeller	can	be	obtained	by
algebraic	 manipulation.	 Zeller	 [23]	 also	 gave	 a	 similar	 formula	 for	 Julian
calendar	dates.

2.5 Holidays
The	information	in	this	book	has	been	gathered	from	many	sources.	Every	effort	has	been	made	to
insure	its	accuracy.	Holidays	sometimes	are	subject	to	change,	however,	and	Morgan	Guaranty
cannot	accept	responsibility	should	any	date	or	statement	included	prove	to	be	incorrect.
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(2.34)

(2.33)

Morgan	Guaranty:	World	Calendar	(1978)

Secular	 holidays	 on	 the	 Gregorian	 calendar	 are	 either	 on	 fixed	 days	 or	 on	 a
particular	 day	 of	 the	 week	 relative	 to	 the	 beginning	 or	 end	 of	 a	 month.	 (An
extensive	list	of	secular	holidays	can	be	found	in	[10].)	Fixed	holidays	are	trivial
to	 deal	 with;	 for	 example,	 to	 determine	 the	 R.D.	 date	 of	 United	 States
Independence	Day	in	a	given	Gregorian	year	we	would	use

Other	 holidays	 are	 on	 the	 nth	 occurrence	 of	 a	 given	 day	 of	 the	 week,
counting	from	either	the	beginning	or	the	end	of	the	month.	The	U.S.	Labor	Day,
for	example,	is	the	first	Monday	in	September,	and	U.S.	Memorial	Day	is	the	last
Monday	in	May.	To	find	the	R.D.	date	of	the	nth	k-day	( ,	k	is	the	day	of	the
week)	 on,	 or	 after	 or	 before,	 a	 given	Gregorian	 date	 (counting	 forward	when	

,	backward	when	 ),	we	write

using	the	functions	of	Section	1.12	(page	34);	when	 	the	special
constant	bogus	 is	 returned,	 signifying	 a	 nonexistent	 value.	 It	 is	 convenient	 to
define	two	special	cases	for	use	with	this	function:

gives	the	fixed	date	of	the	first	k-day	on	or	after	a	Gregorian	date;
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(2.37)

(2.38)

(2.39)

(2.40)

gives	the	fixed	date	of	the	last	k-day	on	or	before	a	Gregorian	date.
Now	we	can	define	holiday	dates,	such	as	U.S.	Labor	Day,

U.S.	Memorial	Day,

or	U.S.	Election	Day	(the	Tuesday	falling	after	 the	first	Monday	 in	November,
which	is	the	first	Tuesday	on	or	after	November	2),

Further,	we	can	determine	the	starting	and	ending	dates	of	U.S.	daylight	saving
time	(as	of	2007,	the	second	Sunday	in	March	and	the	first	Sunday	in	November,
respectively):



(2.41)

(2.43)

(2.42)

The	 main	 Christian	 holidays	 are	 Christmas,	 Easter,	 and	 various	 days
connected	 with	 them	 (Advent	 Sunday,	 Ash	 Wednesday,	 Good	 Friday,	 and
others;	see	[11,	vol.	V,	pp.	844–853]).	The	date	of	Christmas	on	 the	Gregorian
calendar	is	fixed	and	hence	easily	computed:

The	 related	dates	of	Advent	Sunday	 (the	Sunday	closest	 to	November	30)	and
Epiphany	(the	first	Sunday	after	January	1)7	are	computed	by

	

The	 date	 of	 the	 Assumption	 (August	 15),	 celebrated	 in	 Catholic	 countries,	 is
fixed	 and	 presents	 no	 problem.	We	 defer	 the	 calculation	 of	 Easter	 and	 related
“movable”	Christian	holidays,	which	depend	on	lunar	events,	until	Chapter	9.

To	find	all	instances	of	Friday	the	Thirteenth	within	a	range	of	fixed	dates
range,	we	mimic	(1.39)	as	follows:



(2.45)

(2.44)
where

Then,	to	list	the	“unlucky”	Fridays	in	a	given	Gregorian	year,	we	use	that	year	as
the	range:
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1			Gregory	was	also	responsible	for	a	bull	Vices	eius	nos	(September	1,	1577)	organizing	regular
missionizing	sermons	by	apostate	Jews,	which	the	Jewish	community	of	Rome	was	forced	to	attend	and
subsidize.	His	bull	Sancta	mater	ecclesia	(September	1,	1584)	specified	more	precise	conditions:	beadles
armed	with	rods	made	sure	the	Jews	paid	attention	and	checked	that	they	had	not	put	wax	in	their	ears.
These	sermons	took	place	throughout	the	Papal	States	and	much	of	the	Roman	Catholic	world,	as	well	in
the	church	nearest	the	Jewish	Quarter	in	Rome,	San	Gregorio	della	Divina	Pietà.	(The	front	of	this	church
has	an	inscription	in	Hebrew	and	Latin,	beside	an	image	of	the	crucified	Jesus,	quoting	from	Isaiah	65:2–3,
“I	have	spread	out	My	hands	all	the	day	unto	a	rebellious	people,	that	walk	in	a	way	that	is	not	good,	after
their	own	thoughts;	a	people	that	provoke	me	to	my	face	continually.”)

2			Ab	Urbe	Condita;	from	the	founding	of	the	city	(of	Rome).	Varro’s	statements	imply	that	the	year	of
the	founding	of	Rome	was	753	B.C.E.,	which	gives	709	A.U.C.	=	45	B.C.E.	as	the	year	of	institution	of	the
Julian	calendar;	this	year	is	commonly,	but	not	universally,	accepted.	The	counting	of	years	according	to	the
Christian	era	was	instituted	by	Eusebius,	a	fourth-century	bishop	of	Cæsarea,	and	then	used	by	the	sixth-
century	Roman	monk	and	scholar	Dionysius	Exiguus;	it	only	became	commonplace	a	few	centuries	later—
Eusebius	erred	by	a	few	years	in	his	determination	of	the	year	of	Jesus’s	birth	(see	D.	P.	McCarthy,	“The
Emergence	of	Anno	Domini,”	pp.	31–53	in	Time	and	Eternity:	The	Medieval	Discourse,	G.	Jaritz	and	G.
Moreno-Riaño,	eds.,	Brepols,	Turnhout,	Belgium,	2003).	Much	of	the	Christian	world	used	“Anno
Diocletiani”	for	many	years	(the	Julian	calendar	with	Diocletian’s	reign	as	the	origin—the	same	origin	as
the	Coptic	calendar	discussed	in	Chapter	4).	Eusebius’s	innovation	was	to	substitute	his	estimate	of	Jesus’s
birth	year	for	the	origin,	starting	his	count	at	1.	The	“1	B.C.E.	is	the	year	before	1	C.E.”	problem	was	a	result
of	the	system	introduced	and	popularized	by	the	Venerable	Bede	around	731.	Bede	did	not	know	about	0,	so
he	did	not	use	it	[Bede’s	work	De	Temporum	Ratione	was	translated	by	Faith	Wallis	as	Bede:	The
Reckoning	of	Time,	Liverpool	University	Press,	Liverpool,	1999	(also	University	of	Pennsylvania	Press,
Philadelphia,	2000)],	and	the	custom	of	omitting	a	year	0	in	the	Julian	calendar’s	year	count	became	well
established.	Astronomers	do	use	a	year	0	preceding	year	1	on	the	Gregorian	calendar—this	is	due	to	Cassini
in	1740	[5];	see	also	Dick	Teresi,	“Zero,”	The	Atlantic	Monthly,	vol.	280,	no.	1,	pp.	88–94,	July	1997.

3			See	[9,	p.	275].	We	are	indebted	to	Tapani	Tarvainen	and	Donald	Knuth	for	pointing	out	this
anomaly.

4			In	1923	the	Congress	of	the	Orthodox	Oriental	Churches	adopted	a	slightly	more	accurate	leap-year
rule:	Century	years	are	leap	years	only	if	they	leave	a	remainder	of	2	or	6	when	divided	by	9;	this	“Revised



Julian”	rule	agrees	with	the	usual	Gregorian	rule	for	1700–2700	(see	M.	Milankovitch,	“Das	Ende	des
julianischen	Kalenders	und	der	neue	Kalender	der	orientalischen	Kirche,”	Astronomische	Nachrichten,	vol.
220,	pp.	379–384,	1924).	The	Soviet	Union	and	some	orthodox	churches	(the	New	Calendarists)	adopted
this	rule	at	that	time.	Like	the	rest	of	the	world,	we	ignore	this	“improvement.”

5			Alaska	skipped	only	11	days	instead	of	12	(as	we	might	expect)	but	with	a	repeated	weekday	because
it	also	jumped	the	International	Date	Line	when	it	became	United	States	territory	in	1867:	Friday,	October
6,	1867	C.E.	(Julian)	was	followed	by	Friday,	October	18,	1867	(Gregorian)!	Even	without	the	change	from
the	Julian	to	the	Gregorian	calendar,	jumping	the	date	line	causes	bizarre	situations.	In	1892	Samoa	jumped
the	date	line	and	also	switched	from	“Asian	Time”	to	“American	Time,”	causing	the	Fourth	of	July	to	be
celebrated	for	2	consecutive	days;	the	reverse	happened	when	the	Philippines	jumped	the	date	line	in	the
other	direction	in	1844:	Monday,	December	30,	1844,	was	followed	by	Wednesday,	January	1,	1845.	On
December	29,	2011	Samoa	again	changed	its	time	zone	to	align	itself	with	Australia	and	New	Zealand,
moving	from	the	eastern	side	of	the	international	date	line	to	the	western	side.	Samoans	lost	a	day,	going
straight	from	December	29	to	December	31.

6			The	name	is	really	a	misnomer	because	“proleptic”	refers	to	the	future,	not	the	past.
7			Outside	the	United	States,	Epiphany	is	celebrated	on	January	6.

	



Illustration	from	Lichtenberg’s	1757	Göttinger	Taschen	Kalender:	a	reverse	copy
of	a	man	pouring	gin	over	the	head	of	another,	and	a	flag	reading	“Give	us	our
eleven	days,”	in	protest	at	the	British	abandonment	of	the	Julian	calendar	in



September	1752.	From	the	first	plate	of	William	Hogarth’s	1755	“An	Election
Entertainment.”	(Courtesy	of	the	British	Museum,	London.)



(3.1)

3

The	Julian	Calendar
◈

Atque	hic	erat	anni	Romani	status	cum	C.	Cæsar	ei	manum	admovit:	qui	ex	lunari	non	malo	in
pessimum	a	Numa	aut	alio	rupice	et	rustico	depravatus,	vitio	intercalationis	veteres	fines	suos
tamen	tueri	non	potuit.	Vt	non	semel	miratus	sim,	orbis	terrarum	dominam	gentem,	quæ	generi
humano	leges	dabat,	sibi	unam	legem	anni	ordinati	statuere	non	potuisse,	ut	post	hominum
memoriam	nulla	gens	in	terris	ineptiore	anni	forma	usa	sit.	[Such	was	the	condition	of	the	Roman
calendar	when	Julius	Cæsar	went	about	his	work	on	it.	Numa	or	some	other	rustic	clod	took	a
lunar	calendar	that	was	not	too	bad	and	made	it	appalling.	Thanks	to	his	faulty	system	of
intercalation	it	could	not	stay	in	its	original	bounds.	I	have	been	amazed	more	than	once	that	the
people	who	ruled	the	entire	world	and	gave	laws	to	the	entire	human	race	could	not	make	one	law
for	itself	for	an	orderly	calendar.	As	a	result,	no	nation	in	human	memory	has	used	a	worse
calendar	than	theirs.]

Joseph	Justus	Scaliger:	De	Emendatione	Temporum	(1583)1

3.1 Structure	and	Implementation

The	calculations	for	 the	Julian	calendar,	which	we	described	in	introducing	the
Gregorian	calendar	in	Chapter	2,	are	nearly	identical	to	those	for	the	Gregorian
calendar,	but	we	must	change	the	leap-year	rule	to



(3.2)

(3.3)

The	 upper	 part	 is	 formula	 (1.82);	 the	 lower	 part	 is	 formula	 (1.83)	 with	
because	there	is	no	year	0	on	the	Julian	calendar.	Note	that	the	Julian	leap-year
rule	was	applied	 inconsistently	 for	a	period	of	years	prior	 to	8	C.E.	 (see	[6,	pp.
156–158]).

The	months	of	 the	Julian	calendar	are	 the	same	as	 those	of	 the	Gregorian
calendar	(see	page	55).

Converting	from	a	Julian	date	to	an	R.D.	date	requires	a	calculation	similar
to	that	in	the	Gregorian	case	but	with	two	minor	adjustments:	we	no	longer	need
consider	 century-year	 leap	 days,	 and	 we	 must	 define	 the	 epoch	 of	 the	 Julian
calendar	 in	 terms	 of	 our	 fixed	 dating.	 For	 the	 epoch,	 we	 know	 that	 R.D.	 1	 is
January	3,	1	C.E.	(Julian),	and	thus	the	first	day	of	the	Julian	calendar,	January	1,
1	C.E.	(Julian)	must	be	December	30,	0	(Gregorian),	that	is,	R.D.	 :

Now	we	can	write

where



(3.4)

This	 function	 is	 similar	 in	 structure	 to	 that	 of	 fixed-from-gregorian.	We
start	at	julian-epoch−	1,	the	R.D.	number	of	the	last	day	before	the	epoch;	to	this,
we	 add	 the	 number	 of	 nonleap	 days	 (positive	 for	 positive	 years,	 negative
otherwise)	 between	 the	 last	 day	 before	 the	 epoch	 and	 the	 last	 day	 of	 the	 year
preceding	 the	 given	 year,	 the	 corresponding	 (positive	 or	 negative)	 number	 of
leap	days,	the	number	of	days	in	prior	months	of	the	given	year,	and	the	number
of	days	 in	 the	given	month	up	 to	and	 including	 the	given	day.	For	nonpositive
years,	we	adjust	the	year	to	accommodate	the	lack	of	year	0.

For	 the	 inverse	 function,	 we	 handle	 the	 missing	 year	 0	 by	 subtracting	 1
from	the	year	as	determined	by	formula	(1.90)	for	dates	before	the	epoch:

where

We	 can	 construct	 alternative	 functions	 in	 the	 style	 of	 alt-fixed-from-
gregorian	 and	 alt-gregorian-from-fixed	 from	 Section	 2.3	 for	 the	 functions
fixed-from-julian	and	julian-from-fixed.



(3.6)

(3.8)

(3.5)

(3.7)

3.2 Roman	Nomenclature
Brutus:	Is	not	tomorrow,	boy,	the	ides	of	March?
Lucius:	I	know	not,	sir.
Brutus:	Look	in	the	calendar	and	bring	me	word.

Shakespeare:	Julius	Cæsar,	Act	II,	scene	i	(1623)

In	 ancient	 Rome	 it	 was	 customary	 to	 refer	 to	 days	 of	 the	month	 by	 counting
down	 to	certain	key	events	 in	 the	month:	 the	kalends,	 the	nones,	 and	 the	 ides.
This	custom,	in	popular	use	well	past	the	middle	ages,	is	evidently	quite	ancient,
coming	 from	a	 time	 in	which	 the	month	was	 still	 synchronized	with	 the	 lunar
cycle:	the	kalends	were	the	new	moon,	the	nones	the	first	quarter	moon,	and	the
ides	 the	 full	 moon.	 (Indeed,	 the	 word	 calendar	 is	 derived	 from	 kalendæ,
meaning	 “account	 book,”	 for	 loans	 were	 due	 on	 the	 first	 of	 the	 month.)	 We
define	three	special	constants,

to	identify	these	events.
The	kalends	are	always	the	first	of	the	month.	The	ides	are	near	the	middle

of	 the	 month—the	 thirteenth	 of	 the	 month,	 except	 in	 March,	 May,	 July,	 and
October	when	they	fall	on	the	fifteenth;	hence

The	nones	are	always	8	days	before	the	ides:



(3.9)

Dates	that	fall	on	the	kalends,	the	nones,	or	the	ides	are	referred	to	as	such.
Thus,	March	15	is	called	“the	ides	of	March,”	for	example,	whereas	January	1
and	5	are,	respectively,	the	kalends	and	nones	of	January.	Dates	that	fall	on	the
day	before	one	of	these	special	days	are	called	pridie	(“day	before”	in	Latin);	for
example,	July	6,	the	day	before	the	nones	of	July,	is	pridie	Non.	Jul.	in	Latin.	All
dates	other	than	the	kalends,	nones,	or	ides,	or	days	immediately	preceding	them
are	described	by	the	number	of	days	(inclusive)	until	the	next	upcoming	event:
The	Roman	 name	 for	October	 30	 is	ante	 diem	 III	 Kal.	 Nov.,	 meaning	 3	 days
(inclusive)	before	the	kalends	of	November;	the	idiomatic	English	usage	would
describe	 this	 as	 “2	days	before	 the	 first	of	November,”	but	 the	Roman	custom
uses	the	inclusive	count.

In	a	leap	year	February	has	an	extra	day,	and	modern	authorities	understand
the	Roman	custom	as	 intercalating	 that	day	after	February	24,	before	February
25	(see	[6]	for	another	possibility;	see	[1,	pp.	92–94,	678–680]	for	a	discussion
of	 the	placement	of	 the	 leap	day	on	 the	Julian	calendar).	Because	February	24
was	ante	diem	VI	Kal.	Mar.,	the	extra	day	was	called	ante	diem	bis	VI	Kal.	Mar.
or	“the	 second	sixth	day	before	 the	kalends	of	March.”	The	phrase	bis	VI	was
read	bis	sextum	which	gave	rise	to	the	English	words	bissextus	for	leap	day	and
bissextile	as	an	adjective	to	describe	a	leap	year	[3,	p.	795].	Despite	the	official
Roman	calendar,	unofficial	and	medieval	usage	made	the	day	after	February	23
the	 leap	 day.	 The	 necessary	 changes	 to	 our	 functions	 fixed-from-roman	 and
roman-from-fixed	are	simple,	should	one	want	to	follow	that	variant	rule.

Table	3.1	gives	abbreviated	names	for	all	the	days	according	to	the	Roman
system.	Full	 spellings	of	all	 the	names	are	given	 for	each	 in	 [1];	details	of	 the
Latin	grammar	of	those	names	can	also	be	found	there	[1,	pp.	672–673].

Table	3.1	Roman	nomenclature	for	days	of	the	month	on	the	Julian	calendar.



The	abbreviation	“a.d.”	stands	for	the	Latin	ante	diem.	In	dates	after	the	ides	of	a
month,	“Kal.”	means	the	kalends	of	the	coming	month;	“Non.”	and	“Id.”	mean
the	nones	and	ides,	respectively,	of	the	current	month.	Adapted	from	[2]	and	[5].





We	represent	the	Roman	method	of	referring	to	a	day	of	the	month	by	a	list
containing	 the	 year	 number,	 the	month,	 the	 next	 event,	 a	 count	 (inclusive)	 of
days	until	that	event,	and	a	true/false	leap-day	indicator:

Although	the	Roman	method	of	referring	to	days	of	the	month	is	sometimes	used
in	the	context	of	Gregorian	calendar	dates,	such	references	are	archaic	and	it	is
more	 sensible	 to	 tie	 the	Roman	nomenclature	 to	 the	 Julian	 calendar,	 as	we	do
here.	 Determining	 the	 Roman	 name	 for	 a	 Gregorian	 date	 is	 easily	 done	 by
making	 the	 appropriate	 substitutions	 of	 gregorian-from-fixed	 and	 gregorian-
leap-year?	for	the	corresponding	Julian	functions.

Determining	the	fixed	date	corresponding	to	a	given	Roman	form	involves
subtracting	the	count	from	the	date	of	the	event	in	the	specified	month	and	year,
while	 adjusting	 for	 the	 leap	day	 if	 the	event	 is	 the	kalends	of	March	 in	a	 leap
year:



(3.10)

(3.11)

Converting	 a	 fixed	 date	 to	 the	 Roman	 form	 thus	 requires
converting	 that	 fixed	date	 to	a	Julian	year-month-day	and	then	determining	 the
next	 event.	 If	 the	month	 is	 February	 of	 a	 leap	 year,	 the	 special	 cases	must	 be
handled	separately:

where



(3.12)

(3.14)

(3.13)

Note	that	when	the	upcoming	event	is	 the	kalends,	 it	 is	 the	kalends	of	 the	next
month,	not	the	present	month;	thus,	dates	following	the	ides	of	a	month	carry	the
name	 of	 the	 next	 month,	 and	 after	 the	 ides	 of	 December	 dates	 carry	 the
following	year	number.

3.3 Roman	Years
Cæsar	set	out	the	problem	before	the	best	philosophers	and	mathematicians	and,	from	the
methods	available,	he	concocted	his	own	correction	that	was	more	precise.

Plutarch:	Life	of	Cæsar	(75	C.E.)
Roman	years	were	specified	A.U.C.,	Ab	Urbe	Condita,	from	the	founding	of	the	city	(of	Rome).

There	is	some	uncertainty	about	the	precise	traditional	year	of	the	founding	of	Rome,	so	we	make	it	a
symbolic	value:

We	want	to	convert	between	A.U.C.	years	and	Julian	years.	Because	years	were	not	counted	from	zero
on	the	Julian	calendar,	we	assume	that	they	should	not	be	counted	from	zero	A.U.C.;	recalling	that
B.C.E.	years	are	represented	internally	as	negative	integers	we	write

and

3.4 Olympiads



(3.15)

(3.16)

Therefore	those	who	prophesied	in	the	time	of	Darius	Hystaspes,	about	the	second	year	of	his
reign—Haggai,	and	Zechariah,	and	the	angel	of	the	twelve,	who	prophesied	about	the	first	year	of
the	forty-eighth	Olympiad—are	demonstrated	to	be	older	than	Pythagoras,	who	is	said	to	have
lived	in	the	sixty-second	Olympiad,	and	than	Thales,	the	oldest	of	the	wise	men	of	the	Greeks,	who
lived	about	the	fiftieth	Olympiad.

Clement	of	Alexandria:	The	Stromata	(c.	200	C.E.)

Another	 common	 historical	 method	 of	 denoting	 years	 was	 in	 terms	 of	 the
Olympiad,	the	four-year	cycle	of	Olympic	games,	said	to	have	been	introduced
by	 either	 the	 Greek	 historian	 Timaeus	 or	 by	 Eratosthenes.	 The	 recently
reconstructed	 Antikythera	 mechanism	 included	 this	 reckoning,	 along	 with
eclipse	predictions	and	displays	of	 the	phases	of	the	moon	and	positions	of	the
visible	 planets.2	 The	 games	 were	 held	 every	 fourth	 year,	 so	 each	 Olympiad
comprises	four	years;	we	represent	an	Olympiad	by	a	pair	of	integers,

The	first	recorded	games	were	in	776	B.C.E.,	so	this	was	year	1	of	cycle	1:

To	convert	a	Julian	year	into	its	Olympiad	equivalent	and	vice	versa,	we	need	to
count	quadrenniel	periods:

where

In	the	other	direction



(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

where

3.5 Seasons
Civilized	nations	in	general	now	agree	to	begin	reckoning	the	new	year	from	the	first	of	January.
Yet	it	may	seem	strange	to	call	that	a	new	season,	when	everything	is	most	inactive	and	lifeless;
when	animals	are	benumbed	by	the	cold,	and	vegetables	are	all	dead	or	withered.	For	this	reason,
some	have	thought	to	begin	the	year	in	Spring.

Thomas	Gosden:	The	Calendar	of	Nature:	Designed	for	
the	Instruction	and	Entertainment	of	Young	Persons	(1822)

As	the	Julian	year	of	365.25	days	is	longer	than	the	Gregorian	year	of	365.2425
days,	the	times	and	dates	of	the	Julian	seasons	shift	over	the	years	with	respect	to
the	 Gregorian	 calendar.	 Let	 season	 be	 any	 value	 in	 the	 range	 ;	 in
particular,	let	the	four	seasons	be	defined	by	the	following	values:

(These	 are	 the	 celestial	 longitudes	of	 the	 sun	 at	 the	 start	 of	 those	 seasons;	 see
Section	14.4.)



(3.22)

(3.23)

To	compute	 the	occurrences	of	 the	Julian	season	 in	 the	Gregorian	year	g-
year,	we	first	define	a	generic	function	for	calculating	occurrences	of	seasons	of
a	year	of	any	length	L.	We	must	allow	for	the	possibility	of	multiple	occurrences
(if	the	calendar	year	is	short)	or	none	(if	the	year	is	long	and	the	season	falls	near
January	1	on	the	Gregorian	calendar).	We	use	positions-in-range	(1.40):

where

Then,	for	Julian	seasons,	we	have

where

This	is	based	on	the	assumption	of	a	spring	equinox	on	March	23	in	1	B.C.E.,	as
used	in	computations	of	Easter.	See	Chapter	9.



3.6 Holidays
It	is	related	that	once	a	Roman	asked	a	question	to	Rabbi	Yo anan	ben	Zakkai:	We	have	festivals
and	you	have	festivals;	we	have	the	Kalends,	Saturnalia,	and	Kratesis,	and	you	have	Passover,
Shavuot,	and	Sukkot;	which	is	the	day	whereon	we	and	you	rejoice	alike?	Rabbi	Yo anan	ben
Zakkai	replied:	“It	is	the	day	when	rain	falls.”

Deuteronomy	Rabbah,	VII,	7

Until	1923	 the	date	of	 the	Eastern	Orthodox	Christmas	depended	on	 the	Julian
calendar.	 At	 that	 time,	 the	 Ecumenical	 Patriarch,	 Meletios	 IV,	 convened	 a
congress	at	which	it	was	decided	to	use	the	Gregorian	date	instead.3	By	1968	all
but	 the	 churches	 of	 Jerusalem,	Russia,	 and	 Serbia	 had	 adopted	 the	 new	 date,
December	 25	 on	 the	 Gregorian	 calendar.	 There	 remain,	 however,
Palaioemerologitai	 groups,	 especially	 in	 Greece,	 who	 continue	 to	 use	 the	 old
calendar.	Virtually	all	Orthodox	churches	continue	to	celebrate	Easter	according
to	the	Julian	calendar	(see	Chapter	9).

The	occurrence	of	the	old	Eastern	Orthodox	Christmas	in	a	given	Gregorian
year	 is	 somewhat	 involved.	 With	 the	 current	 alignment	 of	 the	 Julian	 and
Gregorian	calendars,	and	because	the	Julian	year	is	always	at	least	as	long	as	the
corresponding	Gregorian	year,	Eastern	Orthodox	Christmas	occurs	at	most	once
in	 a	 given	 Gregorian	 year—in	 modern	 times	 it	 occurs	 near	 the	 beginning.
However,	far	in	the	past	or	the	future,	there	are	Gregorian	years	in	which	it	does
not	 occur	 at	 all	 (1100,	 for	 example);	 as	 the	 two	 calendars	 get	 further	 out	 of
alignment	 (it	 will	 take	 some	 50000	 years	 for	 them	 to	 be	 a	 full	 year	 out	 of
alignment),	Eastern	Orthodox	Christmas	will	migrate	 throughout	 the	Gregorian
year.

We	 can	 write	 a	 general	 function	 that	 gives	 a	 list	 of	 the	 corresponding
R.D.	dates	of	occurrence,	within	a	specified	Gregorian	year,	of	a	given	month	and
day	on	the	Julian	calendar:



(3.24)

(3.25)

where

Tens	of	thousands	of	years	from	the	present,	the	alignment	of	the	Gregorian	and
Julian	calendars	will	be	such	that	some	Julian	dates	occur	twice	in	a	Gregorian
year—the	 first	 example	 of	 this	 is	 in	 Gregorian	 year	 41104	 when	 Julian	 date
February	28	occurs	 twice;	 the	 function	 julian-in-gregorian	 correctly	 returns	 a
list	of	two	R.D.	dates	in	such	cases.

For	 example,	we	 can	use	 this	 function	 to	determine	 a	 list	 of	R.D.	 dates	 of
December	25	(Julian)	for	a	given	year	of	the	Gregorian	calendar:

Other	 fixed	 Orthodox	 holidays	 are	 the	 Nativity	 of	 the	 Virgin	 Mary
(September	 8),	 the	 Elevation	 of	 the	 Life-Giving	 Cross	 (September	 14),	 the
Presentation	 of	 the	 Virgin	 Mary	 in	 the	 Temple	 (November	 21),	 Theophany
(January	 6),	 the	 Presentation	 of	 Christ	 in	 the	 Temple	 (February	 2),	 the
Annunciation	(March	25),	the	Transfiguration	(August	6),	and	the	Repose	of	the
Virgin	Mary	 (August	 15).	Orthodox	 periods	 of	 fasting	 include	 the	 Fast	 of	 the



Repose	 of	 the	 Virgin	 Mary	 (August	 1–14)	 and	 the	 40-day	 Christmas	 Fast
(November	15–December	24).

Orthodox	movable	holidays	and	fasts	are	explained	in	Chapter	9.
The	 Armenian	 church	 celebrates	 Christmas	 on	 January	 6	 (Julian)	 in

Jerusalem,	and	on	January	6	(Gregorian)	elsewhere.
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Ethiopic	computus	(Baḥrā	Ḥassab)	in	Ge‘ez	(1904	E.E.).	The	third	column	from
the	right	gives	the	day	of	the	Ethiopic	month	(Magābit	or	Miyāzyā)	of	Nicæan
Easter	for	years	1417–1435	E.E.	(=	1425–1443	C.E.).	Other	columns	give	the



number	of	epagomenæ	(third	column	from	the	left),	the	epact	(sixth	column
from	the	left),	the	day	of	the	Ethiopic	month	of	various	fasts,	and	(nonstandard)
dates	for	Jewish	holidays.	See	[4]	for	detailed	information	on	such	tables.
(Courtesy	of	the	Library	of	Congress,	Washington,	D.C.;	MS	23,	Thomas	Leiper
Kane	Manuscript	Collection.)



4

The	Coptic	and	Ethiopic	Calendars
◈

Kiyahk:	ṣabāḥak	misāk	[In	Kiyahk,	your	morning	is	your	evening.]

Coptic	rhyme	about	the	short	days	of	winter

Both	the	Coptic	and	Ethiopic	calendars	have	the	same	leap-year	structure	as	does
the	Julian	(1	year	out	of	4	is	a	leap	year),	but	their	months	follow	a	more	regular
pattern.

4.1 The	Coptic	Calendar

The	 Christian	 Copts,	 modern	 descendants	 of	 the	 Pharaonic	 Egyptians,	 use	 a
calendar	based	on	the	ancient	Egyptian	solar	calendar	(see	Section	1.11)	but	with
leap	years.	The	year	starts	in	late	summer.	Days	begin	at	sunset,	and	the	calendar
consists	of	12	months	of	30	days	each,	followed	by	an	extra	5-day	period.	Once
every	 fourth	 year	 a	 leap	 day	 is	 added	 to	 this	 extra	 period	 to	 make	 it	 6	 days,
making	the	average	year	 	days	long	like	the	Julian	calendar	of	Chapter	3.1

The	months	are	called	by	coptized	 forms	of	 their	 ancient	Egyptian	names	 (see
page	30	for	the	hieroglyphic	forms	of	the	names);	in	Coptic	(Sahidic)	they	are:



(4.1)

(The	leap-year	structure	is	given	in	braces.)	We	treat	epagomenæ,	the	extra	5	or
6	days,	as	a	short	thirteenth	month.	Indeed,	they	are	called	“the	small	month”	(p
abot	n	kouji)	in	Coptic.

The	day	names	are

The	Copts	count	their	years	from	August	29,	284	C.E.	(Julian),	R.D.	103605,
the	beginning	of	year	1	A.M.2	Thus,	we	define

Leap	years	occur	whenever	the	Coptic	year	number	leaves	a	remainder	of	3
when	divided	by	4;	this	is	 ,	 ,	 	 in	formula	(1.83).	We	can	express
this	rule	by



(4.2)

(4.3)

(4.4)

but	we	will	not	need	this	function.
Considering	the	epagomenæ	as	a	month,	to	convert	a	Coptic	date

to	an	R.D.	 date,	we	do	 the	 same	as	 for	 the	 corresponding	Gregorian	 and	 Julian
functions.	 Start	 at	 ,	 the	R.D.	 number	 of	 the	 last	 day	 before	 the
epoch.	 To	 this	 add:	 the	 number	 of	 nonleap	 days	 (positive	 for	 positive	 years,
negative	 otherwise)	 between	 this	 date	 and	 the	 last	 day	 of	 the	 year	 preceding
year;	the	corresponding	(positive	or	negative)	number	of	leap	days;	the	number
of	days	in	the	prior	months	in	year;	and	the	number	of	days	in	month	up	to	and
including	day.	Thus

To	convert	an	R.D.	date	to	a	Coptic	date,	we	use	formula	(1.90)	to	determine	the
year.	Then,	 unlike	 the	Gregorian	 or	 Julian	 calendars,	 the	 simple	month-length
structure	of	the	Coptic	calendar	allows	us	to	determine	the	month	by	dividing	by
30.	As	for	the	other	calendars,	we	determine	the	day	by	subtraction:

where



4.2 The	Ethiopic	Calendar
The	Ethiopic	calendar	“Computus”	(hasab)	is	an	extremely	simple	affair:	it	nowhere	requires
more	than	the	most	elementary	arithmetical	operations.

Otto	Neugebauer:	Orientalia	(1982)

The	Ethiopic	calendar	 is	 identical	 to	 the	Coptic	calendar	except	 for	 the	epoch,
the	month	names,	and	the	day	names.	Many	calendars	in	this	book	have	similar
variants,	 differing	 only	 in	month	 names	 and	year	 numbers,	 and	 can	 be	 treated
analogously.

The	Amharic	Ethiopic	months	are

and	the	day	names	are



(4.5)

(4.6)

(4.7)

Ethiopic	year	1	E.E.3	starts	on	August	29,	8	C.E.	(Julian),	our	R.D.	2796:

To	 convert	 Ethiopic	 dates	 to	 and	 from	 R.D.	 dates,	 we	 just	 use	 our	 Coptic
functions	above	but	adjust	for	the	different	epoch:

In	the	other	direction,

4.3 Holidays
…	so	that	the	seasons	also	may	run	properly	forever	in	accordance	with	the	present	state	of	the
cosmos,	and	lest	it	happen	that	some	public	festivals	which	are	celebrated	in	the	winter,	are	ever
celebrated	in	the	summer,	since	the	star	shifts	one	day	every	four	years,	while	others	which	are
celebrated	now	in	the	summer,	are	celebrated	in	the	winter,	at	the	appropriate	times	hereafter,	just
as	it	has	happened	before,	and	would	have	been	so	now	if	the	organization	of	the	year,	from	the
360	days	and	the	five	days	which	were	deemed	later	to	be	intercalated,	held	good,	from	the
present	time	one	day	at	the	festival	of	the	Benefactor	Gods	to	be	intercalated	every	four	years
after	the	five	which	are	intercalated	before	the	new	year,	so	that	everyone	may	see	that	the



(4.8)

(4.9)

correction	and	restoration	of	the	previous	deficiency	in	the	organization	of	the	seasons	and	of	the
year	and	of	the	customs	to	do	with	the	whole	regulation	of	the	heavenly	sphere	has	happened
through	the	Benefactor	Gods.

Ptolemy	III’s	Canopus	Decree	(238	B.C.E.)

Determining	 the	 corresponding	 Gregorian	 date	 of	 a	 date	 on	 the	 Coptic	 or
Ethiopic	 calendars	 is	 similar	 to	 the	 corresponding	 determination	 for	 the	 Julian
calendar.	 Indeed,	 the	 Coptic	 and	 Julian	 are	 consistently	 aligned,	 except	 for	 a
fluctuation	of	one	day	caused	by	the	difference	in	leap-year	rule	and	the	absence
of	 year	 0	 on	 the	 Julian	 calendar.	 For	 the	 Coptic	 calendar,	 to	 determine	 the
R.D.	dates	of	a	given	Coptic	month/day	during	a	Gregorian	year,	we	use

where

For	example,	the	Copts	celebrate	Christmas	on	Koiak	29	(which	is	always	either
December	25	or	December	26	on	the	Julian	calendar)	and	thus	we	can	write

to	give	us	a	list	of	R.D.	dates	of	Coptic	Christmas	during	a	given	Gregorian	year.
Other	 Coptic	 holidays	 include	 the	 Building	 of	 the	 Cross	 (Thoout	 17),

Jesus’s	 Circumcision	 (Ṭōbe	 6),	 Epiphany	 (Ṭōbe	 11),	 Mary’s	 Announcement
(Paremotep	 29),	 and	 Jesus’s	 Transfiguration	 (Mesorē	 13).	 The	 date	 of	 Easter



may	be	determined	by	the	Orthodox	rule	(page	146)	and	converted	to	the	Coptic

calendar.
Fixed	Ethiopic	holidays	have	the	same	fixed	dates	as	the	Coptic	ones,	and

thus	nothing	more	 is	needed	 for	 their	computation.	Locating	 arbitrary	Ethiopic
dates	 requires	 only	 a	 straightforward	 modification	 of	 coptic-in-gregorian,
changing	all	references	from	the	Coptic	calendar	to	the	Ethiopic.	Moveable	fasts
and	feasts	are	determined	relative	to	the	date	of	Nicæan	Easter	(Section	9.1);	see
[4].
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Banker’s	calendar,	arranged	by	weeks	and	including	day	numbers.	From	The
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5

The	ISO	Calendar
◈

O	tempora!	O	mores!	[Oh	what	times!	Oh	what	standards!]

Cicero:	In	Catilinam	(63	B.C.E.)

The	 International	 Organization	 for	 Standardization	 (ISO)	 calendar,	 popular	 in
Sweden	and	other	European	countries,	specifies	a	date	by	giving	the	ordinal	day
in	 the	 week	 and	 the	 “calendar	 week”	 in	 a	 Gregorian	 year.	 The	 ISO	 standard
[1,	sec.	2.2.10]	defines	the	calendar	week	number1	as	the

ordinal	number	which	identifies	a	calendar	week	within	its	calendar	year	according	to	the	rule	that
the	first	calendar	week	of	a	year	is	that	one	which	includes	the	first	Thursday	of	that	year	and	that
the	last	calendar	week	of	a	calendar	year	is	the	week	immediately	preceding	the	first	calendar
week	of	the	next	calendar	year.

This	does	not	define	a	new	calendar	per	se,	but	rather	a	representation	of	dates
on	 the	Gregorian	calendar;	 still,	 it	 is	 convenient	 for	us	 to	 treat	 it	 as	 a	 separate
calendar	because	the	representation	depends	on	weeks	and	the	day	of	the	week.

It	follows	from	the	ISO	standard	that	an	ISO	year	begins	with	the	Monday
between	 December	 29	 and	 January	 4	 and	 ends	 with	 the	 Sunday	 between
December	28	and	January	3.	Accordingly,	a	year	on	the	ISO	calendar	consists	of
52	or	53	whole	weeks,	making	the	year	either	364	or	371	days	long.	The	epoch
is	 the	 same	 as	 the	 Gregorian	 calendar,	 namely	 R.D.	 1,	 because	 January	 1,	 1
(Gregorian)	was	a	Monday.



(5.1)

(5.2)

The	week	number	of	a	given	ISO	date	gives	the	number	of	weeks	after	the
first	 Sunday	 on	 or	 after	 December	 28	 of	 the	 preceding	 year.	 Hence	 the
determination	of	 the	R.D.	 date	corresponding	 to	an	 ISO	date	 is	 easy	using	nth-
kday	 (page	 69).	 The	 ISO	 calendar	 counts	 Sunday	 as	 the	 seventh	 day	 of	 the
week,	and	thus	we	implement	this	calendar	as	follows:

In	the	other	direction,

where

We	use	the	adjusted	remainder	function,	defined	on	page	22,	to	assign	7	to	day
for	Sundays.

The	 calculation	of	 the	 ISO	day	 and	week	numbers	 from	 the	 fixed	date	 is
clear	 once	 the	 ISO	 year	 has	 been	 found.	Because	 the	 ISO	 year	 can	 extend	 as
much	as	3	days	into	the	following	Gregorian	year,	we	find	the	Gregorian	year	for

;	this	approximation	is	guaranteed	to	be	either	the	desired	ISO	year	or	the
prior	 ISO	year.	We	 determine	which	 is	 the	 case	 by	 comparing	 the	date	 to	 the
R.D.	date	of	the	start	of	the	year	after	the	approximate	ISO	year.



(5.3)

To	avoid	using	the	Gregorian	year	in	iso-from-fixed,	thus	making	the	ISO
implementation	 self-contained,	we	 can	 calculate	 the	 approximation	 to	 the	 ISO
year	as

The	 ISO	 calendar	 has	 “short”	 (52-week)	 and	 “long”	 (53-week)	 years,2

which	appear	in	a	mixture	to	give	the	Gregorian	cycle.	The	Gregorian	cycle	of
400	years	contains	 	days	which	is	exactly	20871	weeks.	Thus
the	ISO	cycle	of	short	or	long	years	repeats	after	400	years.	Let	s	be	the	number
of	short	years	and	l	be	the	number	of	long	years	in	the	cycle;	we	have

whose	 solution	 is	 ,	 .	 In	 other	 words,	 short	 ISO	 years	 occur	
	 of	 the	 time	 and	 long	 ISO	 years	 occur	 	 of	 the

time.	Long	years	usually	occur	at	5	or	6	year	intervals	(27	times	versus	43	times,
respectively),	but	are	7	years	apart	once	in	each	400	year	cycle.

An	ISO	year	is	long	if	and	only	if	January	1	or	December	31	is	a	Thursday.
Thus	we	can	write

where



Reference
[1]			Data	Elements	and	Interchange	Formats	–	Information	Interchange	–

Representation	of	Dates	and	Times,	ISO	8601,	International	Organization
for	Standardization,	3rd	edn.,	2004.	This	standard	replaced	ISO	2015,	the
original	document	describing	the	ISO	calendar.

Cave	ab	homine	unius	libri.	[Beware	the	man	of	one	book.]

Latin	motto

1			Microsoft	Access®;	and	Excel®;,	have	a	week	numbering	function	WEEKNUM	that	can	be	set	to
number	weeks	starting	on	either	Sunday	or	Monday.	However,	these	week	numbers	are	not	always	the	same
as	the	ISO	week	because	Microsoft	defines	the	first	week	in	the	year	as	the	week	containing	January	1.

2			This	is	reminiscent	of	the	tenth-century	Icelandic	calendar	described	in	the	next	chapter.

	



Oak	wheels	carved	with	the	names	of	months,	weekdays,	dominical	letters,	and
golden	numbers.	The	device,	from	Þórðarstaðir	in	Fnjóskadalur,	Iceland,	was
first	mentioned	in	1871,	but	is	probably	older.	(Courtesy	of	the	National
Museum	of	Iceland,	Reykjavik.)
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The	Icelandic	Calendar
◈

Kæstur	hákarl	…	is	the	rotten,	aged	meal	of	the	Greenland	shark	…	it	is	still	consumed	…in
Thorrablot,	a	modem	Icelandic	holiday	that	attempts	to	recreate	the	ancient	midwinter	pagan
feast	during	Thorri,	a	month	on	the	old	Icelandic	calendar	which	begins	in	late	January.	Anthony
Bourdain	called	it	the	“worst,	worst,	worst,	worst	thing”	that	he	had	ever	tasted	…

Sidra	Durst:	They	Eat	That?	(2012)1

Like	the	ISO	calendar	described	in	the	previous	chapter,	the	Icelandic	(“Viking”)
calendar—still	used	in	Iceland	today—centers	around	the	week.	Ordinary	years
have	 52	 weeks	 and	 leap	 years	 have	 53.	 In	 the	 tenth-century	 version	 every
seventh	year	was	leap	[1],	[4].	The	weekdays	are

Sunday Sunnudagur

Monday Mánudagur

Tuesday Þriðjudagur

Wednesday Miðvikudagur

Thursday Fimmtudagur

Friday Föstudagur

Saturday Laugardagur



Years	 are	 divided	 into	 two	 seasons,	 summer	 (which	 includes	 much	 of
spring)	and	winter	 (which	 includes	much	of	autumn).	Seasons	are	divided	 into
30-day	months,	 but	we	do	not	 include	 them	 in	dates	 since	 they	are	 secondary.
Like	the	Qumran	364-day	calendar,	the	months	begin	on	fixed	days	of	the	week
[2].	The	months	and	the	day	of	the	week	on	which	they	invariably	begin	are

Summer 1. Harpa Thursday

2. Skerpla Saturday

3. Sólmánuður Monday

4. Heyannir Sunday

5. Tvímánuður Tuesday

6. Haustmánuður Thursday

Winter 1. Gormánuður Saturday

2. Ýlir Monday

3. Mörsugur Wednesday

4. Þorri Friday

5. Góa Sunday

6. Einmánuður Tuesday

The	extra	four	days	in	a	364-day	year	are	not	part	of	any	month	and	are	placed
between	the	third	and	fourth	summer	months.



(6.1)

(6.2)

(6.3)

In	 the	 version	 after	 the	Gregorian	 switchover	 in	 1700,	 summer	begins	 on
the	first	Thursday	on	or	after	April	19,	and	winter	180	days	earlier.	As	in	the	ISO
calendar,	 there	 is	a	 leap	week	every	5–7	years,	 in	midsummer.	The	year	 count
parallels	 the	Gregorian,	except	 that	 the	year	begins	with	 the	summer	season	 in
April.	The	modern	version	has	been	described	algorithmically	in	[3].

The	epoch	of	the	Icelandic	calendar	is	Thursday,	April	19,	in	year	1	of	the
Gregorian	calendar,	the	onset	of	Icelandic	summer:

The	 start	of	 summer	 in	 subsequent	years	may	be	calculated	by	adding	up
days	 and	 leap	 days,	 just	 as	 was	 done	 in	 alt-gregorian-year-from-fixed
(page	67):

where

Winter	begins	6	months	before	summer:

We	represent	a	date	as	a	quadruple:	the	Gregorian	year	number	at	the	start
of	summer;	the	season,	for	which	we	use	the	two	constants,	summer	(3.19)	and
winter	(3.21),	defined	in	Section	3.5;	the	week	within	the	season,	as	an	integer
in	 the	 range	 ;	 and	 the	day	of	week,	with	our	 usual	 numbering	of	 0	 for
Sunday,	and	so	on.



(6.4)

(6.5)

Conversions	are	straightforward:

where

where

The	 approximate	 year	 is	 computed	 in	 the	 usual	 way,	 starting	 from	 an
approximation	close	to	the	beginning	of	year	0.

To	test	whether	a	year	is	leap,	we	can	count	the	number	of	days	in	the	year:



(6.6)

(6.7)

Ordinary	 years,	with	 52	weeks,	 have	 364	 days;	 leap	 years	 have	 371	 days	 (53
weeks).

The	months	of	each	season	are	numbered	 	and	can	be	determined	from
the	date	by	counting	in	units	of	30	days	from	the	start	of	the	season:

where

For	days	of	the	year	that	do	not	belong	to	any	of	the	twelve	months,	those	days
lying	between	 the	 end	of	 the	 third	month	of	 summer	and	 the	beginning	of	 the
fourth	month,	this	function	returns	0.
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1			Þær	skoðanir	sem	fram	koma	í	tilvitnunum	endurspegla	ekki	nauðsynlega	skoðanir	höfunda.

	



Page	containing	a	discussion	of	months	in	the	pre-Islamic	Arab,	Hebrew,
Islamic,	and	Hindu	calendars,	along	with	an	illustration	of	Mohammed
instituting	the	purely	lunar	calendar.	From	a	seventeenth-century	copy	of	an



illuminated	fourteenth-century	manuscript	of	the	eleventh-century	work	Al-
Āthar	al-Baqiyah	‘an	al-Qurun	al-Khaliyah	by	the	great	Persian	scholar	and
scientist	Abū-Raiḥan	Muḥammad	ibn	’Aḥmad	al-Bīrūnī.	(Courtesy	of
Bibliothèque	Nationale	de	France,	Paris.)
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The	Islamic	Calendar
◈

The	number	of	months	with	God	is	twelve	in	accordance	with	God’s	law	since	the	day	he	created
the	heavens	and	the	Earth	…	Intercalating	a	month	is	adding	to	unbelief.

Koran	(IX,	36–37)

7.1 Structure	and	Implementation

The	 Islamic	 calendar	 is	 a	 straightforward,	 strictly	 lunar	 calendar,	 with	 no
intercalation	 of	months	 (unlike	 lunisolar	 calendars).	 The	 average	 lunar	 year	 is
about	 	 days,	 so	 the	 Islamic	 calendar’s	 independence	 of	 the	 solar	 cycle
means	that	its	months	do	not	occur	in	fixed	seasons	but	migrate	through	the	solar
year	over	a	period	of	about	32	solar	years.1	Days	begin	at	sunset.	In	this	chapter,
we	describe	the	arithmetic	Islamic	calendar	in	which	months	follow	a	set	pattern;
for	religious	purposes,	virtually	all	Muslims	(except	the	Ismā‘īlīs	and	a	few	other
sects)	follow	an	observation-based	calendar	(described	in	Section	14.9)	and	use
the	arithmetic	calendar	only	for	estimation.

The	week	begins	on	Sunday;	the	days	Sunday–Thursday	are	numbered,	not
named:
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Sunday yaum	al-aḥad	(the	first	day)

Monday yaum	al-ithnayna	(the	second
day)

Tuesday yaum	ath-thalāthā’	(the	third
day)

Wednesday yaum	al-arba‘ā’	(the	fourth
day)

Thursday yaum	al-ẖamīs	(the	fifth	day)

Friday yaum	al-jum‘a	(the	day	of
assembly)

Saturday yaum	as-sabt	(the	sabbath	day)

The	calendar	is	computed,	by	the	majority	of	the	Muslim	world,	starting	at
sunset	 of	 Thursday,	 July	 15,	 622	 C.E.	 (Julian),	 the	 year	 of	 Mohammed’s
migration	 to	 Medina	 from	 Mecca.2	 The	 introduction	 of	 the	 calendar	 is	 often
attributed	to	the	Caliph	‘Umar	in	639	C.E.,	but	there	is	evidence	that	it	was	in	use
before	his	succession.	In	essence,	Muslims	count	R.D.	227015	=	Friday,	July	16,
622	C.E.	(Julian)	as	the	beginning	of	the	Islamic	year	1,	that	is,	as	Muḥarram	1,
A.H.3	1,	and	thus	we	define



There	are	12	Islamic	months,	which	contain,	alternately,	29	or	30	days:

(1)	Muḥarram 				 				30	days

(2)	Ṣafar 				 				29	days

(3)	Rabī‘	I	(Rabī‘	al-Awwal) 				 				30	days

(4)	Rabī‘	II	(Rabī‘	al-Āḥir) 				 				29	days

(5)	Jumādā	I	(Jumādā	al-Ūlā) 				 				30	days

(6)	Jumādā	II	(Jumādā	al-Āḥira) 				 				29	days

(7)	Rajab 				 				30	days

(8)	Sha‘bān 				 				29	days

(9)	Ramaḍān 				 				30	days

(10)	Shawwāl 				 				29	days
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(11)	Dhu	al-Qa‘da 				 				30	days

(12)	Dhu	al-Ḥijja 				 				29	{30}	days

The	leap-year	structure	is	given	in	curly	brackets—the	last	month,	Dhu	al-Ḥijja,
contains	30	days	in	years	2,	5,	7,	10,	13,	16,	18,	21,	24,	26,	and	29	of	a	30-year
cycle.	This	gives	an	average	month	of	 	days	and	an	average	year	of

	 days.	 The	 cycle	 of	 common	 and	 leap	 years	 can	 be
expressed	concisely	by	observing	that	an	Islamic	year	y	is	a	leap	year	if	and	only
if	 	 is	 less	 than	 11;	 this	 is	 an	 instance	 of	 formula	 (1.83)	with	

,	 ,	and	Δ	=	4:

We	will	never	need	this	function,	however.
Some	Muslims	take	year	15	of	 the	30-year	cycle	as	a	 leap	year	instead	of

year	16.	This	variant	structure,	which	was	used	by	Bar	Hebræus	(Gregory	Abu’l-
Faraj),	 John	Greaves	 (1650;	 based	 on	 tables	 of	 Ulugh	 Beg),	 Birashk	 [1],	 and
some	Microsoft	products,4	corresponds	to	 ,	 ,	 ,	and	Δ	=	15	in
the	 cycle	 formulas	 from	 Section	 1.14;	 our	 functions	 thus	 require	 only	 minor
modification	 for	 this	 variant	 leap-year	 rule.5	The	Bohras	 (an	 Ismailite	Muslim
sect	of	about	1	million	in	India)	follow	a	book	called	Sahifa,	giving	leap	years	2,
5,	8,	10,	13,	16,	19,	21,	24,	27,	and	29;	this	corresponds	to	 .	Their	epoch	is
Thursday,	July	15,	622	C.E.	(Julian).
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To	convert	an	Islamic	date	 to	 its	R.D.	equivalent,	start	at	 ,
the	R.D.	number	of	the	last	day	before	the	epoch;	to	this	add	the	number	of	days
between	 that	date	and	 the	 last	day	of	 the	year	preceding	 the	given	year	 [using
formula	(1.86)],	 the	number	of	days	 in	prior	months	 in	 the	given	year,	and	 the
number	 of	 days	 in	 the	 given	 month,	 up	 to	 and	 including	 the	 given	 day.	 The
number	of	days	in	months	prior	to	the	given	month	is	also	computed	by	(1.86)
because	 the	 pattern	 of	 Islamic	month	 lengths	 in	 an	 ordinary	 year	 satisfies	 the
cycle	formulas	of	Section	1.14	with	 ,	 ,	 	(to	count	months	from	1
instead	of	0),	and	 ;	because	the	leap	day	is	day	30	of	month	12,	this	works
for	leap	years	also:

Computing	the	Islamic	date	equivalent	to	a	given	R.D.	date	is	slightly	more
complicated	 (though	 it	 is	 more	 straightforward	 than	 the	 computations	 for	 the
Gregorian	calendar	or	 the	Julian).	We	can	calculate	 the	exact	value	of	 the	year
using	formula	(1.90).We	want	to	determine	the	month	number	in	the	same	way;
unfortunately,	determining	the	month	cannot	be	done	directly	from	(1.90)	using
the	 values	 ,	 ,	 ,	 and	 ,	 because	 these	 values	 describe	 the
common-year	month	lengths,	not	those	for	the	leap	year.	Indeed,	no	set	of	values
with	 	 can	 work	 properly	 in	 the	 cycle-length	 formulas	 for	 the	 leap	 year
because	 there	 are	 three	 30-day	 months	 in	 a	 row	 (months	 11,	 12,	 and	 1).
However,	 the	 values	 ,	 ,	 ,	 	 actually	 do	 work—not
completely,	but	over	the	range	 	in	(1.90),	which	is	all	we	care	about;
thus	 (7.3)	 remains	 correct	 if	 	 is	 replaced	 with	 .
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Hence	 the	 month	 can	 be	 determined	 using	 (1.86),	 the	 day	 of	 the	 month	 is
determined	by	subtraction,	and	we	obtain:

where

It	 is	 important	 to	 realize	 that,	 to	a	great	 extent,	 the	 foregoing	calculations
are	merely	hypothetical	because	 there	are	many	disparate	 forms	of	 the	 Islamic
calendar	 [6].	 Furthermore,	 much	 of	 the	 Islamic	 world	 relies	 not	 on	 the
calculations	of	this	arithmetical	calendar	at	all	but	on	proclamation	of	 the	new
moon,	 by	 religious	 authorities,	 based	 on	 the	 visibility	 of	 the	 lunar	 crescent.
Consequently,	the	dates	given	by	the	functions	here	can	be	in	error	by	a	day	or
two	from	what	will	actually	be	observed	 in	various	parts	of	 the	Islamic	world;
this	is	unavoidable.

One	 could	 use	 astronomical	 functions	 (see	 Chapter	 (see	 Chapter	 14)	 to
determine	the	likely	date	of	visibility	of	a	new	moon	(see	[5]).	The	calculation	of
such	an	astronomical	Islamic	calendar–sketched	in	Section	18.3–is	quite	intricate
and	not	generally	accepted.

7.2 Holidays
Only	approximate	positions	have	been	used	for	predicting	the	commencement	of	a	Hijri	month,	as
accurate	places	cannot	be	computed	without	a	great	amount	of	labour	…	Users	of	this	Diglott
Calendar	must,	therefore,	at	the	commencement	of	each	year	correct	the	dates	with	those	in	the
official	Block	Calendar	issued	by	the	Nizamiah	Observatory.
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Director	of	Nizamiah	Observatory,	quoted	by	Mazhar	Husain:
Diglott	Calendar,	vol.	II,	p.	iii	(1961)

Determining	 the	R.D.	 dates	 of	 holidays	 occurring	 in	 a	 given	Gregorian	 year	 is
complicated,	because	an	Islamic	year	is	always	shorter	than	the	Gregorian	year,
and	 thus	 each	 Gregorian	 year	 contains	 parts	 of	 at	 least	 2	 and	 sometimes	 3
successive	Islamic	years.	Hence,	any	given	Islamic	date	occurs	at	least	once	and

possibly	 twice	 in	 any	 given	 Gregorian	 year.	 For	 example,	 Islamic	 New	 Year
(Muḥarram	1)	occurred	twice	in	1943:	on	January	8	and	again	on	December	28.
Accordingly,	 we	 approach	 the	 problem	 of	 the	 Islamic	 holidays	 by	 writing	 a
general	function	to	return	a	list	of	the	R.D.	dates	of	a	given	Islamic	date	occurring
in	a	given	Gregorian	year:

where

There	 is	 little	 uniformity	 among	 the	 Islamic	 sects	 and	 countries	 as	 to
holidays.	In	general,	the	principal	holidays	of	the	Islamic	year	are	Islamic	New
Year	 (Muḥarram	 1),	 ‘Ashūrā’	 (Muḥarram	 10),	Mawlid	 (Rabī‘	 I	 12),	 Lailat-al-
Mi‘rāj	(Rajab	27),	Lailat-al-Barā’a	(Sha‘bān	15),	Ramadan	(Ramaḍān	1),	Lailat-
al-Kadr	(Ramaḍān	27),	Eid	ul-Fitr	(Shawwāl	1),	and	Eid	ul-Adha	(Dhu	al-Ḥijja
10).	Other	days,	too,	have	religious	significance—for	example,	the	entire	month
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of	Ramaḍān.	Like	all	Islamic	days,	an	Islamic	holiday	begins	at	sunset	the	prior
evening.	We	can	determine	a	list	of	the	corresponding	R.D.	dates	of	occurrence	in
a	given	Gregorian	year	by	using	islamic-in-gregorian	above,	as	in

It	bears	reiterating	that	the	determination	of	the	Islamic	holidays	cannot	be
fully	 accurate	 because	 the	 actual	 day	 of	 their	 occurrence	 depends	 on
proclamation	by	religious	authorities.
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2			The	Arabic	term	hijra,	used	to	denote	the	beginning	of	the	Islamic	epoch,	signifies	“emigration,”
“abandonment,”	or	“flight.”

3			Anno	Hegiræ;	in	the	year	of	the	Hegira	(Mohammed’s	emigration	to	Medina)—see	the	previous
footnote.

4			Microsoft	inexplicably	calls	this	version	the	“Kuwaiti	algorithm.”
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replacing	the	numerator	3	+	11	×	year	by	4	+	11	×	year	in	fixed-from-islamic,	and	replacing	the	10646	by
10645	in	the	numerator	of	the	value	for	year	in	islamic-from-fixed.

	



The	“Gezer	calendar,”	a	tenth	century	B.C.E.	limestone	tablet	discovered	in	1908
in	excavations	of	the	Cannanite	city	of	Gezer,	20	miles	west	of	Jerusalem.	It
lists,	in	paleo-Hebrew,	the	months	named	according	to	their	agricultural
activities;	for	example,	month	4	(late	winter/early	spring)	is	called	 ,
month	of	the	barley	harvest.	The	scribe’s	name	is	given	as	 ,	Abiyah.
(Courtesy	of	the	Istanbul	Archaeological	Museums,	Istanbul.)



8

The	Hebrew	Calendar
◈

Do	not	take	these	[visibility]	calculations	lightly	…	for	they	are	deep	and	difficult	and	constitute
the	“secret	of	intercalation”	that	was	[only]	known	to	the	great	sages	…	On	the	other	hand,	this
computation	that	is	calculated	nowadays	…	even	school	children	can	master	in	three	or	four
days.

Maimonides:	Mishneh	Torah,	Book	of	Seasons	(1178)

The	Hebrew	calendar,	 promulgated	by	 the	patriarch	Hillel	 II	 in	 the	mid-fourth
century1	 and	 attributed	 by	 Sa’adia	 Gaon	 to	 Mosaic	 revelation,	 is	 more
complicated	than	the	other	calendars	we	have	considered	so	far.	Its	complexity	is
inherent	 in	 the	 requirement	 that	 calendar	 months	 be	 strictly	 lunar	 whereas
Passover	must	 always	 occur	 in	 the	 spring.	Because	 the	 seasons	depend	on	 the
solar	year,	the	Hebrew	calendar	must	harmonize	simultaneously	with	both	lunar
and	solar	events,	as	do	all	lunisolar	calendars,	including	the	Hindu	and	Chinese
calendars	 described	 in	 Chapters	 chap-Hindu,	 and	 chap-Hindu-newe	 earliest
extant	description	of	the	Hebrew	calendar	is	by	the	famous	al-Khowārizmī	[13],
after	 whom	 the	 words	 algebra	 and	 algorithm	 were	 coined.	 The	 most
comprehensive	early	work	 is	by	Savasorda	of	 the	eleventh	century	 [19].	Much
information	about	the	Hebrew	calendar	in	the	early	modern	period	can	be	found
in	[6].

The	 earlier,	 observation-based,	 Hebrew	 calendar	 is	 described	 in
Section	18.4.



As	 in	 the	 Islamic	 calendar,	 days	 begin	 at	 sunset,	 the	 week	 begins	 on
Sunday,	and	the	days	for	the	most	part	are	numbered,	not	named,	as	follows:

Sunday yom	rishon	(first	day)

Monday yom	sheni	(second	day)

Tuesday yom	shelishi	(third	day)

Wednesday yom	revi‘i	(fourth	day)

Thursday yom	ḥamishi	(fifth	day)

Friday yom	shishi	(sixth	day)

Saturday yom	shabbat	(sabbath	day)

8.1 Structure	and	History
Iudaicus	computus,	omnium	qui	hodie	extant	antiquissimus,	articiosissimus,	et	elegantissimus.
[Of	all	methods	of	intercalation	which	exist	today	the	Jewish	calculation	is	the	oldest,	the	most
skillful,	and	the	most	elegant.]

Joseph	Justus	Scaliger:	De	Emendatione	Temporum	(1593)2

The	 Hebrew	 year	 consists	 of	 12	 months	 in	 a	 common	 year	 and	 13	 in	 a	 leap
(“gravid”	or	“embolismic”)	year:

(1)	Nisan 30	days

(2)	Iyyar 29	days

(3)	Sivan 30	days



(4)	Tammuz 29	days

(5)	Av 30	days

(6)	Elul 29	days

(7)	Tishri 30	days

(8)	Marḥeshvan 29	or	30	days

(9)	Kislev 29	or	30	days

(10)	Tevet 29	days

(11)	Shevat 30	days

{(12)	Adar	I 30	days

(12)	{(13)}	Adar	{II} 29	days

The	leap-year	structure	is	given	in	braces—in	a	leap	year	there	is	an	interpolated
twelfth	month	of	30	days	 called	Adar	 I	 to	distinguish	 it	 from	 the	 final	month,
Adar	 II.	 The	 lengths	 of	 the	 eighth	 and	 ninth	 months	 vary	 from	 year	 to	 year
according	 to	criteria	 that	will	be	explained	below.	Our	ordering	of	 the	Hebrew
months	 follows	 biblical	 convention	 (Leviticus	 23:5)	 in	 which	 (what	 is	 now
called)	Nisan	 is	 the	 first	month.	This	numbering	causes	 the	Hebrew	New	Year
(Rosh	ha-Shanah)	 to	begin	on	 the	 first	 of	Tishri,	which	by	our	 ordering	 is	 the
seventh	month—but	this	too	agrees	with	biblical	usage	(Leviticus	23:24).

Adding	up	 the	 lengths	of	 the	months,	we	see	 that	a	normal	year	has	353–
355	 days,	 whereas	 a	 leap	 year	 has	 383–385	 days.	 These	 are	 the	 same	 year
lengths	 as	 would	 be	 possible	 with	 an	 astronomical	 lunisolar	 calendar;	 see
Section	18.4.



(8.1)

(8.2)

(8.3)

(8.4)

(8.5)

(8.7)

(8.8)

(8.9)

(8.10)

(8.12)

(8.13)

(8.14)

(8.6)

(8.11)

will	be	convenient	to	have	the	following	constants	defined	for	the	Hebrew
months:

In	the	Hebrew	calendar,	leap	years	occur	in	years	3,	6,	8,	11,	14,	17,	and	19
of	 the	 19-year	 Metonic	 cycle.	 This	 sequence	 can	 be	 computed	 concisely	 by
noting	that	Hebrew	year	y	is	a	leap	year	if	and	only	if	 	is	less	than
7—another	instance	of	formula	(1.83)3	with	 ,	 ,	and	 .	Thus,	we
determine	whether	a	year	is	a	Hebrew	leap	year	by



(8.15)

(8.16)

and	the	number	of	months	in	a	Hebrew	year	by

The	 biblically	 mandated	 sabbatical	 years	 (Exodus	 23:10–11)	 are—by
current	reckoning—those	whose	Hebrew	year	number	is	a	multiple	of	7:

Sabbatical	years	no	longer	bear	calendrical	significance.
The	 number	 of	 days	 in	 a	 Hebrew	 month	 is	 a	 more	 complex	 issue.	 The

twelfth	month,	Adar	or	Adar	I,	has	29	days	in	a	common	year	and	30	days	in	a
leap	year,	but	the	numbers	of	days	in	the	eighth	month	(Marḥeshvan)	and	ninth
month	(Kislev)	depend	on	the	overall	length	of	the	year,	which	in	turn	depends
on	factors	discussed	later	in	this	section.

The	beginning	of	the	Hebrew	New	Year	is	determined	by	the	occurrence	of
the	 mean	 new	 moon	 (conjunction)	 of	 the	 seventh	 month	 (Tishri),	 subject	 to
possible	postponements	of	1	or	2	days.	The	new	moon	of	Tishri	A.M.4	1,	the	first
day	 of	 the	 first	 year	 for	 the	 Hebrew	 calendar,	 is	 fixed	 at	 Sunday	 night	 at
11:11:20	 p.m.	 Because	 Hebrew	 days	 begin	 at	 sunset,	 whereas	 our	 fixed	 dates
begin	at	midnight,	we	define	the	epoch	of	the	Hebrew	calendar	(that	is,	Tishri	1,
A.M.	 1)	 to	 be	 Monday,	 September	 7,	 –3760	 (Gregorian)	 or	 October	 7,	 3761
B.C.E.	(Julian).

The	 Hebrew	 day	 is	 traditionally	 divided	 into	 24	 hours,	 and	 the	 hour	 is

divided	into	1080	parts	( alaqim),	and	thus	a	day	has	25920	parts	of	 	seconds
duration	each.	These	divisions	are	of	Babylonian	origin.	The	new	moon	of	Tishri



A.M.	 1,	which	occurred	 5	 hours	 and	204	parts	 after	 sunset	 (6	 p.m.)	 on	Sunday
night,	is	called	molad	beharad,	because	the	numerical	value	of	the	letter	beth	is
2,	 signifying	 the	 second	 day	 of	 the	week;	heh	 is	 5	 (hours);	 resh	=	 200	 parts;
daleth	=	4	parts.	Other	epochs	and	leap-year	distributions	appear	in	classical	and
medieval	 literature.	 In	particular,	 the	 initial	conjunction	of	 the	epoch	starting	1
year	 later,	 called	weyad	 (signifying	 6	 days,	 14	 hours),	 occurred	 on	 Friday	 at
exactly	8	a.m.	on	 the	morning	when	Adam	and	Eve	were	created	according	 to
the	traditional	chronology.5

The	length	of	a	mean	lunar	period	in	the	traditional	representation	is	29	days,
12	hours,	and	793	parts,	or	 	days.	This	is	a	classical	value	for
the	lunar	(synodic)	month,	attributed	to	Cidenas	in	about	383	B.C.E.	and	was	an
integral	part	of	what	is	called	“System	B”	of	Babylonian	astronomy	[16];	it	was
used	by	Ptolemy	in	his	Almagest.6	With	 	for	an	ordinary	year	and	

	for	a	leap	year,	this	value	gives	an	average	Hebrew	year	length
of	about	365.2468	days.	The	start	of	each	New	Year,	Rosh	ha-Shanah	(Tishri	1),
coincides	with	the	calculated	day	of	the	mean	conjunction	(new	moon)	of	Tishri
—12	months	after	the	previous	New	Year	conjunction	in	ordinary	years,	and	13
in	leap	years—unless	one	of	4	delays	is	mandated:

1.	 	If	 the	time	of	mean	conjunction	is	at	midday	or	after,	 then	the	New	Year	is
delayed.7

2.		In	no	event	may	the	New	Year	(Rosh	ha-Shanah)	be	on	a	Sunday,	Wednesday,
or	Friday.	(This	rule	is	called	lo	iddo	rosh.)8	If	the	conjunction	is	on	Saturday,
Tuesday,	 or	Thursday	 afternoon,	 then	 this	 rule	 combines	with	 the	 previous
rule	and	results	in	a	2-day	delay.

3.	 	 In	 some	 cases	 (about	 once	 in	 30	 years)	 an	 additional	 delaying	 factor	may
need	to	be	employed	to	keep	the	length	of	a	year	within	the	allowable	ranges.
It	is	the	irregular	effect	of	the	second	delay	that	makes	this	necessary:	if	the



conjunction	 is	 before	 noon	 on	 a	 Tuesday	 of	 a	 common	 year,	 and	 the
conjunction	of	 the	 following	year	 is	 at	 noon	on	Saturday	or	 later	 (possibly
after	 sunset),	 then	 the	 previous	 rules	 would	 delay	 Rosh	 ha-Shanah	 until
Monday	 (a	 Saturday	 afternoon	 conjunction	 is	 put	 off	 by	 the	 first	 rule	 and
Rosh	 ha-Shanah	 on	 Sunday	 is	 precluded	 by	 the	 second	 rule).	 This	 would
require	a	unacceptable	year	length	of	356	days,	and	thus	instead	the	current
Rosh	ha-Shanah	 is	 delayed	 (skipping	Wednesday)	 until	 Thursday,	 giving	 a
354-day	 year.	 For	 the	 following	 year’s	 conjunction	 to	 fall	 on	 a	 Saturday
afternoon,	the	current	year’s	must	have	occurred	after	3:11:20	a.m.	The	prior
year	 cannot	 become	 too	 long	 because	 of	 this	 delay,	 for	 its	 New	 Year
conjunction	must	have	been	on	Friday	(in	a	common	year)	or	Wednesday	(in
a	leap	year)	and	would	have	been	delayed	a	day	by	the	second	rule.

4.		In	rare	cases	(about	once	in	186	years),	Rosh	ha-Shanah	on	a	Monday	after	a
leap	year	can	pose	a	similar	problem	by	causing	the	year	just	ending	to	be	too
short–when	 the	prior	New	Year	 conjunction	was	 after	midday	 on	 Tuesday
and	 was,	 therefore,	 delayed	 until	 Thursday.	 If	 the	 conjunction	 were	 after
midday	Tuesday	the	previous	year,	then	in	the	current	year	it	would	be	after
9:32: 	 a.m.	 on	Monday.	 In	 this	 case,	Rosh	ha-Shanah	 is	 postponed	 from
Monday	 to	Tuesday,	 extending	 the	 leap	 year	 just	 ending	 from	 382	 days	 to
383.	The	 current	 year	 cannot	 become	 too	 short	 because	 of	 this	 delay;	 it	 is
shortened	 from	 355	 days	 to	 354,	 the	 following	 Rosh	 ha-Shanah	 being
delayed	until	Saturday.

The	precise	rules	for	delays	were	the	subject	of	a	short-lived	dispute	(921–
923	C.E.)	between	Palestinian	and	Babylonian	Jewish	authorities	(the	best	source
in	English	 for	 details	 of	 the	 controversy	 is	 [23,	 pp.	 264–275]).	 In	 923	C.E.	 the
calculated	conjunction	fell	just	after	midday,	but	the	Palestinian	authority,	Aaron
ben	Meir,	insisted	that	the	first	delaying	rule	applied	only	when	the	conjunction



was	at	12:35:40	p.m.	(that	is,	noon	plus	624	parts)	or	later,	presumably	because
they	 (the	 Palestinians)	 did	 their	 calculations	 from	Nisan	 instead	 of	Tishri,	 and
rounded	the	time	of	the	epochal	new	moon	differently.	Because	of	the	retroactive
effect	 of	 the	 third	 delay,	 this	 had	 already	 affected	 the	 dates	 in	 921	 (see	 the
sample	 calculation	 beginning	 on	 page	 124).	 In	 the	 end,	 the	 Babylonian	 gaon,
Sa’adia	ben	Joseph	al-Fayyūmi,	prevailed,	and	the	rules	have	since	been	fixed	as
given	 above.	 (Some	 scant	 details	 can	 be	 found	 in	 [17,	 vol.	 III,	 p.	 119]	 and
[10,	col.	539–540];	[3]	gives	a	full	discussion	of	the	controversy;	see	also	[12].)
Interestingly,	 according	 to	 Maimonides	 [15,	 5:13],	 the	 final	 authority	 in
calendrical	matters	is	vested	in	the	residents	of	the	Holy	Land,	and	their	decision
—even	if	erroneous—should	be	followed	worldwide:

Our	 own	 calculations	 are	 solely	 for	 the	 purpose	 of	 making	 the	 matter	 available	 to	 public
knowledge.	 Since	 we	 know	 that	 residents	 of	 the	 Land	 of	 Israel	 use	 the	 same	 method	 of
calculation,	we	perform	the	same	operations	in	order	to	find	out	and	ascertain	what	day	it	is	that
has	been	determined	by	the	people	of	Israel.

One	 fairly	 common	misconception	 regarding	 the	Hebrew	 calendar	 is	 that
the	 correspondence	with	 the	 Gregorian	 calendar	 repeats	 every	 19	 years.	 This,
however,	is	usually	not	the	case	because	of	the	irregular	Gregorian	leap-year	rule
and	 the	 irregular	 applicability	 of	 the	 delays.	 Nor	 does	 the	 Hebrew	 calendar
repeat	 its	 pattern	 every	 247	 years.	 In	 the	 seventeenth	 century,	 Hezekiah	 ben
David	da	Silva	of	Jerusalem	complained	about	published	tables	for	the	Hebrew
calendar:9

I	have	 seen	disaster	 and	 scandal	 [on	 the	part]	of	 some	 intercalators	who	are	of	 the	 [erroneous]
opinion	 that	 the	character	 [of	years]	 repeats	every	 thirteen	cycles	 [ 	years].	For
the	 sake	 of	 God,	 do	 not	 rely	 and	 do	 not	 lean	 on	 them.	 “Far	 be	 it	 from	 thee	 to	 do	 after	 this
manner,”	 which	 will—perish	 the	 thought—cause	 the	 holy	 and	 awesome	 fast	 to	 be	 nullified,
leaven	 to	 be	 eaten	 on	 Passover,	 and	 the	 holidays	 to	 be	 desecrated.	 Therefore,	 you	 the	 reader,
“Hearken	now	unto	my	voice,	I	will	give	thee	counsel,	and	God	be	with	thee.”	Be	cautious	and
careful	 lest	you	forget	…	what	 I	am	writing	regarding	 this	matter,	since	 it	 is	done	according	 to
exact	arithmetic,	“divided	well,”	and	is	precise	on	all	counts	…	from	the	278th	cycle	[1521	C.E.]
until	the	end	of	time.	“Anyone	who	separates	from	it,	 it	 is	as	if	he	separates	[himself]	from	life
[itself].”



By	the	“character”	of	a	year	da	Silva	means	the	day	of	the	week	on	which	New
Year	falls	and	the	 length	of	 the	year.	 In	fact,	 the	Hebrew	calendar	repeats	only
after	689472	years	(as	was	pointed	out	by	the	celebrated	Persian	Muslim	writer,
al-Bīrūnī	[2,	p.	154]	in	1000	C.E.):	The	19-year	cycle	contains	exactly

A	week	has	181440	parts,	so	it	takes

for	the	excess	parts	to	accumulate	into	an	integer	number	of	weeks,	and	for	the
calendar	to	return	to	the	same	pattern	of	delays.	Thus,	the	exact	correspondence
of	Hebrew	dates	(which	has	a	mean	year	 length	of	 	days)	and	dates	on
the	Gregorian	calendar	(which	has	a	400-year	cycle)	repeats	only	after

Similar	 astronomically	 long	 periods	 are	 needed	 for	 other	 pairs	 of	 calendars	 to
match	up	exactly.

8.2 Implementation
You	have	already	seen	…	how	much	computation	is	involved,	how	many	additions	and
subtractions	are	still	necessary,	despite	our	having	exerted	ourselves	greatly	to	invent



(8.17)

(8.18)

(8.19)

approximations	that	do	not	require	complicated	calculations.	For	the	path	of	the	moon	is
convoluted.	Hence	wise	men	have	said:	the	sun	knows	its	way,	the	moon	does	not	…

Maimonides:	Mishneh	Torah,	Book	of	Seasons	(1178)

The	epoch	of	the	Hebrew	calendar	is	R.D.	 :

We	 can	 calculate	 the	 time	 elapsed	 on	 the	 Hebrew	 calendar	 from	 the	 Hebrew
epoch	until	the	new	moon	of	Tishri	for	Hebrew	year	y	by	computing

where	 m	 is	 the	 number	 of	 months	 before	 year	 y,	 because	 the	 first	 mean
conjunction	was	 (=	876	parts)	before	midnight	on	 the	epoch,	or	5	hours
204	parts	after	nominal	sunset	(see	page	116).	To	compute	 the	 total	number	of
months,	 leap	and	 regular,	we	 just	 apply	 formula	 (1.86)	with	 ,	 ,	 and	

:10

More	 generally,	 the	 fixed	 moment	 of	 the	 mean	 conjunction,	 called	 the
molad	(plural,	moladot),	of	any	month	of	the	Hebrew	calendar	is	computed	by

where



readjusting	 for	 the	 year	 starting	 with	 Tishri.	 The	 degree	 to	 which	 molad
approximates	 the	 astronomical	 new	 moon	 can	 be	 seen	 in	 Figure	 8.1,	 which
shows	a	scatter	plot	of	the	error	(in	hours)	for	Nisan	for	Gregorian	years	–1000
to	5000	( 	A.M.).	Indeed,	any	arithmetic	calendar	that	uses	a	mean
value	 for	 the	 lunar	month,	 such	 as	 the	 Old	 Hindu	 lunisolar	 calendar	 (Section
10.3),	must	 show	 similar	 deviations,	 since	 the	 true	 length	 of	 the	month	 varies
greatly	(see	Section	14.6).

Figure	8.1	
Molad	of	Nisan	minus	the	actual	moment	of	the	new	moon,	Jerusalem	local
time,	in	hours,	for	Gregorian	years	–1000	to	5000	(=	2760–8760	A.M.).
(Suggested	by	I.	L.	Bromberg.)

To	 implement	 the	 first	of	 the	 four	delays	 (putting	off	 the	New	Year	 if	 the
calculated	conjunction	is	in	the	afternoon),	all	we	need	to	do	is	add	12	hours	to
the	time	of	the	epochal	conjunction	and	let	the	day	be	the	integer	part	(the	floor)



(8.20)

of	 the	value	obtained.	This	 is	analogous	 to	equation	 (1.92),	 except	 that	we	are
counting	the	days	in	months	of	average	length	 	days	rather	than	in	years.
The	initial	conjunction	is	 —that	is,	12084	parts—into	the	determining
period,	which	began	at	noon	on	the	day	before	the	epoch.

To	test	for	Sunday,	Wednesday,	and	Friday,	as	required	by	the	second	delay,
we	 can	 use	 ,	 as	 in	 equation	 (1.82)	 with	 	 and	 ,	 to
determine	whether	d	is	one	of	the	three	evenly	spaced	excluded	days.	These	two
delays	are	incorporated	in	the	following	function:

where

Because	the	count	of	elapsed	days	begins	with	Sunday	evening	(which	is	already
the	second	day	of	the	week	from	the	point	of	view	of	the	Hebrew	calendar),	we
use	 	 for	 the	 number	 of	 days	 since	 the	 Sunday	 before	 the	 first	 molad.
Whole	days	and	fractional	days	(parts)	are	computed	separately,	so	that	32	bits
suffice	for	dates	in	the	foreseeable	future;	however,	this	calculation	comes	close
to	 the	32-bit	 limit.	To	avoid	such	 large	numbers	one	can	compute	days,	hours,
and	parts	separately:



(8.21)

When	one	can	work	directly	with	rational	numbers,	one	may	just	let

using	the	molad	function.
The	 two	 remaining	 delays	 depend	on	 the	 lengths	 of	 the	 prior	 and	 current

years	 that	 would	 result	 from	 the	 putative	 New	 Year	 dates	 suggested	 by	 the
previous	function.	If	 the	current	year	were	356	days	then	it	would	be	too	long,
and	we	would	delay	its	start	by	2	days.	If	the	prior	year	were	382	days	long	then
we	delay	 its	end	by	1	day.	Rather	 than	check	 the	day	of	 the	week,	 the	 time	of
conjunction,	 and	 the	 leap-year	 status	 of	 the	 prior	 and	 current	 year,	 as	 in	 the
traditional	 formulation	 of	 these	 delays,	 we	 just	 check	 for	 unacceptable	 year
lengths:

where



(8.22)

(8.24)

(8.23)

Adding	the	value	of	this	function	to	the	number	of	elapsed	days	determines	the
day	on	which	the	year	begins.	To	get	the	R.D.	date	of	the	New	Year,	we	have	to
add	the	(negative)	epoch:

As	already	mentioned,	the	length	of	the	year	determines	the	lengths	of	the
two	varying	months,	Marḥeshvan	and	Kislev.	Marḥeshvan	 is	 long	 (30	days)	 if
the	year	has	355	or	385	days;	Kislev	is	short	(29	days)	if	the	year	has	353	or	383
days.	The	length	of	 the	year,	 in	turn,	 is	determined	by	the	dates	of	 the	Hebrew
New	Years	(Tishri	1)	preceding	and	following	the	year	in	question:

Here,

Also,



(8.25)

(8.26)

(8.28)

(8.27)

and

With	 the	 foregoing	 machinery,	 we	 are	 now	 ready	 to	 convert	 from	 any
Hebrew	date	to	an	R.D.	date:

where

To	 the	 fixed	date	 of	 the	 start	 of	 the	given	year	we	 add	 the	number	of	 elapsed
days	 in	 the	given	month	and	 the	 length	of	each	elapsed	month.	We	distinguish
between	months	before	and	after	Tishri,	which	is	the	seventh	month,	though	the
New	Year	 begins	with	 its	 new	moon.	For	 dates	 in	 the	 second	 half	 of	 the	 year
(months	1	 through	6)	we	need	to	 include	the	 lengths	of	all	months	from	Tishri
until	last-month-of-hebrew-year	(month	12	or	13).

Conversion	to	Hebrew	dates	is	done	as	follows:



where

We	first	approximate	 the	Hebrew	year	by	dividing	 the	number	of	elapsed	days
by	 the	 average	 year	 length,	 	 days.	 (A	 simpler	 value—even
365.25—can	be	used	instead.)	The	irregularity	of	the	year	lengths	means	that	the
estimate	approx	can	be	off	by	1	in	either	direction.	Thus	we	search	for	the	right
year,	adding	1	to	 	for	each	year	y	whose	New	Year	is	not	after	date.	To
determine	the	Hebrew	month,	we	search	forward	from	Nisan	or	Tishri	until	we
reach	the	first	month	that	ends	on	or	after	date.

Consider,	as	an	example,	the	calculation	of	the	date	of	Passover	in	922	C.E.
—that	is,	Nisan	15,	A.M.	4682	(see	page	117	for	the	historical	significance	of	this
year).	 The	 mean	 conjunction	 of	 the	 preceding	 Tishri	 fell	 on	 Wednesday,
September	 5,	 921	 C.E.	 (Julian),	 R.D.	 336276,	 at	 5:51: 	 a.m.	 The	 mean
conjunction	 of	 the	 following	 Tishri	 fell	 on	 Tuesday,	 September	 29,	 922
C.E.	 (Julian),	 at	 3:24:30	 a.m.	 At	 the	 latter	 time,	
months	of	mean	 length	 	 had	 elapsed	 since	 the	 primeval	 conjunction,	 to
which	we	add	 	to	count	from	noon	on	the	Sunday	before	the	epoch.
By	the	traditional	reckoning,	that	is	Tuesday,	9	hours	and	441	parts	since	sunset



the	preceding	evening.	Hebrew	year	4683	was	year	9	of	the	247th	19-year	cycle,
which	is	not	a	leap	year,	making	4683	an	instance	of	the	third	delay.	Because	this
conjunction	 was	 later	 than	 9	 hours	 and	 204	 parts,	 the	 conjunction	 of	 the
following	year,	4684,	fell	on	Saturday	afternoon,	just	237	parts	(13.167	minutes)
after	midday,	 for	which	 time	 the	 first	 two	 delays	 apply.	 Specifically,	 equation
(8.20)	yields

With	 the	 first	 two	 delays,	 but	without	 the	 third	 delay,	 year	 4683	would	 be	 of	
	days	in	duration,	an	unacceptable	length.	Thus,	the	first

of	Tishri	 4683	 is	 put	 off	 2	 days	 to	Thursday,	 September	 26,	R.D.	 336662.	 The
start	 of	 year	 4682	 is	 delayed	 until	 Thursday,	making	 4682	 a	 “long”	 leap	 year
with	a	total	of	385	days.	Tishri	(month	7)	and	Shevat	(month	11)	are	always	30
days	 long,	 Tevet	 (month	 10)	 is	 29	 days,	 Marḥeshvan	 (month	 8)	 and	 Kislev
(month	9)	both	have	30	days	in	a	long	year,	and	in	a	leap	year	Adar	I	(month	12)
has	30	days	and	Adar	II	(month	13)	has	29.	Adding	these	( ),
plus	the	14	days	of	Nisan	(month	1),	to	the	R.D.	date	of	Rosh	ha-Shanah	of	4682,
we	 arrive	 at	R.D.	 	 as	 the	 starting	 date	 of	 Passover.11

That	date	is	Tuesday,	April	16,	922	C.E.	(Julian)	and	April	21,	922	(Gregorian).
Were	the	first	delay	not	applied	in	4684,	there	would	have	been	no	need	for	the
third	 delay	 in	 4683.	Were	 it	 not	 for	 the	 third	 delay,	Hebrew	 year	 4682	would
have	been	“short,”	and	Passover	in	922—as	well	as	all	other	dates	between	Tevet
1	 in	 late	921	and	Elul	29	 in	 the	 summer	of	922—would	have	occurred	2	days
earlier.	Dates	in	Kislev	would	have	been	1	day	earlier.



8.3 Inverting	the	Molad12

If	you	see	such	calculations	in	other	tables,	which	differ	from	what	I	say—as	I	have	seen	that
what	I	have	calculated	in	my	tables	does	not	agree	with	them—ignore	their	reckonings	and	do	not
consent	to	their	calculations,	but	rely	on	what	I	have	counted	for	you,	no	less	no	more.

Issachar	ben	Mordecai	Susan:	Tikkun	Yissakhar	(1564)

Suppose	 we	 are	 told	 at	 what	 time	 of	 day	 and	 on	 which	 day	 of	 the	 week	 the
molad	 of	 some	Hebrew	month	 occurs;	 can	we	 determine	 the	 date	 (month	 and
year)	of	that	molad?	Surprisingly,	the	answer	is	yes,	if	we	assume	that	the	date	is
within	a	range	of	about	14000	years.

Recall	that	the	interval	from	molad	to	molad	is	 	days	and	793	parts	of	an
hour.	There	are	1080	parts	per	hour,	so	there	are	 	parts
in	 a	 week;	 there	 are	 four	 weeks	 plus	 	 parts	 in	 a
molad,	so	each	successive	molad	advances	in	the	week	by	r	parts.	Because	r	and
w	are	relatively	prime,	a	molad	will	recur	on	the	same	day	of	the	week	and	at	the
same	time	of	day	as	another	molad	only	after	w	months,	about	14670	years—this
means	that	since	the	epoch	of	the	Hebrew	calendar	and	for	more	than	8000	years
into	 the	 future	 the	day/time	combination	of	 the	molad	uniquely	determines	 the
Hebrew	month	and	year.

Imagine	time	as	a	sequence	of	Hebrew	calendar	parts	numbered	0,	1,	2,	…,
each	labeled	with	a	pair	of	numbers	 ,	where	a	is	the	part	number	within	the
molad	 and	 b	 is	 the	 part	 number	 within	 the	 week.	 Thus	 the	 first	 component
repeats	after	 	parts	and	the	second	repeats	after	181440	parts.
Because	 765433	 and	 181440	 are	 relatively	 prime,	 there	 are	

	 labels;	 we	 want	 to	 determine	 n,	
,	 from	 the	 pair	 	 such	 that	 	 and	

.	This	 is	precisely	 the	matter	discussed	 in	Section	1.13,	where
equation	(1.70)	gives	us	the	answer	by	setting	the	cycle	lengths	 	and	

	 and	 the	 values	 	 (a	 specifies	 that	 it	 is	 the	 start	 of	 the	molad),	



	 (the	 offset	 Γ	 specifies	 that	 part	 0	 is	 the	 start	 of	 a	 molad),	
	 [the	 offset	Δ	 specifies	 that	 the	 cycle	 began	 5

hours,	204	parts	after	sunset	on	weekday	0	(Sunday)],	and	b	to	the	given	position
in	 the	 week	 of	 the	 molad	 we	 seek	 to	 determine.	 We	 need	 the	 multiplicative
inverse	of	c	modulo	d,	which	by	equation	(1.72)	is

The	 ordinal	 position	 of	 the	 specified	molad	 in	 the	 sequence	 of	 138880163520
labels	is	hence

Because	 the	 greatest	 common	 divisor	 of	 the	 three	 integers	 is	 765433,	 this
becomes

Of	 course,	 since	 n	 is	 in	 parts	 and	 765433	 is	 the	 number	 of	 parts	 per	 molad,	
	is	the	number	of	moladot;	that	is,	 	is	the	residue	class	of

the	 desired	molad	 (one	 occurring	 at	 part	 b	 in	 the	week),	modulo	 the	 cycle	 of
181440	moladot	after	which	the	moladot	repeat	their	positions.

Working	 with	 the	 rationals,	 we	 can	 express	 everything	 in	 terms	 of	 days,
rather	than	parts.	Let	 ,	where	25920	is	the	number	of	parts	in	a	24-
hour	day.	We	divide	the	previous	equation	through	by	25920,	giving

where	 	 counts	 the	 number	 of	 elapsed	 days	 and	 fractional
days	until	 the	desired	occurrence	of	 a	molad.	Assuming	 that	we	want	 the	 first
occurrence	 since	 the	 Hebrew	 epoch,	 we	 add	 this	 to	 the	 epoch—adjusted	 876
parts	(expressed	in	days)	backward	to	the	moment	of	the	initial	molad	beharad,



(8.29)

giving

where

(This	 calculation	 requires	 exact	 rational	 arithmetic	 and	 64-bit	 integers.)	 One
could	 just	 as	 easily	 choose	 an	 arbitrary	 starting	 point,	 ,
instead	of	 ,	by	replacing	the	offset	2879/2160	in	(8.29)	with

Then	the	calculation	would	compute	the	first	occurrence	of	a	molad	at	the	given
time	starting	from	that	point	onward.

The	 time	 of	 the	molad	 is	 nowadays	 specified	 as	 the	 day	 of	 the	week,	 d,
together	 with	 h	 hours	 measured	 from	 midnight,	 m	minutes,	 and	 p	 parts.	 To
convert	 such	a	molad	 to	a	point	 in	 the	weekly	cycle,	we	express	 the	 time	as	a
fraction	of	a	day,	using	mixed-radix	notation	(Section	1.10):

For	example,	a	molad	of	Wednesday,	18	hours,	35	minutes,	11	parts	is	specified
by



and	 	 is	 R.D.	 735913	 =	 Kislev	 28,	 5776	 A.M.	 =
November	 11,	 2015	 (Gregorian),	 the	 day	 of	 the	molad	 of	 the	 coming	month,
Tevet,	 5776	A.M.	To	 display	 a	molad	 occurring	 at	moment	 t	 in	 this	 traditional
format,	we	use	the	inverse	radix	operation

Traditionally	 the	molad	was	specified	by	 the	day	of	 the	week,	d,	 together
with	h	hours	 measured	 from	 sunset	 not	 midnight,	 and	 p	 parts	 of	 an	 hour.	 To
convert	such	a	molad	to	a	point	in	the	weekly	cycle,	we	would	use

because	 sunset	 is	 6	 hours	 before	 midnight.	 For	 example,	 the	 undated	 Oxford
Bodleian	manuscript,	Pococke	368,	folio	221	recto,	refers	to	a	traditional	molad
on	a	Sunday,	at	2	hours	and	240	parts:

and	 	is	R.D.	292452	=	Elul	28,	4561	A.M.	=	September
11,	801	C.E.	(Julian),	meaning	that	this	is	the	molad	of	the	coming	month,	Tishri,
4562	A.M.	For	the	moment	t	of	a	molad	in	 traditional	format,	one	computes	 the
inverse:

The	 easiest	 way	 to	 extract	 the	 coming	Hebrew	month	 and	 year	 from	 the
result	 of	 fixed-from-molad	 is	 to	 apply	 hebrew-from-fixed	 to	 a	 few	 days
afterwards,	since	the	molad	often	precedes	the	first	day	of	a	month:



Because	fixed-from-molad	inverts	molad,	we	have	the	identity

The	 year	 and	month	 can	 also	 be	 derived	 directly	 from	 ,	 the
number	of	elapsed	months.	Applying	formula	(1.90)	with	 ,	 ,	 ,
and	 ,	we	get

The	number	of	months	unaccounted	for	is

To	 obtain	 the	 corresponding	month	 number,	 considering	 that	 years	 begin	with
the	seventh	month,	Tishri,	we	need	to	adjust	m:

8.4 Holidays	and	Fast	Days
In	the	days	of	wicked	Trajan,	a	son	was	born	to	him	on	Tishah	be-Av	and	they	fasted;	his	daughter
died	on	Hanukkah	and	they	lit	candles.	His	wife	sent	to	him	and	said,	rather	than	conquer	the
Barbarians,	come	and	conquer	the	Jews	who	have	revolted	…	He	came	…	and	the	blood	flowed
in	the	sea	until	Cyprus.

Jerusalem	Talmud	(Succah	5:1)

As	 throughout	 this	 book,	 we	 consider	 our	 aim	 to	 be	 the	 determination	 of
holidays	 that	occur	 in	a	specified	Gregorian	year.	Because	 the	Hebrew	year	 is,
within	thousands	of	years	of	the	present,	consistently	aligned	with	the	Gregorian
year,	 each	 Jewish	 holiday	 occurs	 just	 once	 in	 a	 given	Gregorian	 year	 (with	 a
minor	exception	noted	below).	The	major	holidays	of	the	Hebrew	year	occur	on



(8.30)

fixed	days	on	 the	Hebrew	calendar	but	only	 in	 fixed	seasons	on	 the	Gregorian

calendar.	 They	 are	 easy	 to	 determine	 on	 the	 Gregorian	 calendar	 with	 the
machinery	 developed	 above	 provided	 that	 we	 observe	 that	 the	 Hebrew	 year
beginning	in	the	Gregorian	year	y	is	given	by

The	Hebrew	year	that	began	in	the	fall	of	1	(Gregorian)	was	A.M.	3762.	This
implies	that	holidays	occurring	in	the	fall	and	early	winter	of	the	Gregorian	year
y	occur	in	the	Hebrew	year	 ,	but	holidays	in	the	late	winter,	spring,	and
summer	 occur	 in	Hebrew	 year	 .	 For	 example,	 to	 find	 the	R.D.	 date	 of
Yom	Kippur	(Tishri	10)	in	a	Gregorian	year,	we	would	use

where

The	R.D.	dates	of	Rosh	ha-Shanah	 (Tishri	1),	Sukkot	 (Tishri	15),	Hoshana

Rabba	 (Tishri	 21),	 Shemini	 A eret	 (Tishri	 22),	 and	 Simḥat	 Torah	 (Tishri	 23,
outside	 Israel)	 are	 determined	 identically.13	 As	 on	 the	 Islamic	 calendar,	 all
Hebrew	holidays	begin	at	sunset	the	prior	evening.

The	dates	of	the	other	major	holidays—Passover	(Nisan	15),	the	ending	of
Passover	 (Nisan	 21),	 and	 Shavuot	 (Sivan	 6)—are	 determined	 similarly	 but,



(8.32)

(8.31)

because	these	holidays	occur	in	the	spring,	the	year	corresponding	to	Gregorian

year	 y	 is	 .

Conservative	and	Orthodox	Jews	observe	two	days	of	Rosh	ha-Shanah—Tishri	1
and	2.	Outside	Israel,	they	also	observe	Tishri	16,	Nisan	16,	Nisan	22,	and	Sivan
7	as	holidays.

Thus,	for	example,	we	determine	the	R.D.	date	of	Passover	by

where

Gauss	 [9]	 developed	 an	 interesting	 alternative	 formula	 to	 determine	 the
Gregorian	date	of	Passover	in	a	given	year.

The	7-week	period	beginning	on	 the	 second	day	of	Passover	 is	 called	 the
omer	(sheave	offering);	the	days	of	the	omer	are	counted	from	1	to	49,	and	the
count	is	expressed	in	completed	weeks	and	excess	days.	The	following	function
tells	 the	omer	count	 for	an	R.D.	date,	 returning	a	 list	of	weeks	 (an	 integer	0–7)
and	 days	 (an	 integer	 0–6)	 if	 the	 date	 is	 within	 the	 omer	 period	 and	 returning
bogus	if	not:



(8.33)

where

The	 minor	 holidays	 of	 the	 Hebrew	 year	 are	 the	 “intermediate”	 days	 of
Sukkot	 (Tishri	 16–21)	 and	 of	 Passover	 (Nisan	 16–20);	 Hanukkah	 (8	 days,
beginning	 on	 Kislev	 25);	 Tu-B’Shevat	 (Shevat	 15);	 and	 Purim	 (Adar	 14	 in
normal	years,	Adar	 II	 14	 in	 leap	 years).	Hanukkah	 occurs	 in	 late	 fall	 or	 early
winter,	and	thus	Hanukkah	of	 the	Gregorian	year	y	occurs	 in	 the	Hebrew	year	

,	whereas	Tu-B’Shevat	occurs	 in	 late	winter	or	early	spring,	and	hence
Tu-B’Shevat	 of	 Gregorian	 year	 y	 occurs	 in	 Hebrew	 year	

.	 Thus,	 these

two	holidays	are	handled	as	were	Yom	Kippur	and	Passover,	respectively.	Purim
also	always	occurs	in	late	winter	or	early	spring,	in	the	last	month	of	the	Hebrew
year	(Adar	or	Adar	II);	hence	its	R.D.	date	is	computed	by

where

The	 Hebrew	 year	 contains	 several	 fast	 days	 that,	 though	 specified	 by
particular	 Hebrew	 calendar	 dates,	 are	 shifted	 when	 those	 days	 occur	 on	 a
Saturday.	The	fast	days	are	Tzom	Gedaliah	 (Tishri	3),	Tzom	Tevet	 (Tevet	10),



(8.35)

(8.34)

Ta’anit	Esther	(the	day	before	Purim),	Tzom	Tammuz	(Tammuz	17),	and	Tishah
be-Av	 (Av	 9).	 When	 Purim	 is	 on	 a	 Sunday,	 Ta’anit	 Esther	 occurs	 on	 the
preceding	Thursday	and	thus	we	can	write

where

Each	 of	 the	 other	 fast	 days,	 as	 well	 as	 Shushan	 Purim	 (the	 day	 after	 Purim,
celebrated	 in	 Jerusalem),	 is	 postponed	 to	 the	 following	 day	 (Sunday)	 when	 it
occurs	 on	 a	Saturday.	Because	Tzom	Gedaliah	 is	 always	 in	 the	 fall	 and	Tzom
Tammuz	and	Tishah	be-Av	are	always	in	the	summer,	their	determination	is	easy.
For	example,

where

Tzom	Tevet,	which	can	never	occur	on	Saturday,	must	be	handled	with	(8.42)	in
Section	8.5	below,	because	Tevet	10	can	fall	on	either	side	of	January	1,	and	thus
a	single	Gregorian	calendar	year	can	have	0,	1,	or	2	occurrences	of	Tzom	Tevet.



(8.36)

For	example,	Tzom	Tevet	occurred	twice	in	1982	but	not	at	all	in	1984.	We	leave
it	to	the	reader	to	work	out	the	details.	For	the	foreseeable	future,	other	Jewish
holidays	 and	 fasts	 occur	 exactly	 once	 in	 each	 Gregorian	 year,	 because	 the
Hebrew	 leap	months	 and	Gregorian	 leap	 days	 keep	 the	 two	 calendars	 closely
aligned.

Yom	ha-Shoah	(Holocaust	Memorial	Day)	is	Nisan	27,	unless	that	day	is	a
Sunday	(it	cannot	be	a	Saturday),	in	which	case	it	is	postponed	by	1	day.14	Yom
ha-Zikkaron	 (Israel	 Memorial	 Day),	 nominally	 on	 Iyyar	 4,	 is	 advanced	 to
Wednesday	if	it	falls	on	a	Thursday	or	Friday,	and	delayed	to	Monday	if	it	falls
on	a	Sunday.15	Since	Iyyar	4	can	never	fall	on	Monday,	Wednesday,	or	Saturday,
Yom	ha-Zikkaron	falls	on	Iyyar	4	only	if	the	latter	is	a	Tuesday.	Thus,	we	write

where

On	the	Hebrew	calendar,	the	first	day	of	each	month	is	called	Rosh	Ḥodesh
and	 has	 a	 minor	 ritual	 significance.	When	 the	 preceding	 month	 has	 30	 days,
Rosh	 Ḥodesh	 includes	 also	 the	 last	 day	 of	 the	 preceding	 month.	 The
determination	of	these	days	is	elementary	(except	for	the	months	of	Kislev	and
Tevet,	because	of	the	varying	length	of	the	months	that	precede	those	two).



(8.37)

(8.38)

Some	 other	 dates	 of	 significance	 depend	 on	 the	 Julian-Coptic
approximation	of	 the	 tropical	 year	 (equinox	 to	 equinox),	 in	which	 each	 of	 the
four	seasons	is	taken	to	be	 	days	long:	The	beginning	of	sh’ela	(request	for
rain)	outside	Israel,	meant	to	correspond	to	the	start	of	the	sixtieth	Hebrew	day
after	the	autumnal	equinox,	corresponds	to	Athor	26	on	the	Coptic	calendar	and
follows	the	same	leap-year	structure.	(See	Chapter	4.)	Hence,	we	write

which	 is	 either	December	5	or	6	 (Gregorian)	during	 the	 twentieth	and	 twenty-
first	centuries	(see	[22]).	As	with	most	other	Jewish	holidays	and	events,	sh’ela
actually	begins	on	the	prior	evening.	In	Israel,	sh’ela	begins	on	Marḥeshvan	7.

By	 one	 traditional	 Hebrew	 reckoning,	 attributed	 to	 the	 second	 century
scholar	Samuel	of	Nehardea,	the	vernal	equinox	of	A.M.	5685	was	at	6	p.m.	on
the	 eve	 of	 Wednesday,	 Paremotep	 30,	 1641,	 which	 is	 March	 26,	 1925
C.E.	(Julian).	It	recurs	on	that	day	of	the	Coptic	and	Julian	calendars	and	at	that
hour	 of	 the	 week	 every	 28	 years	 in	 what	 is	 called	 the	 solar	 cycle	 and	 is
celebrated	as	birkath	haḥama.	Because	 ,	we	can	write

where

(The	 bracketed	 subscript	 0	 extracts	 the	 first	 element	 of	 a	 list.)	 This	 function
returns	 an	 empty	 list	 for	 the	 27	 out	 of	 28	 years	 in	which	 this	 event	 does	 not



(8.39)

(8.40)

occur.
These	 two	 functions,	 sh-ela	and	birkath-ha-hama,	 could	 alternatively	 be

implemented	as	part	of	a	Hebrew	solar	calendar,	thereby	avoiding	the	use	of	the
Coptic	 calendar.	 First,	 we	 find	 when	 spring	 occurs	 according	 to	 Samuel	 of
Nehardea’s	reckoning:

where

Then	 it	 is	 an	 easy	 matter	 to	 check	 whether	 it	 meets	 the	 criteria	 for	 birkath
haḥama:

where



(8.41)

A	similar	function	can	be	constructed	for	sh’ela.
Another	 traditional	 Hebrew	 determination	 of	 seasons	 is	 attributed	 to	 one

Rabbi	 Adda	 bar	 Ahava	 by	 Savasorda.	 It	 derives	 the	 year	 length	 from	 the
assumption	that	the	Metonic	cycle	provides	a	perfect	correspondence	between	19
solar	years	and	225	lunar	months	of	length	 .	That	gives	a	value	of	

	for	the	length	of	one	year.	Taking	6	p.m.	in	the	evening	on	Adar
28,	1	A.M.,	to	be	a	spring	equinox	leads	to	the	following:

where

8.5 The	Drift	of	the	Hebrew	Calendar
I’ve	been	on	a	calendar,	but	never	on	time.

Marilyn	Monroe:	Look	(1957)

The	average	Hebrew	year	 length	of	about	365.2468	days	(page	116)	 is	slightly
too	long,	meaning	that	the	Hebrew	year	will	drift	slowly	through	the	Gregorian



(8.42)

year	(which	closely	approximates	the	mean	tropical	year).	This	drift	means,	for
example,	 that	 Passover	 will	 get	 later	 and	 later	 in	 the	 Gregorian	 year,	 as
illustrated	in	Figure	8.2,	which	shows	the	advancing	difference	between	the	first
day	of	Passover	and	 the	 spring	equinox.	Although	 this	will	 not	be	of	practical
concern	for	millennia,	in	general,	in	determining	when	a	given	Hebrew	date	will

fall	in	a	given	Gregorian	year,	one	needs	to	consider	three	Hebrew	years	for	the
given	Gregorian	year,	just	as	we	did	for	Islamic	dates	at	the	end	of	the	previous
chapter.	We	thus	write:

where

For	example,	in	the	Gregorian	year	22336	(but	not	before),	Yom	Kippur	occurs
on	January	11	and	again	on	December	30,	neither	 in	 the	same	Hebrew	year	as
January	1.



(8.43)

Figure	8.2	
Number	of	days	after	the	spring	equinox	that	the	first	day	of	Passover	occurs	for
Gregorian	years	–1000	to	5000	(=	2760–8760	A.M.).	By	Gregorian	year	5000,
Passover	will	occur,	on	the	average,	more	than	a	full	month	after	the	spring
equinox,	whereas	it	should	always	occur	within	30	days	or	so.

Using	the	above	robust	function,	we	would	compute	the	occurrences	of	the
first	day	of	Hanukkah	as	follows:

Because	of	the	drift,	there	are	no	occurrences	of	Kislev	25	in	the	year	4999,	but
two	in	5000.

8.6 Personal	Days



Most	modern	calendars	mar	the	sweet	simplicity	of	our	lives	by	reminding	us	that	each	day	that
passes	is	the	anniversary	of	some	perfectly	uninteresting	event.

Oscar	Wilde:	“A	New	Calendar,”	Pall	Mall	Gazette	(February	1887)

The	 Hebrew	 calendar	 contains	 what	 we	 might	 term	 “personal”	 days:	 one’s
birthday	 according	 to	 the	 Hebrew	 calendar	 determines	 the	 day	 of	 one’s	 Bat
Mitzvah	(for	girls)	or	Bar	Mitzvah	(for	boys)	(the	12th	or	13th	birthday).	Dates
of	death	determine	when	Kaddish	 is	 recited	(yahrzeit,	naḥala)	 for	parents	 (and
sometimes	 for	 other	 relatives).	These	 are	 ordinarily	 just	 anniversary	 dates,	 but
the	leap-year	structure	and	the	varying	number	of	days	in	some	months	require
that	alternative	days	be	used	in	certain	years,	just	as	someone	born	on	February
29	on	the	Gregorian	calendar	has	to	celebrate	on	an	alternative	day	in	common
years.

The	birthday	of	someone	born	in	Adar	of	an	ordinary	year	or	Adar	II	of	a
leap	year	 is	also	always	 in	 the	 last	month	of	 the	year,	be	 that	Adar	or	Adar	 II.
The	 birthday	 in	 an	 ordinary	 year	 of	 someone	 born	 during	 the	 first	 29	 days	 of
Adar	 I	 in	 a	 leap	year	 is	 on	 the	 corresponding	day	of	Adar;	 in	 a	 leap	year,	 the
birthday	 occurs	 in	 Adar	 I,	 as	 expected.	 Someone	 born	 on	 the	 thirtieth	 day	 of
Marḥeshvan,	Kislev,	or	Adar	I	has	his	or	her	birthday	postponed	until	the	first	of
the	 following	month,	 in	 years	when	 that	 day	does	 not	 occur.	 First,	we	write	 a
function	to	determine	the	anniversary	date	in	a	given	Hebrew	year:



(8.45)

(8.44)
Unlike	 for	 the	 Islamic	 calendar,	 it	 will	 be	 many	 millennia

before	the	Hebrew	and	Gregorian	New	Years	coincide.	Hence,	a	Gregorian	year
always	 comprises	 part	 of	 two	 (and	 eventually,	 millennia	 from	 now,	 three)
Hebrew	years.	Thus	we	can	collect	a	list	of	anniversaries	in	the	possible	Hebrew
years:

where

Similar	functions	for	birthdays	can	be	written	for	other	calendars	with	variable-
length	years.



The	 customary	 anniversary	 date	 of	 a	 death	 is	 more	 complicated	 and
depends	also	on	the	character	of	the	year	in	which	the	first	anniversary	occurs.
There	are	several	cases:

Perhaps	these	rules	are	best	expressed	algorithmically:

	If	the	date	of	death	is	Marḥeshvan	30,	the	anniversary	in	general
depends	on	when	the	first	anniversary	occurs;	if	that	first	anniversary
was	not	on	Marḥeshvan	30,	use	the	day	before	Kislev	1.

	If	the	date	of	death	is	Kislev	30,	in	general	the	anniversary	again
depends	on	the	first	anniversary—if	that	was	not	Kislev	30,	use	the	day
before	Tevet	1.

	If	the	date	of	death	is	in	Adar	II,	the	anniversary	is	on	the	same	day	in
the	last	month	of	the	Hebrew	year	(Adar	or	Adar	II).

	If	the	date	of	death	is	Adar	I	30,	the	anniversary	in	a	Hebrew	year	that	is
not	a	leap	year	(in	which	Adar	has	only	29	days)	is	on	the	last	day	in
Shevat.

	In	all	other	cases,	use	the	normal	(that	is,	same	month	number)
anniversary	of	the	date	of	death.



(8.47)

(8.46)
There	are	minor	variations	in	custom	regarding	the	anniversary	date
in	 some	 of	 these	 cases.16	 For	 example,	 Spanish	 and	 Portuguese	 Jews	 never
observe	the	anniversary	of	a	common-year	date	in	Adar	I.

As	 with	 birthdays,	 anniversaries	 all	 occurring	 in	 a	 given	 Gregorian	 year
must	be	collected	together:

where



8.7 Possible	Days	of	the	Week
These	budget	numbers	are	not	just	estimates;	these	are	the	actual	results	for	the	fiscal	year	that
ended	February	the	30th.

George	W.	Bush:	President	Bush	Discusses	the	Economy	and	Budget	(October	2006)

As	described	on	page	117,	the	Hebrew	calendar	rule	lo	iddo	rosh	precludes
Tishri	1	 (Rosh	ha-Shanah)	 from	occurring	on	a	Sunday,	Wednesday,	or	Friday.
This	restriction	means	that,	throughout	the	year,	some	dates	are	precluded	from
occurring	on	certain	weekdays.	In	this	section,	we	examine	the	consequences	of
the	restriction,	developing	a	function	that	gives,	for	each	Hebrew	calendar	date,
a	list	of	the	possible	weekdays	on	which	it	can	occur.	It	turns	out	that,	though	a
Hebrew	year	can	begin	on	any	of	 four	weekdays,	can	be	 leap	or	ordinary,	and
can	be	long	(355	for	ordinary	years	and	385	for	leap	years),	short	(353	or	383),
or	regular	(354	or	384),	only	14	of	the	 	combinations	are	actually
possible.

The	Tishri	1	restriction	means	that	 that	date	can	occur	only	on	a	Monday,
Tuesday,	 Thursday,	 or	 Saturday.	 Because	 the	 lengths	 of	 the	 months	 Nisan
through	Tishri	 are	unvarying,	 the	 	 days	 separating	 the	previous
Nisan	 1	 from	 the	 following	 Tishri	 1	 mean	 that	 Nisan	 1	 occurs	 only	 on	 a
Saturday,	 Sunday,	 Tuesday,	 or	 Thursday.	 Thus,	we	 can	 determine	 the	 possible
weekdays	for	a	given	Hebrew	date	by	working	forward	from	Nisan	1.	The	fixed
lengths	of	 the	months	Nisan	through	Tishri	mean	that	for	any	date	h-month,	h-
day	from	Nisan	1	through	Marheshvan	29,	the	list	of	possible	weekdays	can	be



(8.49)

(8.48)

obtained	by	adding	the	number	of	days	from	Nisan	1	to	h-month,	h-day	to	each

value	in	the	list

and	 applying	 day-of-week-from-fixed	 to	 the	 sum.	 We	 use	 the
function

to	shift	a	list	such	as	(8.48)	by	a	given	increment.
Marheshvan	30	is	exceptional,	however.	Although	Marheshvan	29	can	be	a

Thursday,	Marheshvan	30	cannot	fall	on	a	Friday:	for	Marheshvan	29	to	be	on	a
Thursday,	Tishri	1	must	have	been	on	a	Tuesday.	Marheshvan	has	30	days	only
when	 the	 year	 is	 355	 or	 385	 days	 long.	 But	 if	 a	 355-day	 year	 began	 on	 a
Tuesday,	the	following	year	would	start	on	a	Sunday,	violating	lo	iddo	rosh.	And
for	 a	 leap	 year	 to	 be	 extended	 to	 385	 days,	 it	 would	 have	 to	 begin	 on	 a
permissible	 day	 that	 is	 preceded	by	 an	 excluded	day,	 so	 that	 the	molad	 of	 the
year	following	the	leap	year—which	is	just	under	384	days	after	the	molad	of	the
leap	year—falls	on	the	excluded	day	and	is	thereby	delayed.	Tuesday	is	not	such
a	day,	since	Monday	is	also	a	permissible	day,	so	a	long	leap	year	cannot	begin
on	a	Tuesday.

In	a	year	 in	which	Marheshvan	has	30	days,	 there	are	 	days
between	 Nisan	 1	 and	 Marheshvan	 30;	 that	 date	 falling	 on	 a	 Friday	 would
correspond	 to	Nisan	1	 falling	on	a	Sunday.	So,	 the	 possible	weekdays	 for	 any
Hebrew	date	Nisan–Marheshvan	 can	be	 found	by	 including	 sunday	 in	 the	 list



(8.50)

(8.48)	only	for	dates	from	Nisan	1	through	Marheshvan	29,	finding	the	number
of	 days	 from	 Nisan	 1	 to	 h-month,	 h-day,	 and	 applying	 shift-days	 with	 that
increment	to	the	list.

Other	dates	in	the	year	are	affected	by	three	factors:	whether	Marheshvan	is
long	(30	days)	or	short	(29	days),	whether	Kislev	is	long	or	short,	and	whether
the	year	 is	a	 leap	year.	For	example,	 the	calculations	described	 in	 the	previous
paragraph	 hold	 for	 days	 in	 Kislev	 when	Marheshvan	 does	 not	 have	 30	 days.
When	Marheshvan	does	have	30	days,	the	calculation	is	off	by	one	day,	meaning
that	it	is	as	though	Nisan	1	occurred	on	a	Wednesday,	Friday,	or	Sunday,	the	days
following	 the	 days	 in	 the	 list	 (8.48)	 with	 Sunday	 omitted.	 Thus,	 for	 dates	 in
Kislev,	we	can	find	possible	weekdays	by	augmenting	(8.48)	with

and	applying	shift-days	 to	 the	augmented	list.	Similar	considerations	apply	for
the	months	Tevet	through	Adar	or	Adar	II	in	leap	years.

We	can	calculate	 the	 interval	between	Nisan	1	and	h-month,	h-day	 in	any
leap	year	 in	which	 both	Marheshvan	 and	Kislev	 are	 long	 (a	maximal	 385-day
Hebrew	 year,	 so	 that	 every	 month-day	 combination	 occurs),	 adjusting	 the
contents	of	the	list	of	weekdays	equivalent	to	Nisan	1	as	needed.	We	arbitrarily
choose	the	385-day	Hebrew	year	5–6	A.M.	The	resulting	calculation	is	thus

where



This	 function	produces	 an	unsorted	 list	 of	 possible	weekdays	 for	 the	 specified
Hebrew	date.	For	 example,	 it	 tells	 us	 that	Tu	B’Shevat	 (Shevat	 15)	 can	 occur
only	on	 a	Thursday,	Saturday,	Monday,	Tuesday,	or	Wednesday;	 that	 is,	 it	 can
never	occur	on	a	Sunday	or	Friday.

The	 above	 function	 combines	 those	weekdays	 on	which	 a	 given	date	 can
occur	 in	 leap	 years	 with	 those	 on	 which	 it	 can	 occur	 in	 nonleap	 years.	 In
particular,	 there	 is	 a	 difference	 in	 possible	 dates	 during	 the	 twelfth	 month,
depending	on	whether	 it	 is	Adar	 in	a	plain	 (common)	year	or	Adar	 I	 in	a	 leap
year,	 that	 is	 not	 reflected	 in	 possible-hebrew-days.	 One	 can	 write	 a	 similar
function	that	gives	weekdays	for	leap	and	nonleap	years	separately.
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The	Ecclesiastical	Calendars
◈

We	send	you	the	good	news	concerning	the	unanimous	consent	of	all	in	reference	to	the
celebration	of	the	most	solemn	feast	of	Easter,	for	this	difference	also	has	been	made	up	by	the
assistance	of	your	prayers,	so	that	all	the	brethren	in	the	East,	who	formerly	celebrated	this
festival	at	the	same	time	as	the	Jews,	will	in	future	conform	to	the	Romans	and	to	us	and	to	all
who	have	from	of	old	kept	Easter	with	us.

Synodal	Letter	of	the	Council	of	Nicæa	to	the
Church	of	Alexandria	(325	C.E.)

The	 calculation	 of	 the	 date	 of	Easter	 has	 a	 fascinating	 history,	 and	 algorithms
and	computer	programs	abound	(for	example,	[1],	[2],	[9],	[10],	[14],	and	[17]);
there	are	also	oddities	such	as	the	“finger	algorithm”	shown	in	the	frontispiece	of
this	chapter	and	the	nomogram	of	Figure	9.1.	Many	of	the	computations	rely	on
the	 formulas	 of	Gauss	 [5],	 [6]	 (see	 also	 [8]).1	 Our	 fixed-date	 approach	 allows
considerable	simplification	of	“classical”	algorithms.



Figure	9.1	
Garrigues’	nomogram	for	finding	the	date	of	Easter	in	the	Julian	and	Gregorian
calendars.	For	an	explanation,	see	D.	Roegel,	“An	Introduction	to	Nomography,”
TUGboat,	vol.	30,	pp.	88–104,	2009.	(Courtesy	of	D.	Roegel.)

The	history	of	the	establishment	of	the	date	of	Easter	is	long	and	complex;
good	 discussions	 can	 be	 found	 in	 [3],	 [7],	 and	 [12].	 The	 Council	 of	 Nicæa
convened	 in	325	C.E.	by	Constantine	 the	Great,	was	concerned	with	uniformity
across	various	Christian	groups.	At	 the	 time	of	Nicæa,	 almost	 everyone	 in	 the
official	Church	agreed	to	the	definition	that	Easter	was	the	first	Sunday	after	the
first	full	moon	occurring	on	or	after	the	vernal	equinox	[3]	(a	rule	promulgated
by	Dionysius	Exiguus	and	the	Venerable	Bede,	who	attributed	it	to	the	Council
of	Nicæa).	By	this	definition,	Easter	is	delayed	one	week	if	the	full	moon	is	on	a
Sunday,	 lessening	 the	 likelihood	 of	 its	 being	 on	 the	 same	 day	 as	 the	 Jewish



Passover.	 This	 was	 contrary	 to	 the	 practice	 of	 the	 Quartodecimans,	 who
celebrated	Easter	on	the	day	of	the	full	moon,	14	days	into	the	month,	regardless

of	the	day	of	the	week.
The	 concern	 that	 the	 date	 of	Passover	would	 influence	 the	 date	 of	Easter

goes	 back	 to	 the	 earliest	 days	 of	 Christianity.	 For	 example,	 Eusebius	 (Vita
Constantini,	book	iii,	pp.	18–20)	gives	a	letter	of	the	Emperor	sent	to	those	not
present	at	the	Council	of	Nicæa:

When	the	question	relative	to	the	sacred	festival	of	Easter	arose	…	[i]t	was	declared	to	be
particularly	unworthy	for	this,	the	holiest	of	all	festivals,	to	follow	the	custom	of	the	Jews	…	We
ought	not,	therefore,	to	have	anything	in	common	with	the	Jews	…	we	desire,	dearest	brethren,	to
separate	ourselves	from	the	detestable	company	of	the	Jews,	for	it	is	truly	shameful	for	us	to	hear
them	boast	that	without	their	direction	we	could	not	keep	this	feast.	How	can	they	be	in	the	right,
they	who,	after	the	death	of	the	Saviour,	have	no	longer	been	led	by	reason	but	by	wild	violence,
as	their	delusion	may	urge	them?	They	do	not	possess	the	truth	in	this	Easter	question	…	it	would
still	be	your	duty	not	to	tarnish	your	soul	by	communications	with	such	wicked	people.

Avoiding	Passover	was	also	evident	 in	 the	Gregorian	reform	of	 the	Easter
calculation.	Canon	6	of	the	Gregorian	calendar,	published	in	1582	and	probably
written	by	the	German	Jesuit	astronomer	Christopher	Clavius,	says	so	twice:	 in
the	last	sentence	of	the	first	paragraph

ne	cum	Iudaeis	conveniamus,	si	forte	dies	XIV	lunae	caderet	in	diem	dominicum	[so	that	we
would	not	come	together	with	the	Jews	if	by	chance	day	14	of	the	moon	may	fall	on	a	Sunday]

and	in	the	middle	of	the	second	paragraph
Ne	igitur	cum	Iudaeis	conveniamus,	qui	Pascha	celebrant	die	XIV	lunae	…	[Hence	so	that	we
would	not	come	together	with	the	Jews	who	celebrate	Passover	on	day	14	of	the	moon	…]

The	 definition	 of	 Easter	 as	 “the	 first	 Sunday	 after	 the	 first	 full	 moon
occurring	 on	 or	 after	 the	 vernal	 equinox”	 seems	 precise,	 but	 accurate
determination	 of	 the	 full	 moon	 and	 the	 vernal	 equinox	 is	 quite	 complex,	 and
simpler	approximations	are	used	in	practice.

9.1 Orthodox	Easter



The	rules	given	in	Protestant	Episcopal	Prayer	Book	for	computing	Easter,	if	applied	to	any
almanac	of	the	present	year,	would	make	the	Roman	and	Greek	Easter	come	on	the	same	day,
namely,	April	14,	since	the	full	moon	next	after	the	21st	of	March	comes	on	the	4th	of	April
according	to	our	calendar,	or	the	27th	of	March	according	to	the	Greek.	But	the	Roman	Easter
this	year	is	on	the	10th	of	April,	and	the	Greek	is	one	week	later	…	The	Jewish	passover	this	year
occurs	on	the	9th	of	April,	which	agrees	better	with	the	Western	than	the	Eastern	Easter.

Sunday	School	Times	(1887)

As	implemented	by	Dionysius	Exiguus	in	525	C.E.,	the	date	of	Easter	is	based	on
the	presumption	that	the	vernal	equinox	is	always	March	21	and	on	ecclesiastical
approximations	 to	 the	 lunar	 phases	 called	 epacts.	 Epacts	 are	 computed	 on	 the
basis	of	the	fact	that	new	moons	occur	on	about	the	same	day	of	the	solar	year
(adjusted	 for	 leap	 years)	 in	 a	 cycle	 of	 19	 years,	 called	 the	 Metonic	 cycle,
comprising	235	lunations	(see	page	12).

Before	 the	 Gregorian	 reform	 of	 the	 Julian	 calendar,	 the	 approximations
were	fairly	crude.	If	the	Metonic	cycle	were	perfectly	accurate,	the	phase	of	the
moon	on	January	1	would	be	the	same	every	19	years.	Hence,	the	epact	can	be
approximated	by	multiplying	 the	number	of	years	since	 the	start	of	 the	current
Metonic	cycle	(the	so-called	golden	number)	by	the	11-day	difference	between	a
common	year	of	365	days	and	12	lunar	months	of	 	days	and	adjusting	by	the
epact	of	January	1,	1	C.E.	(Julian)—all	this	done	modulo	30.	To	find	the	last	full
moon	 (that	 is,	 day	14	of	 the	monthly	 cycle)	prior	 to	April	 19,	we	 subtract	 the
phase	of	the	moon	on	April	5	(14	days	earlier)	from	the	fixed	date	of	April	19.
(The	 number	 of	 days	 between	 full	 moon	 and	 April	 19	 is	 equal	 to	 the	 days

between	new	moon	and	April	5.)	The	moon’s	phase	(in	days)	on	April	5,	called
the	shifted-epact	in	the	function	below,	increases	by	11	days	each	year,	modulo
30,	taking	on	the	values	14,	25,	6,	17,	28,	9,	20,	1,	12,	23,	4,	15,	26,	7,	18,	29,
10,	21,	 2	 in	 sequence.	Going	back	 that	number	of	days	 from	April	 19	gives	 a
date	between	March	21	and	April	18,	inclusive,	for	the	(ecclesiastical)	“paschal
full	moon.”



(9.1)

Thus,	 the	 equivalent	 of	 the	 following	 calculation	 was	 used	 to	 determine
Easter	 from	 the	 end	 of	 the	 eighth	 century	 until	 the	 adoption	 of	 the	Gregorian
calendar,	and	it	is	still	used	by	all	Orthodox	churches	except	those	in	Finland	and
Estonia:

where

Because	 the	 shifted	 epact	 is	 never	 0,	 the	 calculated	 full	 moon	 is	 never	 on
April	19.	The	earliest	date	for	Easter	Sunday	is	therefore	March	22	(Julian),	and
the	 latest	 is	 April	 25	 (Julian).	 By	 this	 rule,	 Easter	 and	 Passover	 have	 not
coincided	since	783	C.E.

The	Julian	leap-year	cycle	of	4	years	contains	208	weeks	and	5	days.	Only
after	28	years	do	all	dates	on	 the	Julian	calendar	return	 to	 the	same	day	of	 the
week.	The	combination	of	 this	 “solar”	cycle	and	 the	19-year	 lunar	cycle	gives
rise	 to	 the	532-year	“Victorian”	or	“Dionysian”	cycle	 for	 the	date	of	Orthodox
Easter.	The	average	length	of	a	lunar	month	according	to	this	method	is

The	number	of	 full	moons	between	April	19	of	2	successive	years	can	be
either	12	or	13.	The	distribution	of	 leap	years	of	13	 lunar	 cycles	 and	ordinary
years	of	12	follows	the	regular	pattern	described	by	formula	(1.85)	with	 ,	

,	and	 ,	namely



(9.2)

This	observation	leads	to	an	alternative	formula	for	the	fixed	date	of	the	paschal
moon:

where

The	minimum	12	lunar	months	per	year	contribute	354	days;	7	out	of	19	years
include	a	thirteenth	lunar	month	of	30	days;	each	leap	year	contributes	an	extra
day	 to	 the	 total	 number	of	 elapsed	days;	 but	 every	19	years	 the	 lunar	 cycle	 is
reset	 to	begin	one	day	earlier	 in	a	shift	called	saltus	 lunae,	 the	 “moon’s	 leap.”
Subtracting	273	accounts	 for	 the	 fixed	date	of	 the	Paschal	 full	moon	 in	1	C.E.,
when	 .

9.2 Gregorian	Easter
If	yet	your	Lordship	think	it	necessary	that	the	seat	of	Easter	should	be	rectified,	that	may	easily
be	done,	without	altering	the	Civil	Year.	For	if	in	the	Rule	of	Easter,	instead	of	saying,	next	after
the	one	 	twentieth	of	March,	you	say,	next	after	the	Vernal	Equinox,	the	work	is	done.	For	then
every	Almanack	will	tell	you	when	it	is	Equinox	and	when	it	is	Full	Moon	for	the	present	Year
without	disturbing	the	Civil	Account,	and	this	Pope	Gregory	might	as	well	have	done	without
troubling	the	Civil	Account	of	Christendom.

John	Wallis:	Letter	to	the	Bishop	of	Worcester	(June	30,	1699)



The	Gregorian	 reform	of	1582	C.E.	 included	 a	more	 accurate	 approximation	 to
the	lunar	phases	for	the	calculation	of	Easter	developed	by	Clavius	and	based	on
the	suggestions	of	Naples	astronomer	Aloysius	Lilius.	Two	corrections	and	two
adjustments	are	employed	in	the	Gregorian	rule	for	Easter:

In	3	out	of	4	century	years,	the	Gregorian	leap-year	rule	causes	a	shift	of
1	day	forward	in	the	date	of	the	full	moon.	This	is	taken	into	account	in
the	calculation	of	epacts	by	subtracting	1	for	each	nonleap	century	year.

The	first	correction	keeps	the	lunar	cycle	synchronized	with	the	Julian
calendar.	But	19	Julian	years	of	365.25	days	are	a	fraction	longer	than
235	mean	lunations.	Thus,	a	corrective	factor	of	1	day	is	added	to	the
epact	in	8	out	of	25	century	years.	The	epacts	of	centuries	3,	6,	9,	12,	15,
19,	22,	and	25	are	affected	by	this	correction.	A	1-day	bias	is	said	to	have
been	introduced	deliberately	in	the	initial	sixteenth-century	epact	value
of	5	to	minimize	the	coincidences	of	Easter	and	Passover	(which	is
likewise	based	on	the	19-year	Metonic	cycle;	see	Section	sec-Jewish.

The	old	limits	on	the	dates	of	the	ecclesiastical	full	moon	were	preserved
in	the	reformed	calendar.	Unfortunately,	with	the	new	century-year	rule	a

shifted	epact	of	0	becomes	possible,	which,	if	used,	would	place	the	full
moon	on	April	19.	Whenever	that	occurs,	the	epact	is,	therefore,	adjusted
to	1,	which	pushes	the	full	moon	date	back	to	April	18.

Clavius	also	strived	to	retain	the	property	that	the	date	of	the	Easter
moon	never	repeats	within	a	single	19-year	cycle.	The	problem	is	that
when	the	previous	adjustment	is	made	and	the	shifted	epact	is	set	to	1
instead	of	0,	the	same	shifted	epact	may	also	occur	11	years	later.	The
solution	is	again	to	increase	any	shifted	epact	of	1	occurring	in	the
second	half	(after	year	10)	of	a	cycle.



(9.3)

These	 adjustments	 give	 the	method	 now	 used	 by	Catholic	 and	 Protestant
churches:

where

The	sequence	of	dates	of	Easter	repeats	only	after	5700000	years,	the	least
common	multiple	 of	 the	 19-year	Metonic	 cycle,	 the	 400	 years	 it	 takes	 for	 the
Gregorian	calendar	to	return	to	the	same	pattern	of	days	of	 the	week,	 the	4000
years	it	takes	for	the	Gregorian	leap-year	corrections	to	add	up	to	30	days,	and
the	9375	years	 it	 takes	for	 the	correction	to	the	Metonic	cycle	to	amount	to	30
days.	 This	 cycle	 comprises	 2081882250	 days	 and	 70499183	 months	 for	 an
average	lunar	month	of	approximately	29.530587	days.



With	the	new	method,	over	 the	entire	5700000	year	cycle,	 the	most	 likely
date	of	Easter	is	April	19	(almost	4%	of	the	years),	while	the	least	likely	date	is
March	22	(less	than	0.5%);	the	full	distribution	of	dates	is	shown	in	Figure	9.2.
By	the	new	rule,	Easter	and	Passover	coincided	once	in	the	seventeenth	century
(in	1609),	twice	in	the	nineteenth	(1805	and	1825),	and	5	times	in	the	twentieth
century,	but	will	not	do	so	again	until	2123.



Figure	9.2	
Distribution	of	Gregorian	Easter	dates	over	the	full	5700000-year	cycle.

The	ecclesiastical	calendar	is	more	than	just	a	rule	for	calculating	the	date
of	Easter;	it	is	a	fully-fledged	lunisolar	calendar,	with	12	or	13	months	per	year.



The	golden	number	and	the	epact	of	the	year	determine	its	structure.	There	are
32	possible	values	for	the	epact:	1–30	(usually	given	as	a	roman	numeral	i–xxx),
representing	the	age	of	the	moon	on	January	30	(which	is	one	less	than	its	age	on
January	1,	assuming	a	month	length	of	30),	plus	two	exceptional	alternate	values
for	 epacts	19	 and	25.	Our	shifted-epact	 is	 the	 epact	 shifted	 by	6	 (modulo	 30).
The	two	exceptions	are	that,	for	years	12–19	of	the	19-year	cycle,	the	alternate
epact	25	is	used,	and,	for	year	19	of	the	cycle,	one	uses	the	exceptional	epact	19
in	 addition	 to	 the	 regular	 one.	 The	 latter	 rule,	 however,	 does	 not	 cover	 all
contingencies,	as	explained	in	detail	in	[15].	In	particular,	there	is	a	missing	new
moon	between	December	2,	16399	and	January	30,	16400	and	there	are	back-to-
back	new	moons	on	December	31,	4199	and	January	1,	4200.

9.3 Astronomical	Easter
Easter	is	a	feast,	not	a	planet.

Johannes	Kepler2

As	an	alternative	 to	 the	arithmetic	calculation	of	Easter,	which	 is	based	on	 the
mean	motions	of	the	sun	and	moon,	astronomical	calculations	are	possible.	One
needs	 only	 to	 determine	 the	 actual	 time	 of	 the	 first	 full	moon	 after	 the	 vernal
equinox.	 Indeed,	Kepler’s	Rudolphine	astronomical	 tables	were	used	 to	 fix	 the
date	of	Easter	by	Protestants	in	Germany	between	1700	and	1776,	and	Sweden
used	 astronomical	 rules	 from	 1740	 to	 1844.	 In	 1997,	 the	 World	 Council	 of
Churches	[16]	proposed	a	uniform	date	for	Easter	for	both	Eastern	and	Western
churches,	 reverting	 to	 astronomical	 calculations	of	 the	 equinox	and	 full	moon.
These	calculations	are	discussed	in	Section	18.2.

Table	9.1	gives	 the	different	dates	for	 the	Easter	full	moon	(not	for	Easter
itself,	which	 is	 on	 the	 following	Sunday)	 on	 the	 basis	 of	Western	 and	Eastern
practice	 and	 the	 proposed	 astronomical	 rule,	 with	 the	 dates	 of	 Passover	 Eve,



according	 to	 the	Hebrew	 calendar	 of	Chapter	 8	 and	 the	 classical,	 observation-

based,	Hebrew	calendar	described	in	Section	18.4.

Table	9.1	Julian	dates	of	Passover	Eve	(Nisan	14),	for	the	years	9–40	C.E.,
according	to	the	Hebrew	arithmetic	and	observational	calendars,	and	of	the
Easter	full	moon	preceding	Easter	Sunday,	according	to	the	Orthodox,
Gregorian,	and	proposed	astronomical	rules.	(For	the	futility	of	attempting	to
determine	the	date	of	the	crucifixion	from	such	data,	see	chap.	9	of
R.	T.	Beckwith,	Calendar	and	Chronology,	Jewish	and	Christian:	Biblical,
Intertestamental	and	Patristic	Studies,	E.	J.	Brill,	Leiden,	1996.)

9.4 Movable	Christian	Holidays



(9.4)

[The	originators	of	the	Gregorian	calendar]	had	chosen	[their	Easter	calculation]	to	be	wrong
with	the	moon	rather	than	be	right	with	the	Jews.

T.	H.	O’Beirne:	Puzzles	and	Paradoxes	(1965)

Many	Christian	holidays	depend	on	the	date	of	Easter:	Septuagesima	Sunday	(63
days	 before),	 Sexagesima	 Sunday	 (56	 days	 before),	 Shrove	 Sunday	 (49	 days
before),	 Shrove	Monday	 (48	 days	 before),	 Shrove	Tuesday	 or	Mardi	Gras	 (47

days	 before),	 Ash	 Wednesday	 (46	 days	 before),	 Passion	 Sunday	 (14	 days
before),	 Palm	 Sunday	 (7	 days	 before),	 Holy	 or	 Maundy	 Thursday	 (3	 days
before),	 Good	 Friday	 (2	 days	 before),	 Rogation	 Sunday	 (35	 days	 after),
Ascension	 Day	 (39	 days	 after),	 Pentecost	 (also	 called	 Whitsunday—49	 days
after),	Whit	Monday	(50	days	after),	Trinity	Sunday	(56	days	after),	and	Corpus
Christi	 (60	 days	 after,	 or	 63	 days	 after,	 in	 the	 Catholic	 Church	 in	 the	 United
States.).3	All	these	are	easily	computed;	for	example

The	 40	 days	 of	 Lent,	 or	 Quadragesima,	 begin	 on	 Ash	 Wednesday.
Orthodox	 Christians	 begin	 Lent	 7	 weeks	 (48	 days)	 before	 Eastern	 Orthodox
Easter,	 on	 a	 Monday.	 The	 Eastern	 Orthodox	 Church	 celebrates	 the	 Feast	 of
Orthodoxy	on	the	following	Sunday	(42	days	before	Eastern	Orthodox	Easter).
The	Orthodox	Fast	of	the	Apostles	begins	8	days	after	Orthodox	Pentecost	and
ends	on	June	28	on	the	Julian	calendar.

The	ecclesiastical	year	begins	with	Advent	Sunday	(see	page	71).

References
[1]			E.	R.	Berlekamp,	J.	H.	Conway,	and	R.	K.	Guy,	Winning	Ways,	vol.	2,

Games	in	Particular,	Academic	Press,	New	York,	1982.
[2]			R.	Bien,	“Gauß	and	Beyond:	The	Making	of	Easter	Algorithms,”	Archive

for	History	of	Exact	Sciences,	vol.	58,	no.	5,	pp.	439–452,	July	2004.



[3]			G.	Declercq,	Anno	Domini:	The	Origins	of	the	Christian	Era,	Brepols
Publishers,	Turnhout,	Belgium,	2000.

[4]			J.	K.	Fotheringham,	“The	Calendar,”	The	Nautical	Almanac	and
Astronomical	Ephemeris,	His	Majesty’s	Stationery	Office,	London,	1931–
1934;	revised	1935–1938;	abridged	1939–1941.

[5]			C.	F.	Gauss,	“Berechnung	des	Osterfestes,”	Monatliche	Correspondenz
zur	Beförderung	der	Erd-	und	Himmels-Kunde,	Herausgegeben	vom
Freiherrn	von	Zach	(August	1800).	Reprinted	in	Gauss’s	Werke,
Herausgegeben	von	der	Königlichen	Gesellschaft	der	Wissenschaften,
Göttingen,	vol.	6,	pp.	73–79,	1874.

[6]			C.	F.	Gauss,	“Noch	etwas	über	die	Bestimmung	des	Osterfestes,”
Braunschweigisches	Magazin	(September	12,	1807).	Reprinted	in	Gauss’s
Werke,	Herausgegeben	von	der	Königlichen	Gesellschaft	der
Wissenschaften,	Göttingen,	vol.	6,	pp.	82–86,	1874.

[7]			J.	L.	Heilbron,	The	Sun	in	the	Church:	Cathedrals	as	Solar	Observatories,
Harvard	University	Press,	Cambridge,	MA,	1999.

[8]			H.	Kinkelin,	“Die	Berechnung	des	christlichen	Osterfestes,”	Zeitschrift
für	Mathematik	und	Physik,	vol.	15,	pp.	217–228,	1870.

[9]			D.	E.	Knuth,	“The	Calculation	of	Easter,”	Communications	of	the	ACM,
vol.	5,	pp.	209–210,	1962.

[10]			D.	E.	Knuth,	The	Art	of	Computer	Programming,	vol.	1,	Fundamental
Algorithms,	3rd	edn.,	Addison-Wesley,	Reading,	MA,	1997.

[11]			J.	Meeus,	Mathematical	Astronomy	Morsels,	Willmann-Bell,	Richmond,
VA,	1997.

[12]			A.	A.	Mosshammer,	The	Easter	Computus	and	the	Origins	of	the
Christian	Era,	Oxford	University	Press,	Oxford,	2008.

[13]			G.	Moyer,	“The	Gregorian	Calendar,”	Scientific	American,	vol.	246,	no.
5,	pp.	144–152,	May	1982.

[14]			T.	H.	O’Beirne,	Puzzles	and	Paradoxes,	Oxford	University	Press,	Oxford,
1965.	Reprinted	by	Dover	Publications,	New	York,	1984.

[15]			D.	Roegel,	“The	missing	new	moon	of	A.D.	16399	and	other	anomalies	of
the	Gregorian	calendar,”	INRIA	internal	report	A04-R-436,	2004.
Available	at	hal.inria.fr/inria-00099868/document.

[16]			World	Council	of	Churches,	“The	Date	of	Easter:	Science	Offers	Solution
to	Ancient	Religious	Problem,”	Press	release,	March	24,	1997.

[17]			J.	V.	Uspensky	and	M.	A.	Heaslet,	Elementary	Number	Theory,	McGraw-
Hill,	New	York,	1939.



1			Gauss’s	original	paper	contained	an	error	(which	he	later	corrected)	that	affects	the	date	of	Easter
first	in	4200	C.E.;	see	[14].

2			The	source	of	this	quotation	(in	German,	“Ostern	ist	ein	Fest	vnd	khein	Stern”)	is	an	unpublished
paper	Ein	Gespräch	von	der	Reformation	des	alten	Kalenders	worauff	die	Correctio	Gregoriana	gegründet,
written	in	German	by	Kepler	in	1613;	a	Latin	translation	of	this	paper	was	published	by	M.	G.	Hansch	as
Liber	singularis	de	Calendario	Gregoriano	sive	de	reformatione	Calendarii	Juliani	necessaria	et	de
fundamentis	atque	ratione	correctionis	Gregorianae,	(Leipzig,	1726).	The	German	text	of	this	paper	has
been	published	only	as	the	Dialogus	de	Calendario	Gregoriano	in	the	C.	Frisch	edition	(1858–1871)	of
Kepler’s	collected	works,	Joannis	Kepleri	Opera	Omnia,	vol.	4,	p.	37,	1863.	Kepler’s	paper	is	a	dialogue
between	a	“Mathematicus”	(Kepler),	two	Catholics	(“Confessarius”	and	“Cancellarius”)	and	two
Protestants	(“Ecclesiastes”	and	“Syndicus”),	who	argue	the	desirability	of	the	Gregorian	reform.	Kepler,	the
imperial	mathematician	of	Emperor	Matthias,	wrote	this	dialogue	for	the	Emperor	who	wanted	to	be
informed	about	this	subject.	Kepler	was	a	proponent	of	the	Gregorian	calendar	but	cared	little	about
theological	disputes	and	argued	that	the	date	of	Easter,	like	other	days	of	observance,	should	not	depend	on
long	and	arduous	calculations	such	as	are	necessary	for	predicting	the	positions	of	the	planets.	We	are
indebted	to	Robert	H.	van	Gent	for	this	information.

3			Because	of	the	extensive	liturgical	changes	after	the	Second	Vatican	Council,	the	Catholic	Church	no
longer	observes	Septuagesima,	Sexagesima,	and	Shrove	Sunday	through	Tuesday.

	



Stone	astrolabe	from	India.	(Courtesy	of	Adler	Planetarium	&	Astronomy
Museum,	Chicago,	IL.)
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The	Old	Hindu	Calendars
◈

Scientists	with	advanced	computers	have	sometimes	failed	to	predict	major	earthquakes,	but
ancient	Indian	astrology	does	have	the	tools	to	roughly	foretell	the	time	and	sometimes	even	the
exact	date	and	time	of	an	earthquake.

Murli	Manohar	Joshi:	The	Irish	Times	(August	4,	2003)

10.1 Structure	and	History

The	 Hindus	 have	 both	 solar	 and	 lunisolar	 calendars.	 In	 the	 Hindu	 lunisolar
system,	 as	 in	 other	 lunisolar	 calendars,	months	 follow	 the	 lunar	 cycle	 and	 are
synchronized	with	the	solar	year	by	introducing	occasional	leap	months.	Unlike
the	 Hebrew	 lunisolar	 calendar	 (described	 in	 Chapter	 8),	 Hindu	 intercalated
months	do	not	follow	a	short	cyclical	pattern.	Moreover,	unlike	other	calendars,
a	day	can	be	omitted	any	time	in	a	lunar	month.

Modern	 Hindu	 calendars	 are	 based	 on	 close	 approximations	 to	 the	 true
times	of	the	sun’s	entrance	into	the	signs	of	the	zodiac	and	of	lunar	conjunctions
(new	 moons).	 Before	 about	 1100	 C.E.,	 however,	 Hindu	 calendars	 used	 mean
times.	Though	the	basic	structure	of	the	calendar	is	similar	for	both	systems,	the
mean	(madhyama)	and	true	(spaṣṭa)	calendars	can	differ	by	a	few	days	or	can	be
shifted	by	a	month.	In	this	chapter	we	implement	the	mean	system,	as	described
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in	 [4,	 pp.	 360–446],	which	 is	 arithmetical;	 Chapter	 20	 is	 devoted	 to	 the	more
recent	 astronomical	 version.	 For	 an	 ancient	 description	 of	 Hindu	 astronomy,

calendars,	and	holidays,	see	the	book	on	India	by	al-Bīrūnī	[1];1	a	more	modern
reference	is	[3].

There	are	various	epochs	that	are,	or	have	been,	used	as	starting	points	for
the	enumeration	of	years	in	India.	For	a	list	of	eras,	see	[5,	pp.	39–47,	civ–cvi].
In	 this	chapter,	we	use	 the	expired	Kali	Yuga	(“Iron	Age”)	epoch.	The	expired
year	number	is	the	number	of	years	that	have	elapsed	since	the	onset	of	the	Kali
Yuga.2	As	van	Wijk	[6]	explains:

We	count	the	years	of	human	life	in	expired	years.	A	child	of	seven	years	has	already	lived	more
than	seven	years;	but	on	the	famous	18	Brumaire	de	l’An	VIII	de	la	République	Française	une	et
indivisible	only	7	years	and	47	days	of	the	French	Era	had	elapsed.

The	first	day	of	year	0	K.Y.3	is	Friday,	January	23,	 	(Gregorian)	or	February
18,	3102	B.C.E.	(Julian),	that	is,	R.D.	–1132959:

Time	is	measured	in	days	and	fractions	since	this	epoch.
The	Kali	Yuga	epoch	marks—in	Hindu	chronology—the	onset	of	the	fourth

and	 final	 stage	 (lasting	432000	years)	 of	 the	4320000-year	 era	beginning	with
the	 last	 recreation	of	 the	world.	Civil	 days	begin	 at	mean	 sunrise,	 reckoned	as
one	quarter	of	a	day	past	midnight—that	is,	at	6:00	a.m.	The	midnight	just	prior
to	day	1	of	the	Hindu	calendar	is	considered	to	have	been	the	start	of	a	new	lunar
month;	 indeed,	 in	 Hindu	 astronomy	 it	 was	 the	 time	 of	 the	 most	 recent	mean
conjunction	 of	 all	 the	 visible	 planets	 (the	 sun,	 moon,	 Mercury,	 Venus,	 Mars,
Jupiter,	and	Saturn).

The	Hindus	also	have	a	day	count	beginning	with	the	first	day	of	the	Kali
Yuga.	To	compute	it	we	simply	add	the	R.D.	date	to	the	number	of	days	from	the
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onset	of	the	Kali	Yuga	until	R.D.	0;	that	is,	we	subtract	the	epoch:

A	day’s	number	is	called	its	ahargaṇa	(“heap	of	days”)	and	is	traditionally	used
to	determine	the	day	of	the	week	by	casting	off	sevens	just	as	we	have	done	with
our	R.D.	numbering.

The	 names	 of	 the	 days	 of	 the	 week	 (going	 back	 to	 the	 third	 or	 fourth
century	C.E.)	are

Sunday Ravivāra	or
Ādityavāra

Monday Somavāra	or
Candravāra

Tuesday Maṅgalavāra	or
Bhaumavāra

Wednesday Budhavāra	or
Saumyavāra

Thursday Bṛihaspatvāra	or
Guruvāra

Friday Śukravāra

Saturday Śanivāra

The	Hindu	value	for	the	(sidereal)	year	(the	mean	number	of	days	it	 takes
for	 the	 sun	 to	 return	 to	 the	 same	 point	 vis-à-vis	 the	 celestial	 globe—see
Section	14.4)	is
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or	 	=	 	civil	days.
A	Jovian	cycle	is	also	employed.	It	takes	Jupiter	about	12	years	to	circle	the

sun;	the	Hindu	value	is

days.	The	Jovian	period	 is	divided	 into	12	equal	periods	of	 time,	one	 for	each
sign	 of	 the	 zodiac.	 Five	 revolutions	 of	 Jupiter	 give	 a	 60-year	 cycle	 of	 year
names,	 called	 samvatsaras,	 listed	 in	 Table	 10.1.	 The	 Jovian	 year	 number
corresponding	 to	 the	 start	 of	 a	 solar	 year	 is	 computed	 from	 the	 fixed	 date	 as
follows:

Table	10.1	The	names	of	the	samvatsaras	of	the	Hindu	Jovian	cycle	of	60	years.

(1)	Prabhava

(2)	Vibhava

(3)	Śukla

(4)	Pramoda

(5)	Prajāpati

(6)	Aṅgiras

(7)	Śrīmukha

(8)	Bhāva

(9)	Yuvan



(10)	Dhātṛ

(11)	Iśvara

(12)	Bahudhānya

(13)	Pramāthin

(14)	Vikrama

(15)	Vṛṣa

(16)	Citrabhānu

(17)	Subhānu

(18)	Tāraṇa

(19)	Pārthiva

(20)	Vyaya

(21)	Sarvajit

(22)	Sarvadhārin

(23)	Rākṣasa

(24)	Vikṛta

(25)	Khara

(26)	Nandana

(27)	Vijaya

(28)	Jaya



(29)	Manmatha

(30)	Durmukha

(31)	Hemalamba

(32)	Vilamba

(33)	Vikārin

(34)	Śarvari

(35)	Plava

(36)	Śubhakṛt

(37)	Śobhana

(38)	Krodhin

(39)	Viśvāvasu

(40)	Parābhava

(41)	Plavaṅga

(42)	Kīlaka

(43)	Saumya

(44)	Sādhāraṇa

(45)	Virodhakṛt

(46)	Paridhāvin

(47)	Pramāthin
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(48)	Ānanda

(49)	Rākṣasa

(50)	Anala

(51)	Piṅgala

(52)	Kālayukta

(53)	Siddhārthin

(54)	Rāudra

(55)	Durmati

(56)	Dundubhi

(57)	Rudhirodgārin

(58)	Raktākṣa

(59)	Krodhana

(60)	Kṣaya

Because	a	Jovian	“year”	is	somewhat	shorter	than	a	solar	year,	consecutive	solar
years	do	not	necessarily	carry	consecutive	Jovian	names.	In	that	case,	every	86
years	or	so	the	samvatsara	for	that	year	is	said	to	be	“expunged.”
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The	 Jovian	 cycle	 and	 all	 other	 figures	 are	 given	 in	 traditional	 Hindu
astronomy	as	rational	numbers.	The	numerators	and	denominators	of	the	rational
numbers	 obtained	 during	 the	 intermediate	 calculations	 exceed	 32	 binary	 digits
but	remain	below	 ;	 thus,	 they	can	be	reformulated	as	 integer	calculations	on
64-bit	computers.

Different	 Indian	 astronomical	 treatises	 give	 slightly	 varying	 astronomical
constants;	in	this	chapter	we	follow	the	(First)	Ārya	Siddhānta	of	Āryabhaṭa	(499
C.E.),	as	amended	by	Lalla	(circa	720–790	C.E.).	There	are	also	many	variations	in
detail	of	the	calendars;	we	describe	only	one	version.

10.2 The	Solar	Calendar
Sometimes	I	cannot	help	regretting	that	only	so	very	few	readers	can	rejoice	with	me	in	the
simplicity	of	the	method	and	the	exactness	of	its	results.

Walther	E.	van	Wijk:	“On	Hindu	Chronology	III,”
Acta	Orientalia	(1924)

A	solar	month	is	one-twelfth	of	a	year:

or	 	 days.	The	 solar	 (saura)	months	 are	 sometimes	 named	 in	 Sanskrit
after	the	signs	of	the	zodiac	corresponding	to	the	position	of	the	mean	sun;	these
signs	are	given	 in	Table	10.2.	 In	most	 locations,	however,	 the	same	names	are
used	as	in	the	lunisolar	scheme.	These	are	given	in	the	last	column;	see	the	list
on	page	160.

Table	10.2	Hindu	solar	(saura)	months,	named	after	the	signs	of	the	zodiac
corresponding	to	the	position	of	the	mean	sun.
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The	solar	New	Year	is	called	Mesha	saṃkrānti.	Each	solar	month	 is	30	or
31	days	long	and	begins	on	the	day	of	the	first	sunrise	after	the	calculated	time
of	the	mean	sun’s	entry	into	the	next	zodiacal	sign.	If	that	calculated	time	is	after
midnight	but	before	or	at	sunrise,	then	the	day	of	entry	is	the	first	day	of	the	new
month;	otherwise,	 it	 is	 the	last	day	of	 the	previous	month.	Hence,	even	 though
the	mean	month	 is	a	constant,	months	vary	 in	 length.	Our	R.D.	0	 is	Makara	19,
3101	K.Y.	on	the	mean	solar	calendar.

Converting	 a	 solar	 date	 according	 to	 this	 old	 Hindu	 calendar	 into	 an
R.D.	date	is	straightforward:

Because	 year	 is	 the	 number	 of	 years	 that	 have	 elapsed	 since	 the	 epoch,	 we
multiply	 it	 by	 the	 average	 length	 of	 a	 year,	 which	 is	 a	 fraction,	 and	 add	 the
number	 of	 days	 (and	 fractions	 of	 a	 day)	 in	 the	 elapsed	months	 of	 the	 current



(10.8)

year.	That	gives	 the	 time	at	which	 the	current	month	began,	 to	which	 is	added
the	fixed	date	of	the	epoch	and	the	number	of	days	up	to	and	including	the	given
day.	 If	 the	 resultant	moment	 is	 after	mean	 sunrise	 (6	 a.m.),	 then	we	 have	 the
correct	fixed	date;	if	it	is	before	sunrise,	we	need	to	subtract	1.	Subtracting	
from	the	resultant	moment	and	taking	the	ceiling	has	this	effect.

Inverting	the	process	is	not	much	harder:

where

Here,	sun	is	the	number	of	days	and	the	fraction	of	a	day	( )	that	have	elapsed
since	 the	Hindu	 epoch	 at	mean	 sunrise—the	decisive	moment—on	 fixed	date;
year	is	the	number	of	mean	years	that	have	elapsed	at	that	moment;	month	is	the
number	of	the	current	solar	month,	counting	mean	months	from	the	beginning	of
that	 solar	 year;	 and	 day	 is	 the	 number	 of	 the	 civil	 day,	 counting	 from	 the
beginning	of	the	solar	month.

10.3 The	Lunisolar	Calendar
I	sincerely	hope	that	leading	Indian	pañcāṅg-makers,	astronomers	and	mathematicians	will	keep
their	Siddhāntic	reckoning	as	pure	as	possible	and	not	use	the	old	works	for	purposes	they	can
never	be	able	to	serve,	mindful	of	the	sage	word:	no	man	putteth	a	piece	of	undressed	cloth	upon
an	old	garment;	for	that	which	should	fill	it	up	taketh	from	the	garment,	and	a	worse	rent	is	made.



Walther	E.	van	Wijk:	“On	Hindu	Chronology	IV,”
Acta	Orientalia,	vol.	IV	(1926)

We	will	 follow	the	south-India	method	 in	which	months	begin	and	end	at	new
moons	 (the	 amānta	 scheme);	 in	 the	 north,	 months	 go	 from	 full	 moon	 to	 full
moon	(the	pūrṇimānta	scheme).	The	name	of	a	lunar	month	depends	on	the	solar
month	 that	 begins	 during	 that	 lunar	 month.	 A	 month	 is	 leap	 and	 takes	 the
following	month’s	name	when	no	solar	month	begins	within	it.	See	Figure	10.1.

The	Sanskrit	names	themselves	are	based	on	the	longitudinal	position	of	the
moon	at	mid-month:

(1)	Caitra

(2)	Vaiśākha

(3)	Jyeṣṭha

(4)	Āṣāḍha

(5)	Śrāvaṇa

(6)	Bhādrapada

(7)	Āśvina

(8)	Kārtika

(9)	Mārgaśīrṣa

(10)	Pauṣa

(11)	Māgha

(12)	Phālguna
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Some	regions	of	 India	begin	 the	year	with	Kārtika	and	use	different	or	 shifted
month	names.

Because	a	 solar	month	 (see	Section	14.6)	 is	 longer	 than	 a	 lunar	month,	 a
lunar	month	 is	 intercalated	whenever	 the	 latter	 is	wholly	 contained	within	 the
former.	That	lunar	month	and	the	following	take	the	same	name	except	that	the
first	 is	 leap,	called	adhika	 (“added,”	or	prathama,	 first),	and	 the	second	 is	nija
(“regular,”	or	dvitīya,	second).4	In	the	rare	event	(at	the	onset	of	K.Y.	0,	and	every
180000	years	later)	that	both	the	lunar	and	solar	month	end	at	the	same	moment
and,	 hence,	 that	 the	 following	 lunar	 and	 solar	months	 both	 begin	 at	 the	 same
moment,	we	follow	the	explicit	statement	of	al-Bīrūnī	[1,	vol.	2,	pp.	20–21]	that
the	former	lunar	month	is	the	intercalated	one.

Figure	10.1	
The	old	Hindu	lunisolar	calendar.	Solar	events	(entry	into	zodiac	constellations)
are	shown	above	the	time	line;	lunar	events	(lunar	conjunctions)	are	shown
below;	longitudes	are	sidereal.	Solar	months	are	shown	in	boldface	numbers,
lunar	months	in	italic	numbers.

Two	constants	play	a	major	rôle	in	lunar	computations:	the	length	of	a	solar
month	arya-solar-month	(page	158)	and	that	of	the	lunar	month:
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that	 is,	 	 days.	 Though	 a	 month	 on	 the	 lunisolar	 calendar	 can
consist	of	29	or	30	civil	days,	it	is	always	divided	into	30	“lunar	days,”5	called
tithis:

Because	 a	mean	 lunar	month	 is	 less	 than	 30	 (civil)	 days	 long,	 a	 lunar	 day	 is
about	0.98435	days,	somewhat	shorter	than	a	full	day.

Days	within	a	lunar	month	are	numbered	by	the	lunar	day	current	at	sunrise,
which	 is	 usually	 referred	 to	 by	 an	 ordinal	 number	within	 one	 fortnight	 or	 the
other	 (except	 that	 the	 last	 day	 of	 the	 second	 fortnight	 is	 numbered	 30).	 We
simply	 use	 the	 ordinal	 numbers	 from	1	 to	 30,	with	 the	 understanding	 that	 the
first	15	lunar	days	belong	to	the	suddha	(“bright,”	waxing,	also	śukla)	fortnight
and	the	second	15	to	the	bahula	(“dark,”	waning,	also	kṛishna)	fortnight.	Just	as
there	are	leap	months,	there	are	also	“lost”	days	whenever	a	lunar	day	begins	and
ends	between	one	sunrise	and	the	next.	The	date	R.D.	0	is	Pauṣa	19	(that	is,	dark
4),	3101	K.Y.	on	the	lunisolar	calendar.

To	determine	the	number	of	the	month,	we	look	at	the	next	occurrence	of	a
new	moon—the	second	occurrence,	if	it	is	a	leap	month—see	where	the	sun	is	at
that	moment,	and	then	give	the	lunar	month	the	number	of	that	solar	month.	For
the	lunar	year	number,	we	use	the	solar	year	of	that	solar	month.	The	previous
mean	new	moon	is	found	using	formula	(1.63);	the	next	new	moon	 is	1	month
later.

We	can	apply	our	leap	year	formulas	(1.92)	and	(1.95)	to	the	calculation	of
the	old	Hindu	calendar	subject	to	a	few	complications:
1.			The	K.Y.	year	count	begins	at	0,	not	1.
2.			The	first	lunar	year	began	1	month	before	the	onset	of	the	Kali	Yuga.
3.			The	determining	time	is	mean	sunrise,	not	midnight.
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4.			The	relevant	solar	event—the	start	of	solar	month	Mīna—occurs	in	the	last
month	of	a	lunisolar	year	rather	than	in	the	first.
Accordingly,	 we	 need	 to	 adjust	 the	 year	 numbers	 by	 1,	 the	 month

enumeration	by	1,	and	the	day	count	by	 .	The	first	month	of	a	 lunar	year	 is
that	in	which	the	moment	“Mīna	plus	1	(lunar)	month”	occurs.	That	moment	in
year	0	was	an	amount

of	days	into	the	first	month	because	the	first	 lunar	year	began	exactly	1	month
before	the	solar	New	Year.	The	average	year	length	is

By	inequality	(1.93),	Hindu	year	y	is	leap	if

Multiplying	by	arya-lunar-month	and	simplifying,	we	get	the	following	test:

We	 do	 not,	 however,	 require	 this	 test	 for	 the	 conversion	 functions
that	follow.



Let	 	be	the	moment	of	sunrise	on	day	n	since	the	onset	of	the
Kali	Yuga.	The	number	of	months	m	that	have	elapsed	since	the	start	of	the	first
lunar	year	is

which	amounts	to

days.	By	equation	(1.95),	the	year	number	(starting	from	0)	is

Using	the	preceding	values	for	m,	δ,	and	 	yields

where
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Intuitively,	the	lunisolar	year	number	y	is	the	solar	year	number	in	effect	at	the
end	of	the	current	month.

The	 same	 leap-year	 formula	 can	 be	 used	 to	 determine	 the	 lunar	 month
name.	For	this	purpose,	however,	we	consider	“years”	to	be	a	period	of	either	1-
or	 2-month	 duration:	 1	 for	 ordinary	 months	 and	 2	 when	 the	 month	 name	 is
shared	by	a	leap	month.	The	average	length	of	such	periods,	measured	in	lunar
months,	is

Formula	(1.95)	tells	us	that	after	m	lunar	months	the	number	of	elapsed	periods
is

The	inverse,	deriving	the	fixed	date	from	the	Hindu	lunar	date,	is	a	bit	more
complicated.	By	equation	(1.92),	there	are	 	months	from	the	beginning
of	year	0	until	the	end	of	elapsed	year	 .	Accordingly,	the	number	of	months
since	the	Kali	Yuga	(which	began	1	month	after	lunar	year	0)	is
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where

is	the	moment	of	the	determining	solar	event.
We	use	a	boolean	(true/false)	value	to	indicate	whether	a	month	is	leap.	A

date	is	represented	as

where	year	 is	 an	 integer,	month	 is	 an	 integer	 in	 the	 range	 1	 through	 12,	 leap-
month	is	either	true	or	false,	and	day	is	an	integer	in	the	range	1	through	30.	We
convert	R.D.	dates	as	follows:

where



To	determine	the	lunar	month,	we	use	equation	(10.12)	and	discard	multiples	of
twelve.	A	month	 is	 leap	when	 it	 begins	 closer	 to	 the	 solar	month’s	 beginning
than	the	excess	of	a	solar	month	over	a	lunar	month.

The	 lunar	New	Year	begins	with	 the	first	 lunar	month	 to	begin	 in	 the	 last
solar	month	(Mīna)	of	the	prior	solar	year.	To	compute	the	R.D.	date	from	an	old
Hindu	lunar	date,	we	count	lunar	months	and	elapsed	lunar	days,	taking	care	to
check	whether	 there	 is	 a	 leap	month	 in	 the	 interim.	This	value	 is	added	 to	 the
moment	of	the	New	Year,	as	determined	above:
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where

We	 subtract	 	 before	 taking	 the	 ceiling	 because	 the	 date	 at	 midnight	 is
determined	by	the	lunar	day	that	was	current	at	the	prior	sunrise.

This	 lunisolar	 calendar	 repeats	 after	
	years.
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The	Mayan	Calendars1

◈

The	invention	of	the	Central	American	calendar	in	the	Seventh	century	before	Christ	may	be
described	with	all	propriety	as	one	of	the	outstanding	intellectual	achievements	in	the	history	of
man.	This	calendar	solved	with	conspicuous	success	the	great	problem	of	measuring	and	defining
time	which	confronts	all	civilized	nations.	Moreover	it	required	the	elaboration	of	one	of	the	four
or	five	original	systems	of	writing	the	parts	of	speech	in	graphic	symbols,	and	it	conjoined	with
this	supplementary	invention	of	hieroglyphs	the	earliest	discovery	of	the	device	of	figures	with
place	values	in	the	notation	of	numbers.	This	time	machine	of	ancient	America	was	distinctly	a
scientific	construction,	the	product	of	critical	scrutiny	of	various	natural	phenomena	by	a	master
mind	among	the	Mayas.	It	permitted	a	school	of	astronomer-priests	to	keep	accurate	records	of
celestial	occurrences	over	a	range	of	many	centuries,	with	the	ultimate	reduction	of	the
accumulated	data	through	logical	inferences	to	patterns	of	truth.

Herbert	J.	Spinden:	The	Reduction	of	Mayan	Dates	(1924)

The	 Mayans,	 developers	 of	 an	 ancient	 Amerindian	 civilization	 in	 Central
America,	 employed	 three	 separate,	 overlapping,	 calendrical	 systems	 called	 by
scholars	the	long	count,	the	haab,	and	the	 tzolkin.	Their	civilization	reached	 its
zenith	 during	 the	 period	 250–900	 C.E.,	 and	 the	Mayans	 survive	 to	 this	 day	 in
Guatemala	 and	 in	 the	 Yucatan	 peninsula	 of	Mexico	 and	 Belize;	 some	 groups
have	 preserved	 parts	 of	 the	 calendar	 systems.	What	 is	 known	 today	 has	 been
recovered	through	astroarcheological	and	epigraphic	research	(see,	for	example,
[10]).	 There	 is	 general	 agreement	 on	 the	 Mayan	 calendrical	 rules	 and	 the
correspondence	 between	 the	 three	 Mayan	 calendars;	 however,	 the	 exact
correspondence	 between	 the	Mayan	 calendars	 and	Western	 calendars	 is	 still	 a



matter	of	 some	 slight	dispute	 (see	 [1]).	Correspondences	 are	 proposed	 by	 date
equivalences	 in	 Spanish	 sources	 and	 by	 interpreting	 Mayan	 recordings	 of
astronomical	phenomena,	such	as	new	moons.	Here	we	give	 the	details	 for	 the
most	popular	 (and	nearly	universally	accepted)	correspondence,	 the	Goodman-
Martinez-Thompson	correlation	[20].	Another	correlation	was	used	by	Spinden

[17],	 [18],	 [19].2	 A	 superb	 discussion	 of	Mayan	mathematics,	 astronomy,	 and
calendrical	 matters	 was	 given	 by	 Lounsbury	 [9]	 (see	 also	 [8]).	 Other	 good
general	 sources	 are	 [11]	 and	 [16].	 Extensive	 discussions	 of	 the	 regional
variations	 of	 the	 calendars	 of	Mesoamerica	 are	 contained	 in	 [6];	 however,	 its
correlations	are	considered	speculative,	not	authoritative.

The	Aztecs	had	calendars	analogous	to	the	haab	and	tzolkin,	borrowed	from
the	 Mayans	 who	 long	 predated	 them.	 We	 discuss	 these	 two	 calendars	 in
Section	11.3.

11.1 The	Long	Count
But	the	biggest	question	of	all	is	this:	“What	happens	when	the	Long	Count	ends?”

Andrea	Klosterman	Harris:	The	Long	Count	(2010)

The	 long	 count	 is	 a	 strict	 counting	 of	 days	 from	 the	 beginning	 of	 the	 current
cycle,	each	cycle	containing	2880000	days	(about	7885	solar	years);	the	Mayans
believed	that	the	universe	is	destroyed	and	recreated	at	the	start	of	every	cycle.3

The	units	of	the	long	count	are

1 kin				 			 1 day

1 uinal				 			 20 kin (20	days)

1 tun				 			 18 uinal (360	days)

1 katun				 			 20 tun (7200	days)
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1 baktun				 			 20 katun (144000	days)

Thus,	 the	long	count	date	12.16.11.16.6	means	12	baktun,	16	katun,	11	tun,	16
uinal,	 and	 6	 kin,	 giving	 a	 total	 of	 1847486	 days	 from	 the	 start	 of	 the	Mayan
calendar	 epoch.	 (It	 is	 uncertain	when	 the	Mayan	 day	 began;	 there	 is	 evidence
that	the	tzolkin	day	began	at	sunset	and	the	haab	day	at	sunrise,	or,	in	any	case,
that	they	began	at	different	times	of	the	day.)

Although	not	relevant	here,	the	Mayans	used	the	following	larger	units	for
longer	time	periods:

1 pictun				 			 20 baktun (2880000	days)

1 calabtun				 			 20 pictun (57600000	days)

1 kinchiltun				 			 20 calabtun (1152000000	days)

1 alautun				 			 20 kinchiltun (23040000000	days)

An	alautun	is	about	63081377	solar	years!	To	accommodate	arbitrary	dates,	we
allow	 the	 number	 of	 baktun	 in	 a	 long	 count	 to	 be	 any	 positive	 or	 negative
integer.

The	starting	epoch	of	the	long	count,	according	to	the	Goodman-Martinez-
Thompson	correlation,	is	taken	as	Monday,	August	11,	 	(Gregorian).	This
date	equals	September	6,	3114	B.C.E.	(Julian),4	which	was	(at	noon)	 JD	584283,
that	is,	R.D.	–1137142:5

In	other	words,	our	R.D.	0	is	long	count	7.17.18.13.2.



(11.2)

(11.3)

Since	 the	 components	 of	 the	 long	 count	 all	 begin	 with	 zero,	 we	 simply
apply	the	mixed-radix	formulas	of	Section	sec-radixing	the	basis	 .
Thus,	to	convert	from	a	Mayan	long	count	date	to	an	R.D.	date,	we	compute	the
total	number	of	days	given	by	 the	 long	count	and	subtract	 the	number	of	days
before	R.D.	0	by	adding	the	epoch:

In	 the	 opposite	 direction,	 converting	 an	 R.D.	 date	 to	 a	Mayan	 long	 count
date,	we	need	to	add	the	number	of	days	in	the	long	count	before	R.D.	0	and	then
divide	the	result	into	baktun,	katun,	tun,	uinal,	and	kin:

11.2 	The	Haab	and	Tzolkin	Calendars
They	made	a	clay	image	of	the	demon	of	evil	Uuayayab,	that	is	u-uayab-haab,	“He	by	whom	the
year	is	poisoned,”	confronted	it	with	the	deity	who	had	supreme	power	over	the	coming	year,	and
then	carried	it	out	of	the	village	in	the	direction	of	that	cardinal	point	to	which,	on	the	system	of
the	Mayan	calendar,	the	particular	year	was	supposed	to	belong.

Sir	James	George	Frazer:	The	Golden	Bough	(1890)

The	Mayans	 used	 a	 civil	 calendar,	 the	 haab,	 based	 approximately	 on	 the	 solar
year	and	consisting	of	18	“months”	of	20	days	each	 together	with	5	additional
days	 at	 the	 end.	 Because	 the	 haab	 calendar	 accounts	 for	 only	 365	 days	 (as
compared	with	 the	mean	 length	of	 the	 solar	 tropical	 year,	 365.2422	 days),	 the
civil	 calendar	 slowly	 drifted	with	 respect	 to	 the	 seasons,6	 as	 did	 the	 Egyptian
calendar	(see	Section	1.11).	The	months	were	called7



Figure	11.1	
The	haab	month	signs.	Adapted	from	Spinden	[18,	fig.	3].

(1)	Pop	(Mat)
(2)	Uo	(Frog)
(3)	Zip	(Stag)
(4)	Zotz	(Bat)
(5)	Tzec	(Skull)
(6)	Xul	(End)
(7)	Yaxkin	(Green	time)
(8)	Mol	(Gather)
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(9)	Chen	(Well)
(10)	Yax	(Green)
(11)	Zac	(White)
(12)	Ceh	(Deer)
(13)	Mac	(Cover)
(14)	Kankin	(Yellow	time)
(15)	Muan	(Owl)
(16)	Pax	(Drum)
(17)	Kayab	(Turtle)
(18)	Cumku	(Dark	god)
(19)	Uayeb

The	 last	of	 these,	Uayeb,	was	not	 really	 a	month,	but	 a	5-day	unlucky	period.
The	pictographs	for	the	haab	names	are	shown	in	Figure	11.1.	Unlike	Gregorian
months,	 the	 days	 of	 the	 haab	 months	 begin	 at	 0	 and	 indicate	 the	 number	 of
elapsed	 days	 in	 the	 current	month.	 Thus,	 0	 Uo	 follows	 19	 Pop,	 and	 the	 fifth
monthless	day	 is	 followed	by	0	Pop.	This	method	of	counting	 is	 also	used	 for
years	in	the	Hindu	calendar,	as	discussed	in	Chapters	10	and	20.

we	represent	haab	dates	as	pairs,

where	month	and	day	are	integers	in	the	ranges	1	to	19	and	0	to	19,	respectively;
we	thus	 treat	Uayeb	as	a	defective	nineteenth	month.	We	can	count	how	many
days	after	the	first	day	of	a	cycle	any	given	haab	date	occurs	as	follows:



(11.5)

(11.6)

(11.7)

The	long	count	date	0.0.0.0.0	is	considered	to	be	haab	date	8	Cumku	(there
is	no	disagreement	here	between	the	various	correlations),	which	we	specify	by
giving	 the	 starting	 R.D.	 date	 of	 the	 haab	 cycle	 preceding	 the	 start	 of	 the	 long
count:

We	can	convert	an	R.D.	date	to	a	haab	date	by	using

where

It	 is	 not	 possible	 to	 convert	 a	 Mayan	 haab	 date	 to	 an	 R.D.	 date	 because
without	a	“year”	there	is	no	unique	corresponding	R.D.	date.	We	can	ask,	though,
for	the	R.D.	date	of	the	haab	date	on	or	before	a	given	R.D.	date:

This	is	an	instance	of	formula	(1.63)	for	which	the	ordinal	position	of	R.D.	0	is



The	third	Mayan	calendar,	the	tzolkin	(or	sacred)	calendar,	was	a	religious
calendar	consisting	of	two	cycles:	a	13-day	count	and	a	cycle	of	20	names:
(1)	Imix	(Alligator)
(2)	Ik	(Wind)
(3)	Akbal	(Night)
(4)	Kan	(Iguana)
(5)	Chicchan	(Serpent)
(6)	Cimi	(Death)
(7)	Manik	(Deer)
(8)	Lamat	(Rabbit)
(9)	Muluc	(Rain)
(10)	Oc	(Foot)
(11)	Chuen	(Monkey)
(12)	Eb	(Tooth)
(13)	Ben	(Cane)
(14)	Ix	(Jaguar)
(15)	Men	(Eagle)
(16)	Cib	(Owl)
(17)	Caban	(Quake)
(18)	Etznab	(Flint)
(19)	Cauac	(Storm)
(20)	Ahau	(Lord)
(The	translations	are	according	to	[6].)	The	pictographs	for	the	tzolkin	names	are
shown	in	Figure	11.2.	According	to	[11],	the	tzolkin	calendar’s	length	is	roughly
that	of	human	gestation	and	approximates	the	crop	cycle,	hence	it	was	used	for
prediction	 of	 human	 destiny	 and	 to	 determine	 planting	 and	 harvesting	 times.
This	calendar	is	still	in	use	among	the	Guatemalan	Mayans.



Figure	11.2	
The	tzolkin	name	signs.	Adapted	from	Spinden	[18,	fig.	1].

Unlike	 the	 haab	 months	 and	 days,	 the	 counts	 and	 names	 cycle
simultaneously	 and	 thus,	 for	 example,	 13	 Etznab	 precedes	 1	 Cauac,	 which
precedes	 2	 Ahau,	 which	 precedes	 3	 Imix,	 and	 so	 on.	 Because	 20	 and	 13	 are
relatively	 prime,	 this	 progression	 results	 in	 260	 unique	 dates,	 forming	 the
“divine”	year.



(11.8)

(11.9)

The	 long	 count	 date	 0.0.0.0.0	 is	 taken	 to	 be	 tzolkin	 date	 4	 Ahau.	 (The
different	correlations	agree	on	 this,	 too.)	Representing	 tzolkin	dates	as	pairs	of
positive	integers

where	 number	 and	 name	 are	 integers	 in	 the	 ranges	 1	 to	 13	 and	 1	 to	 20,
respectively,	we	specify

where	the	function	mayan-tzolkin-ordinal	is	explained	below.
We	can	convert	from	an	R.D.	date	to	a	tzolkin	date	with

where

Just	as	with	the	haab	calendar,	it	is	impossible	to	convert	a	tzolkin	date	to
an	R.D.	date.	Unlike	 the	haab	calendar,	however,	because	day	numbers	and	day
names	cycle	simultaneously,	to	calculate	the	number	of	days	between	two	given
tzolkin	dates	requires	the	solution	to	a	pair	of	simultaneous	linear	congruences,
as	in	Section	1.13.	(See	[13]	for	a	general	discussion	of	this	topic	and	[9]	for	a
specific	discussion	relating	to	the	Mayan	calendars.)

Suppose	 that	we	want	 to	 know	 the	 number	 of	 days	 x	 from	 tzolkin	 date	 	
	 until	 the	 next	 occurrence	 of	 tzolkin	 date	 .	We	 apply	 formula



(11.10)

(11.11)

(11.12)

(1.73)	with	 ,	 ,	 ,	 ,	 .	Because	 	 is	 the
multiplicative	inverse	of	13	modulo	20,	we	get

Accordingly,	we	define

As	 with	 the	 haab	 calendar,	 this	 function	 can	 be	 used	 to	 compute	 the
R.D.	date	of	the	Mayan	tzolkin	date	on	or	before	a	given	R.D.	date:

This	is	another	instance	of	formula	(1.63).
The	Mayans	referred	 to	haab	years	by	 their	“year	bearer,”	 the	 tzolkin	day

name	of	0	Pop	(the	first	day	of	 that	haab	year).8	Because	 the	haab	year	 is	365
days	and	 the	 tzolkin	 is	260,	only	 tzolkin	day	names	 Ik,	Manik,	Eb,	and	Caban
can	occur	as	year	bearers	in	this	scheme.	The	year	bearer	for	a	given	R.D.	date	is
computed	by

where



(11.13)

Dates	 in	Uayeb	are	not	 in	a	haab	year	and	hence	have	no	year	bearer;	 in	such
cases	bogus	is	returned.

A	popular	way	 for	 the	Mayans	 to	 specify	 a	date	was	 to	use	 the	haab	and
tzolkin	dates	together,	forming	a	cycle	of	the	least	common	multiple	of	365	and
260	 days:	 18980	 days	 or	 approximately	 52	 solar	 years.	 This	 cycle	 is	 called	 a
calendar	round,	and	we	seek	the	latest	date,	on	or	before	a	given	R.D.	date,	 that
falls	on	a	specified	date	of	the	calendar	round	with	Haab	date	haab	and	Tzolkin
date	tzolkin.	Again	we	apply	formula	(1.73),	this	time	with	 	and	
and	 no	 shifts.	 The	 greatest	 common	 divisor	 of	 c	 and	 d	 is	 5.	 The	 inverse	 of	

	 modulo	 	 is	 (by	 coincidence)	 also	 5.	 Substituting	 these
values	into	(1.73),	we	get

for	 the	 position	 of	 the	 pair	 of	 dates,	 a	 and	 b,	 in	 the	 calendar	 round.	 Using
formula	(1.63)	to	go	back	to	the	last	occurrence	of	haab	and	tzolkin	before	date,
with	k	and	Δ	determined	in	 this	way—once	with	
and	 	 and	 again	 with	
and	 —and	simplifying,	we	have

where
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For	impossible	combinations	bogus	is	returned.
This	function	can	be	used	to	compute	the	number	of	days	between	a	pair	of

dates	on	 the	calendar	 round	or	 to	write	a	 function	mayan-calendar-round-on-
or-after;	we	leave	these	possibilities	to	the	reader	to	investigate.

11.3 The	Aztec	Calendars
The	import	of	calendrics	for	Mesoamerican	culture	cannot	be	overstated.

Kay	Read:	Time	and	Sacrifice	in	the	Aztec	Cosmos	(1998)

The	 Aztecs	 (more	 properly	 called	 Mexica-Tenochca)	 used	 two	 calendars,	 the
xihuitl	which	is	nearly	identical	to	the	Mayan	haab	and	the	tonalpohualli	which
is	akin	to	the	Mayan	tzolkin;	 in	both	cases	the	names	are	in	Nahuatl,	however.
There	are	many	idiosyncrasies	in	the	Aztec	calendar	(associating	dates,	days,	or
years	with	colors,	directions,	patrons,	auspiciousness,	and	so	on),	but	 these	are
computationally	trivial	and	so	we	will	ignore	them.

The	precise	correlation	between	Aztec	dates	and	our	R.D.	dates	is	based	on
the	 recorded	 Aztec	 dates	 of	 the	 fall	 of	 (what	 later	 became)	 Mexico	 City	 to
Hernán	Cortés,	August	13,	1521	(Julian).	Thus	we	define

which	was	R.D.	555403.
The	xihuitl	 calendar	 approximated	 the	 solar	year;	 like	 the	Mayan	haab,	 it

was	365	days	long,	broken	down	into	18	“months”	of	20	days	each,	followed	by



5	unnamed	worthless	 days	 called	nemontemi.	 Scholars	 believe	 that	 the	Aztecs

used	intercalation	on	the	xihuitl	calendar	to	keep	it	synchronized	with	the	solar
seasons,	but	the	details	of	how	they	added	days	are	a	matter	of	speculation.	The
Nahuatl	(Aztec)	names	of	the	xihuitl	months	are:
(1)	Izcalli	(Sprout)
(2)	Atlcahualo	(Water	left)
(3)	Tlacaxipehualiztli	(Man	flaying)
(4)	Tozoztontli	(1-Vigil)
(5)	Huei	Tozoztli	(2-Vigil)
(6)	Toxcatl	(Drought)
(7)	Etzalcualiztli	(Eating	bean	soup)
(8)	Tecuilhuitontli	(1-Lord’s	feast)
(9)	Huei	Tecuilhuitl	(2-Lord’s	feast)
(10)	Tlaxochimaco	(Give	flowers)
(11)	Xocotlhuetzi	(Fruit	falls)
(12)	Ochpaniztli	(Road	sweeping)
(13)	Teotleco	(God	arrives)
(14)	Tepeilhuitl	(Mountain	feast)
(15)	Quecholli	(Macaw)
(16)	Panquetzaliztli	(Flag	raising)
(17)	Atemoztli	(Falling	water)
(18)	Tititl	(Storm)
(19)	Nemontemi	(Full	in	vain)

(Following	[5];	the	translations	are	from	[6,	calendar	E,	p.	222].	The	placement
of	 the	 nemontemi	 differs	 in	 different	 communities.)	 But,	 while	 in	 the	Mayan
haab	the	day	count	is	of	elapsed	days	(that	is,	it	goes	from	0	to	19),	the	xihuitl
day	count	goes	from	1	to	20.	Thus	we	represent	a	xihuitl	date	as	a	pair



(11.15)

(11.16)

(11.17)

where	month	and	day	are	integers	in	the	ranges	1	to	19	and	1	to	20,	respectively,
and	we	treat	the	nemontemi	as	a	defective	nineteenth	month.	We	can	count	 the
number	of	elapsed	days	in	the	cycle	of	Aztec	xihuitl	dates	as	follows:

The	only	difference	from	the	haab	computation	is	the	subtraction	of	1	from	day
to	compensate	for	the	shift	in	range.

According	 to	 [5,	 Table	 3],	 the	 xihuitl	 date	 at	 the	 correlation	 point	 is	 2
Xocotlhuetzi,	so	the	start	of	a	xihuitl	cycle	is

or	R.D.	555202.	Then	we	can	compute	the	xihuitl	date	of	an	R.D.	by

where

Again,	the	only	difference	from	the	haab	computation	is	the	addition	of	1	to	day
to	compensate	for	the	shift	in	range.
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As	with	the	Mayan	haab,	because	there	is	no	count	of	the	cycles,	we	cannot
invert	 this	 function	and	find	 the	R.D.	of	a	xihuitl	date,	but	we	can	use	equation
(1.63)	to	find	the	R.D.	of	the	xihuitl	date	on	or	before	a	given	R.D.:

The	 Aztec	 tonalpohualli	 (divinatory)	 calendar	 is	 identical,	 except	 for	 the
names	 in	 the	 cycle	 of	 days,	 to	 that	 of	 the	 Mayan	 tzolkin:	 two	 simultaneous
cycles	run,	a	13-day	count	and	a	cycle	of	20	names	[6,	p.	221]:
(1)	Cipactli	(Alligator)
(2)	Ehecatl	(Wind)
(3)	Calli	(House)
(4)	Cuetzpallin	(Iguana)
(5)	Coatl	(Serpent)
(6)	Miquiztli	(Death)
(7)	Mazatl	(Deer)
(8)	Tochtli	(Rabbit)
(9)	Atl	(Water)
(10)	Itzcuintli	(Dog)
(11)	Ozomatli	(Monkey)
(12)	Malinalli	(Grass)
(13)	Acatl	(Cane)
(14)	Ocelotl	(Jaguar)
(15)	Quauhtli	(Eagle)
(16)	Cozcaquauhtli	(Buzzard)
(17)	Ollin	(Quake)
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(11.21)

(18)	Tecpatl	(Flint)
(19)	Quiahuitl	(Rain)
(20)	Xochitl	(Flower)
The	implementation	is	identical	to	the	Mayan	tzolkin;	we	represent	tonalpohualli
dates	as

where	 number	 and	 name	 are	 integers	 in	 the	 ranges	 1	 to	 13	 and	 1	 to	 20,
respectively,	 and	 we	 compute	 the	 ordinal	 number	 in	 the	 cycle	 of	 a	 given
tonalpohualli	date	by

According	to	[5,	Table	3]	the	date	at	the	correlation	is	1	Coatl,	so	the	start	of	a
tonalpohualli	cycle	is	given	by

or	R.D.	555299.	Mimicking	our	tzolkin	conversions	we	have

where
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and

According	to	[5]	and	[14],	the	Aztec,	like	the	Maya,	used	“calendar	rounds”
of	52	xihuitl	years—the	time	it	takes	for	the	xihuitl	and	tonalpohualli	to	realign;
these	were	 called	 xiuhmolpilli.	 The	 52	 xihuitl	 years	 of	 a	 calendar	 round	were
designated	 by	 names	 and	 numbers	 using	 four	 of	 the	 twenty	 tonalpohualli	 day
signs,	 Calli	 (3),	 Tochtli	 (8),	Acatl	 (13),	 Tecpatl	 (18),	which	 are	 similar	 to	 the
“year	 bearer”	 of	 the	 Mayan	 calendar,	 and	 numbers	 1	 through	 13.	 Thus	 we
represent	xiuhmolpilli	designations	as

where	number	is	an	integer	in	the	range	1	to	13	and	name	is	an	integer,	3,	8,	13,
or	18.	The	xihuitl	year	designation	was	taken	from	the	tonalpohualli	date	of	the
last	day	of	that	xihuitl	year	(excluding	the	nemontemi,	of	course).	The	name	of
the	xihuitl	year	containing	a	given	R.D.	is	thus	given	by

where
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This	returns	bogus	for	the	nemontemi.
We	can	determine	the	combination	of	xihuitl	and	tonalpohualli	dates	on	or

before	an	R.D.	by	using	(1.73):

where
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Balinese	plintangen	calendar,	by	Ni	Made	Widiarki	of	Kamasan,	Klungkung,
Bali,	showing	a	combination	of	the	5-day	market	week	(pancawara	cycle)	and
the	7-day	week	(saptawara	cycle).	(Reproduced,	with	permission,	from	Myths	&
Symbols	in	Indonesian	Art,	curated	by	M.-A.	Milford-Lutzker,	Antonio	Prieto
Memorial	Gallery,	Mills	College,	Oakland,	CA,	1991.)
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The	Balinese	Pawukon	Calendar
◈

What	is	“really	real”	is	the	name	…	of	the	day,	its	place	in	the	transempirical	taxonomy	of	days,
not	its	epiphenomenal	reflection	in	the	sky.

Clifford	Geertz:	The	Interpretation	of	Cultures	(1973)

The	Pawukon	(wuku)	calendar	of	Bali	is	a	complex	example	of	a	calendar	based
on	concurrent	cycles	 (see	Section	1.13).	The	whole	calendar	 repeats	every	210
days,	but	these	210-day	“years”	are	unnumbered.	In	addition	to	this	small	year
comprising	 one	 cycle	 of	 210	 days,	 there	 is	 a	 two-cycle	 full	 year	 of	 420
days	[4,	p.	110]	(see	also	[1]).	The	calendar	comprises	10	subcycles	of	lengths	1
through	 10,	 all	 running	 simultaneously.	 The	 subcycles	 that	 determine	 the
calendar	are	those	of	lengths	5,	6,	7;	the	others	are	altered	to	fit	by	repetitions	or
other	complications.

Like	many	other	cultures	 in	 the	 region,	 the	Balinese	also	have	a	 lunisolar
calendar	 of	 the	 old	 Hindu	 style	 (see	 Chapter	 10),	 but	 leap	months	 have	 been
added	erratically;	we	do	not	describe	its	details.	This	lunisolar	calendar	is	used	to
determine	only	one	holiday:	Nyepi,	a	“New	Year’s	Day”	marking	the	start	of	the
tenth	lunar	month,	near	the	onset	of	spring.

12.1 Structure	and	Implementation
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The	cycles	and	supercycles	are	endless,	unanchored,	unaccountable,	and,	as	their	internal	order
has	no	significance,	without	climax.	They	do	not	accumulate,	they	do	not	build,	and	they	are	not
consumed.	They	don’t	tell	you	what	time	it	is;	they	tell	you	what	kind	of	time	it	is.

Clifford	Geertz:	The	Interpretation	of	Cultures	(1973)

The	main	 subcycles	of	 the	Pawukon	calendar	 are	 those	of	 lengths	5,	6,	 and	7,
and	the	whole	calendar	repeats	every	210	days,	the	least	common	multiple	of	5,
6,	and	7.	The	names	of	 the	various	cycles	and	of	the	days	in	each	are	given	in
Table	12.1.	There	is	no	notion	of	a	calendar	month;	rather	any	35-day	interval	is
called	a	bulan.

Table	12.1		Names	of	the	days	in	each	of	the	10	simultaneous	cycles	of	the
Pawukon	calendar.

Each	day	is	named	according	to	the	value	assigned	to	the	day	in	each	of	the
10	cycles:

The	day	names	 for	 the	periods	of	 length	3,	6,	 and	7	cycle	 in	 their
natural	order.	In	particular,	the	7-day	cycle	corresponds	to	the	day	of	the	week	on
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(12.7)

other	 calendars.	 The	 30	 weeks	 of	 a	 full	 210-day	 cycle	 are	 also	 named	 (see

Table	12.2).
Cycles	 on	 the	 Pawukon	 calendar—like	 the	 Mayan	 haab	 and	 tzolkin

calendars	(see	Chapter	11)—are	unnumbered,	and	thus	we	can	take	any	start	of
the	210-day	period	as	its	epoch;	for	example:

We	can	determine	the	position	(beginning	with	0)	of	any	fixed	date	within
the	full	210-day	cycle	easily:

The	simple	cycles	of	length	3	(triwara),	6	(sadwara),	and	7	(saptawara)	are	then
trivial	to	implement:

The	only	complication	of	the	5-day	(pancawara)	cycle	is	that	the	Pawukon	cycle
begins	with	day	2	of	the	5-day	cycle,	and	thus	we	need	to	add	2	before	taking	the
(adjusted)	modulus:
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(12.11)

Calculating	the	week	number	is	also	trivial:

The	position	of	a	day	in	the	10-day	cycle	depends	on	numbers,	called	urips,
that	 are	 associated	 with	 the	 5-	 and	 7-day	 cycles	 by	 the	 sacred	 palm-leaf
scriptures.	Taking	 the	 sum	of	 the	 two	 appropriate	urips,	modulo	 10,	 gives	 the
position	in	the	10-day	(dasawara)	cycle:1

where

The	position	of	a	day	on	 the	2-day	 (dwiwara)	 cycle	 is	 simply	 the	parity	of	 its
position	on	the	10-day	cycle:

Similarly,	the	“1-day”	(ekawara)	cycle	names	only	the	even	days	of	the	10-day
cycle,	which	are	called	Luang.	We	use	a	boolean	function	to	indicate	whether	a
day	is	Luang:
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Because	210	is	not	divisible	by	8	or	9,	to	squeeze	in	subcycles	of	lengths	8
and	9,	certain	values	must	be	repeated.	The	9-day	(sangawara)	cycle	begins	with
4	occurrences	of	the	value	1,	which	can	be	computed	as	follows:

The	8-day	(asatawara)	cycle	runs	normally	except	that	days	70,	71,	and	72	are
all	given	the	value	7.	This	is	a	bit	more	complicated	to	compute:

where

Finally,	the	4-day	(caturwara)	cycle	depends	directly	on	the	8-day	cycle:

The	full	210-day	cycle	is	shown	in	Table	12.2.	A	traditional	calendar,	called
a	tika,	uses	symbols	to	mark	the	days	of	each	of	the	8	cycles	shown	in	the	chart.

Without	numbering	the	cycles,	there	is	no	way	to	convert	a	Pawukon	date
into	 a	 fixed	 date.	 Instead,	 as	 for	 the	Mayan	 calendars	 of	 Chapter	 11,	 we	 use
formulas	 (1.73)	and	(1.63)	 to	determine	 the	 last	occurrence	of	a	Pawukon	date
before	 a	 given	 fixed	 date.	 The	 10	 components	 of	 the	 Pawukon	 date	 are	 fully
determined	by	their	values	on	the	cycles	of	relatively	prime	lengths	5,	6,	and	7.
Thus	we	apply	(1.73)	twice:	first	to	compute	the	position	 	of	a	Pawukon	date
within	a	35-day	subcycle	from	its	position	 	in	the	5-day	week	and	 	in	the	7-
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day	 week,	 and	 then	 to	 combine	 its	 position	 	 in	 the	 6-day	 week	 with	 .
Recalling	the	offset	of	1	in	the	5-day	cycle,	we	let	 	and	 	be	the	cycle
lengths,	 	and	 	be	the	offsets,	and	 	be	the	inverse	of	5	modulo	7	in
(1.73),	to	obtain

For	the	full	cycle	of	210	days,	we	let	 ,	 ,	 ,	and	 ,	to	get

Before	applying	(1.63),	we	also	need	to	find	the	offset	Δ	of	the	Pawukon	cycle
vis-à-vis	R.D.	dates:

where

There	is	no	need	to	take	days	modulo	210	before	applying	(1.63).

12.2 Conjunction	Days
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The	main	…	ceremony	occurs	on	each	temple’s	“birthday,”	every	210	days,	at	which	time	the
gods	descend	from	their	homes	atop	the	great	volcano	in	the	center	of	the	island,	enter	iconic
figurines	placed	on	an	altar	in	the	temple,	remain	three	days,	and	then	return.

Clifford	Geertz:	The	Interpretation	of	Cultures	(1973)

The	 holidays	 on	 the	Balinese	 Pawukon	 calendar	 are	 based	 on	 conjunctions	 of
dates	on	individual	cycles.	The	ninth	day	of	every	15-day	subcycle	is	important:
on	this	day,	called	Kajeng	Keliwon,	the	last	day	of	the	3-day	cycle	(Kajeng)	and
last	day	of	the	5-day	cycle	(Keliwon)	coincide.	(It	 is	 the	ninth	day	because	the
first	 day	 of	 the	 Pawukon	 cycle	 is	 day	 2	 of	 the	 5-day	 cycle.)	With	 the	 utility
function	positions-in-range	(1.40),	it	is	easy	to	collect	all	occurrences	in	a	given
Gregorian	year:

where

Since	positions-in-range	measures	the	desired	position,	starting	with	0,	the
ninth	day	is	at	position	8;	 (R.D.	0)	provides	it	with	the	position
in	the	cycle	of	our	R.D.	epoch.

The	 5-day	 and	 7-day	 cycles	 together	 create	 a	 35-day	 cycle.	 The	 second
Saturday	of	the	Pawukon	cycle,	and	every	subsequent	fifth	Saturday,	is	both	the
last	day	of	the	week	and	the	last	day	of	the	5-day	cycle.	Each	such	conjunction	is
called	a	Tumpek	and	is	computed	as	follows:

where



The	six	Tumpeks	in	each	Pawukon	cycle	are	named	Tumpek	Landep	(day	14	of
the	 210-day	 cycle),	 Tumpek	 Uduh	 (day	 49),	 Tumpek	 Kuningan	 (day	 84),
Tumpek	Krulut	 (day	 119),	 Tumpek	 Kandang	 (day	 154),	 and	 Tumpek	 Ringgit
(day	189).

Other	significant	conjunctions	occur	on	days	4	(Buda-Keliwon),	18	(Buda-
Cemeng),	24	(Anggara	Kasih),	and	29	(Pengembang)	of	each	35-day	subcycle.

Day	 74	 of	 the	 Pawukon	 is	Galungan;	 day	 84	 is	Kuningan	Day,	which	 is
both	a	Tumpek	day	and	Kajeng	Keliwon;	and	the	period	from	Galungan	through
Kuningan	Day	 is	 called	 the	Galungan	Days,	 during	which	 the	most	 important
celebrations	are	held.

Table	12.2	The	210-day	Balinese	Pawukon	cycle	can	be	divided	into	30	weeks
of	7	days.	Reading	clockwise	from	the	upper	left	in	each	box	of	8	numbers,	the	positions	of	each	day
on	the	cycles	of	length	3,	5,	4,	2,	9,	8,	10,	and	6	are	given.	Italics	and	boldface	are	used	to	indicate
important	conjunctions:	Kajeng	Keliwon	is	in	italics;	Tumpek	is	bold	face.	For	example,	consider	the	box
Saniscara	(Saturday)	for	the	twelfth	week	(Kuningan):	The	italic	3	in	the	upper	left	means	that	the	day	is	in
position	3	in	the	3-day	(triwara)	cycle;	it	is	italic	because	that	day	is	the	conjunction	Kajeng	Keliwon.	The
boldface	5	at	upper	right	means	that	the	day	is	in	position	5	in	the	5-day	(pancawara)	cycle;	it	is	in	bold
because	that	day	is	the	conjunction	Tumpek.	The	2	below	the	boldface	5	means	that	the	day	is	the	second
day	of	the	4-day	(caturwara)	cycle,	and	so	on.	Traditional	calendars,	called	tika,	use	symbols	rather	than
numbers	to	punctuate	each	cycle;	modern	calendars	would	use	the	names	instead	of	numbers	and	are
typically	arranged	in	a	circular	order	as	displayed	here.
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1			The	sequence	5,	9,	7,	4,	8	can	be	calculated	as



where	 ,	and	 .

	



Oil	painting	of	Joseph	Scaliger	in	the	Senate	Hall	at	Leiden.	(Courtesy	of
Academisch	Historisch	Museum,	Universiteit	Leiden,	Leiden.)
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Generic	Cyclical	Calendars
◈

One	who	is	capable	of	making	astronomical	calculations,	but	does	not	make	them,	is	unworthy	of
being	spoken	to.

Babylonian	Talmud	(Sabbath,	75a)

In	 this	 chapter,	 we	 use	 formulas	 from	 Section	 1.14	 to	 cast	 a	 number	 of	 the
calendars	presented	in	Part	I	into	a	unified	framework.	To	do	this,	years	must	be
determined	by	 the	occurrence	of	 some	“critical”	mean	annual	 event,	 such	as	 a
mean	equinox	or	mean	solstice.	Months	must	also	follow	a	uniform	pattern.	In
single-cycle	 calendars,	 new	 years	 begin	 on	 the	 day	 the	 critical	 annual	 event
happens	 before	 (or	 possibly	 at)	 some	 critical	 time	 of	 day.	 In	 double-cycle
calendars,	months	begin	on	the	day	of	a	critical	mensual	event,	and	years	begin
with	the	month	associated	with	the	critical	annual	event.

13.1 Single	Cycle	Calendars
The	wheel	is	come	full	circle.

William	Shakespeare:
King	Lear,	Act	V,	scene	iii	(1605)

There	 are	 four	 “single-cycle”	 paradigms	 for	 calendars,	 as	 we	 independently
allow



1.	 	 	 the	determining	critical	annual	event	to	occur	either	strictly	before	or	at	or
before	some	critical	time	of	day,	and

2.	 	 	 the	 pattern	 of	months	 to	 follow	either	 a	 fixed	yearly	 pattern,	 according	 to
equations	(1.92)–(1.95),	 or	 a	mean	monthly	pattern	 in	 tune	with	 the	yearly
pattern.

Five	parameters	describe	such	a	calendar:

Years	 are	 described	 by	 equations	 (1.92)–(1.95);	 some	will	 have	 	 days,	 and
some	 .

In	 the	 “at	 or	 before”	 case,	 the	 critical	 yearly	 event	 for	 the	 epochal	 year
occurs	 	days	before	the	critical	moment	of	the	day	of	the	epoch.	In	the	“strictly
before”	case,	 the	 critical	 event	occurs	 	days	after	 the	 critical	moment	 of	 the
day	before	the	epoch,	which	is	why	the	previous	day	is	not	the	start	of	the	first
year.	If	y	years	of	average	length	Y	have	elapsed	then	the	number	of	elapsed	days
since	 the	 epoch	 is	 given	 by	 	 in	 the	 “strictly	 before”	 case	 and	 by	

	in	the	“at	or	before”	case.
Months	may	 or	may	 not	 be	 described	 by	 equations	 (1.92)–(1.95);	 if	 they

are,	the	critical	monthly	event	for	the	first	month	of	the	calendar	is	assumed	to
occur	 	 fractional	 days	 late	 for	 the	 first	 month	 of	 the	 year	 to	 begin	 a	 day
earlier.

In	 the	“strictly	before”	case,	 if	months	are	described	by	equations	 (1.92)–
(1.95),with	average	length	M	and	offset	 ,	we	convert	a	year-month-day	date



(13.1)

(13.2)

(13.3)

(13.4)

(13.5)

(13.6)

on	 such	 a	 strictly-before-fixed-month	 single-cycle	 calendar	 to	 a	 fixed	 date	 as
follows.	Add	 to	 the	 epoch	 	 the	 days	 before	 the	 year	 computed	 by	 equation
(1.92),	the	days	before	month	in	year	again	computed	by	equation	(1.92),	and	the
days	before	day	in	month:

For	 the	 inverse	 calculation	 of	 the	 single-cycle-unvarying-month	 date	 from
R.D.	date,	we	determine	the	year	from	the	start	of	the	mean	year	using	(1.95),	the
month	from	(1.95)	applied	 to	 the	month	parameters,	and	 the	day	by	 taking	 the
remainder:

where	d	counts	the	days	since	the	epochal	critical	moment,	and	n	counts	the	days
from	the	critical	time	at	the	beginning	of	year.

The	Coptic	calendar	of	Section	4.1	is	of	this	type,	with	constants

For	example,	R.D.	710347	yields	the	Coptic	date	 ,	 ,	
(=	 Athōr	 3,	 1662	 A.M.).	 This	 uses	 a	 fictitious	 average	 month	 length	 of	 30	 to
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accommodate	 twelve	30-month	days,	which	are	followed	by	an	extra	“month,”
not	included	in	the	average,	of	epagomenæ	lasting	5	or	6	days.

If	the	critical	event	is	allowed	to	occur	up	to	and	including	the	critical	time,
in	 the	fixed-month	case	we	simply	use	 the	ceiling	function	 instead	of	 the	floor
function	for	the	year	part	of	the	computation:

In	the	other	direction,	we	have

where	 	 is	 the	 fraction	of	 the	day	before	 the	 critical	moment	 of	 the	 epoch	 at
which	the	event	occurred.	This	version,	an	at-or-before-fixed-month	single-cycle
calendar,	also	works	for	the	Coptic	calendar,	but	then	we	take	 .

If	we	have	a	mean-month	scheme	in	which	we	determine	the	start	of	each
month	 individually,	 on	 the	basis	of	 the	 critical	 time	of	day,	 then	 ,	 the
number	of	months	per	year,	should	be	an	integer	and	there	is	no	month	offset	
.	To	convert	between	R.D.	 dates	 and	dates	on	 such	 a	mean-month	 calendar,	we
again	 apply	 formulas	 (1.92)–(1.95),	 but	 with	 minor	 variations.	 If	 the	 critical
event	 must	 occur	 strictly	 before	 the	 critical	 time,	 corresponding	 to	 a	 strictly-
before-mean-month	 calendar,	 we	 convert	 from	 a	 date	 on	 this	 calendar	 to	 an
R.D.	date	by	adding	the	days	before	the	mean	month	in	year	and	the	days	before
day	in	month:
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In	the	other	direction,	we	compute	the	strictly-before-mean-month	date	from	an
R.D.	date	by	determining	the	year	from	the	start	of	the	mean	year	using	(1.95),	the
month	from	(1.95)	applied	to	the	month	parameters,	and	the	day	by	subtraction:

If	the	critical	event	may	occur	at	the	critical	time	in	the	mean-month	case,
then	we	have	an	at-or-before-mean-month	calendar;	conversions	are	made	by

and

Finally,	we	note	that	the	formulas	of	this	section	can	be	applied	in	the	364-
day	Qumran	calendar1	and	 the	similar	calendars	of	 the	books	of	Jubilees	and	I
Enoch.	Each	“season”	consists	of	 three	months	of	 lengths	30,	30,	31,	 repeated
four	 times	 to	make	 a	 year.	 Thus	 every	 year	 has	 exactly	 52	 weeks,	 and	 every
calendrical	holiday	always	 falls	on	 the	 same	day	of	 the	week.	The	appropriate



(13.26)

parameters	 are	 ,	 ,	 and	 in	 (13.1)–(13.6).	 No
correlation,	 however,	 is	 known	 between	 this	 calendar	 and	 any	 other,	 so	 	 is
unknown	 and	 the	 calendar	 cannot	 be	 implemented	 for	 date	 conversion.	 The
Qumran	 calendar	 also	 had	 a	 cycle	 of	 24	 weeks	 (based	 on	 Chronicles	 I,	 2:4),
resulting	 in	 a	6-year	 repeating	 calendar,	 as	well	 as	 a	 lunar	 cycle	of	 alternating
29-	 and	 30-day	months,	with	 one	 exceptional	 30	 day	month	 at	 the	 end	 of	 the
third	year	of	 the	cycle.	These	 too	can	be	 represented	with	 the	 formulas	of	 this
section.

13.2 Double	Cycle	Calendars
Their	appearance	and	their	work	was	as	it	were	a	wheel	within	a	wheel.

Ezekiel	1:16

We	can	also	design	a	schematic	double-cycle	“lunisolar”	calendar	in	which	years
follow	 one	 cyclic	 pattern	 and	 months	 another,	 with	 leap	 months	 added	 to
synchronize	 the	 two	 patterns.	 In	 this	 case,	 years	 are	 composed	 of	 an	 integral
number	 of	months,	 and	 	 is	 a	 fraction	 of	 a	month,	 rather	 than	 of	 a	 day.	 The
remainder	 	is	the	fraction	of	years	that	include	a	leap	month.

There	 are	 two	 versions	 of	 the	 double-cycle	 calendar.	 If	 both	 the	monthly
event	 and	 the	yearly	 event	must	occur	 strictly	 before	 the	 critical	 time,	 then	
represents	the	fraction	of	a	month	after	the	critical	moment	of	the	month	prior	to
the	epoch	at	which	the	monthly	event	occurs	and	 	 represents	 the	fraction	of
the	day	at	which	the	annual	event	occurs	for	the	day	prior	to	the	epoch.	Then,	we
can	convert	a	year-month-day	date	to	a	fixed	date	by

where
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and	m	 is	 the	 total	number	of	months	 that	have	elapsed	 since	 the	epoch.	 In	 the
other	direction,	we	have:

Finally,	when	the	months	follow	an	“at	or	before”	scheme,	we	can	convert	a
year-month-day	date	to	a	fixed	date	by

where

In	the	other	direction,	we	have



The	 old	Hindu	 lunisolar	 calendar	 of	 Section	 10.3,	 for	 example,	 is	 of	 this
type,	with	constants

These	 values	 give	 the	 current	 year	 number,	 one	 more	 than	 the	 elapsed	 year.
Month	 numbers	 are	 consecutive,	with	 no	 indication	 of	which	month	 is	 a	 leap
month.	Day	numbers	are	a	straight	count	rather	than	lunar	days.

Table	13.1	Constants	for	generic	arithmetic	calendars.

13.3 Summary



Table	 13.1	 summarizes	 the	 parameters	 that	 describe	 the	 various	 calendars
considered	 in	 Part	 I	 of	 this	 book.	 The	 formulas	 match	 a	 March—March
Gregorian	 calendar,	 for	 example,	 only	 to	within	 a	 day,	 because	 of	 the	 uneven
spacing	(4–8	years)	of	Gregorian	leap	years.

All	the	calculations	in	this	chapter	require	exact	arithmetic	in	order	to	work
properly,	so	that	fractions	add	up	to	integers	when	they	should.

You	will	find	it	a	very	good	practice	always	to	verify	your	references,	sir.

Martin	Joseph	Routh:	Memoir	of	Dr.	Routh	(1878)

1			J.	Ben-Dov	and	S.	Saulnier,	“Qumran	Calendars:	A	Survey	of	Scholarship	1980–2007,”	Currents	in
Biblical	Research,	vol.	7,	pp.	124–168,	2008.



Part	II
◈

Astronomical	Calendars

	



Geometrical	explanation	of	the	planetary	distances–the	mystical	harmony	of	the
spheres.	From	Johannes	Kepler’s	Prodromus	Dissertationum
Cosmographicarum	Continens	Mysterium	Cosmographicum	(1596).	(Courtesy
of	the	University	of	Illinois,	Urbana,	IL.)
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Time	and	Astronomy
◈

Ask	my	friend	l’Abbé	Sallier	to	recommend	to	you	some	meagre	philomath,	to	teach	you	a	little
geometry	and	astronomy;	not	enough	to	absorb	your	attention,	and	puzzle	your	intellects,	but	only
enough,	not	to	be	grossly	ignorant	of	either.	I	have	of	late	been	a	sort	of	an	astronome
malgré	moy,	by	bringing	last	Monday,	into	the	house	of	Lords,	a	bill	for	reforming	our	present
Calendar,	and	taking	the	New	Style.	Upon	which	occasion	I	was	obliged	to	talk	some
astronomical	jargon,	of	which	I	did	not	understand	one	word,	but	got	it	by	heart,	and	spoke	it	by
rote	from	a	master.	I	wished	that	I	had	known	a	little	more	of	it	myself;	and	so	much	I	would	have
you	know.

Letter	from	Philip	Dormer	Stanhope	(Fourth	Earl	of	Chesterfield)
to	his	son,	February	28,	1751	C.E.	(Julian)

The	calendars	in	the	second	part	of	this	book	are	based	on	accurate	astronomical
calculations.	This	chapter	defines	the	essential	astronomical	terms	and	describes
the	 necessary	 astronomical	 functions.	 A	 fuller	 treatment	 can	 be	 found	 in	 the
references—an	especially	readable	discussion	is	given	in	[14].

We	begin	with	 an	 explanation	 of	 how	 the	 positions	 of	 locations	 on	Earth
and	of	heavenly	bodies	are	specified,	followed	by	an	examination	of	the	notion
of	time	itself.	After	discussing	the	24-hour	day,	we	summarize	the	different	types
of	years	and	months	used	by	various	calendars	along	with	algorithms	that	closely
approximate	the	times	of	astronomical	events—notably	equinoxes,	solstices,	and
new	moons.	These	astronomical	functions	are	adapted	from	those	in	[18]	and	[4]
and	require	64-bit	arithmetic.



Most	of	the	algorithms	are	centered	around	the	present	date,	for	which	they
are	 accurate	 to	 within	 about	 2	 minutes.	 Their	 accuracy	 decreases	 for	 the	 far-
distant	 past	 or	 future.	 More	 accurate	 algorithms	 exist	 [3]	 but	 are	 extremely
complex	and	not	needed	for	our	purposes.

Chapter	 18	 applies	 the	 methods	 of	 this	 chapter	 to	 several	 “speculative”
astronomical	calendars.

14.1 Position
The	cause	of	the	error	is	very	simple	…	In	journeying	eastward	he	had	gone	towards	the	sun,	and
the	days	therefore	diminished	for	him	as	many	times	four	minutes	as	he	crossed	degrees	in	this
direction.	There	are	three	hundred	and	sixty	degrees	in	the	circumference	of	the	Earth;	and	these
three	hundred	and	sixty	degrees,	multiplied	by	four	minutes,	gives	precisely	twenty-four	hours—
that	is,	the	day	unconsciously	gained.

Jules	Verne:	Around	the	World	in	Eighty	Days	(1873)

Locations	 on	 Earth	 are	 specified	 by	 giving	 their	 latitude	 and	 longitude.	 The
(terrestrial)	latitude	of	a	geographic	location	is	the	angular	distance	on	the	Earth,
measured	 in	 degrees	 from	 the	 equator,	 along	 the	 meridian	 of	 the	 location.
Similarly,	 the	 (terrestrial)	 longitude	 of	 a	 geographic	 location	 is	 the	 angular
distance	on	the	Earth	measured	in	degrees	from	the	Greenwich	meridian	(which
is	defined	as	0°),	on	the	outskirts	of	London.	Thus,	for	example,	the	location	of
Jerusalem	is	described	as	being	31.8°	north,	35.2°	east.	In	the	algorithms,	we	take
northern	latitudes	as	positive	and	southern	latitudes	as	negative.	For	longitudes,
we	take	east	from	Greenwich	as	positive	and	west	as	negative;1	 thus	a	positive
longitude	means	a	time	later	than	at	Greenwich,	and	a	negative	longitude	means
a	time	earlier	than	at	Greenwich.

As	we	will	 see	 in	 the	next	 section,	 locations	on	Earth	are	 also	associated
with	a	time	zone,	which	is	needed	for	determining	the	local	clock	time.	For	some
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calculations	 (local	 sunrise	 and	 sunset,	 in	 particular),	 the	 elevation	 above	 sea

level	is	also	a	factor.	Thus,	the	complete	specification	of	a	location	that	we	use	is

We	 specify	 the	 time	 zone	 as	 the	 difference	 from	 Universal	 Time	 (U.T.;	 see
Section	 14.2)	 as	 a	 fraction	 of	 a	 day,	 and	we	measure	 the	 elevation	 above	 sea
level	in	meters.	For	example,	the	specification	of	Urbana,	Illinois,	is

because	Urbana	is	at	latitude	40.1°	north,	longitude	88.2°	west,	225	meters	above
sea	level,	and	6	hours	before	U.T.;	Greenwich	is	specified	by

Muslims	 turn	 towards	 Mecca	 for	 prayer,	 Jews	 face	 Jerusalem,	 and	 the
Bahá’í	face	Acre.	Their	locations	are,	respectively,

If	a	spherical	Earth	 is	assumed,	 the	direction	 (measured	 in	degrees	east	of	due
north)	of	a	location	at	latitude	 	and	longitude	 ,	along	a	great	circle,	when	one
stands	at	another	location	with	latitude	φ	and	longitude	 ,	can	be	determined	by
spherical	trigonometry2	(see	[16]	for	details):
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where

This	formula	uses	the	two-argument	arctangent	function

where

to	 find	 the	 arctangent	 of	 	 in	 the	 appropriate	 quadrant;	 this	 angle	 changes
when	 the	 two	 locations	 are	 on	 opposite	 sides	 of	 the	 globe.	 For	 example,	 in
Urbana,	 Illinois,	 the	qibla	 (direction	 of	Mecca)	 is	 about	 49°	 east	 of	 due	 north
whereas	Jerusalem	is	at	45°	east.3

The	 positions	 of	 heavenly	 bodies	 can	 be	 measured	 in	 a	 manner
corresponding	 to	 terrestrial	 longitude	 and	 latitude	 by	 reference	 to	 meridians
(great	 circles	 passing	 through	 the	 two	 poles)	 of	 the	 celestial	 sphere.	 In	 this
equatorial	 coordinate	 system,	 right	 ascension	 corresponds	 to	 longitude	 and



declination	to	latitude.	For	marking	the	positions	of	the	sun	and	moon,	however,
astronomers	normally	use	an	alternative	coordinate	system	in	which	(celestial	or
ecliptical)	 longitude	 is	 measured	 along	 the	 ecliptic	 (the	 sun’s	 apparent	 path
among	 the	 stars)	 and	 (celestial)	 latitude	 is	 measured	 from	 the	 ecliptic.	 Zero
longitude	is	at	a	position	called	the	First	Point	of	Aries	(see	page	219).

14.2 Time
What,	then,	is	time?	I	know	well	enough	what	it	is,	provided	that	nobody	asks	me;	but	if	I	am
asked	what	it	is	and	try	to	explain,	I	am	baffled.

Saint	Augustine:	Confessions	(circa	400)

Three	distinct	methods	of	measuring	time	are	in	use	today:4

	Solar	time	is	based	on	the	solar	day,	which	measures	the	time	between
successive	transits	of	the	sun	across	the	meridian	(the	north-south	line,
through	the	zenith,	the	point	overhead	in	the	sky).	As	we	will	see,	this
period	varies	because	of	the	nonuniform	motion	of	the	Earth.

	Sidereal	time	varies	less	than	solar	time	and	indicates	the	orientation	of
the	rotating	Earth	with	respect	to	the	stars.	It	is	measured	as	the	right
ascension	at	a	given	moment	of	those	points	in	the	sky	just	crossing	the
meridian.	Thus,	local	sidereal	time	depends	on	terrestrial	longitude	and
differs	from	observatory	to	observatory.

	Dynamical	Time	is	a	uniform	measure	taking	the	frequency	of	oscillation
of	certain	atoms	as	the	basic	building	block.	Various	forms	of	Dynamical
Time	use	different	frames	of	reference,	which	makes	a	difference	in	a
universe	governed	by	relativity.



The	ordinary	method	of	measuring	time	is	called	Universal	Time	(U.T.).	It	is
the	 local	 mean	 solar	 time,	 reckoned	 from	 midnight,	 at	 the	 observatory	 in
Greenwich,	 England,	 the	 location	 of	 the	 0°	 meridian.5	 The	 equivalent
designation	“Greenwich	Mean	Time,”	abbreviated	G.M.T.,	has	fallen	into	disfavor
with	astronomers	because	of	confusion	as	to	whether	days	begin	at	midnight	or
noon	 (before	 1925,	 00:00	G.M.T.	 meant	 noon;	 from	 1925	 onward	 it	 has	meant
midnight).

There	 are	 several	 closely	 related	 types	 of	 Universal	 Time.	 Civil	 time
keeping	uses	Coordinated	Universal	Time	(U.T.C.),	which	since	1972	has	been
atomic	time	adjusted	periodically	by	leap	seconds	to	keep	it	close	 to	 the	prime
meridian’s	mean	 solar	 time;	 see	 [17]	 and	 [25].	We	 use	 U.T.C.	 for	 calendrical
purposes	(except	that	we	insert	all	leap	seconds	at	the	end	of	the	year,	whereas	in
actual	practice	they	are	often	added	during	the	year6	)	expressed	as	a	fraction	of
a	solar	day.

From	the	start	of	 the	spread	of	clocks	and	pocket	watches	 in	Europe	until
the	 early	 1800s,	 each	 locale	 would	 set	 its	 clocks	 to	 local	 mean	 time.	 Each
longitudinal	 degree	 of	 separation	 gives	 rise	 to	 a	 4	 minute	 difference	 in	 local
time.	For	example,	because	the	meridian	of	Paris	is	 	east,	its	local	mean
time	 is	 9	 minutes,	 21	 seconds,	 ahead	 of	 U.T.	 As	 another	 example,	 Beijing	 is	

	 east;	 the	 time	 difference	 from	 U.T.	 is	 .	 Figure	 14.1	 shows	 a
helpful	1862	atlas	page	 showing	differences	 in	 local	 time	before	 the	advent	of
time	zones.



Figure	14.1	
Differences	in	local	time	between	Washington,	D.C.,	and	cities	around	the
world:	Johnson’s	New	Illustrated	Family	Atlas,	1862.	(Collection	of	E.M.R.)

“Standard	time”	was	first	used	by	British	railway	companies	in	1840;	time
zones	were	first	adopted	by	North	American	railway	companies	in	the	late	1800s



[11].	The	 history	 of	 time	measurement	 and	 time	 zones	 in	 the	United	 States	 is
discussed	at	length	in	[24].	Most	of	Western	Europe	is	today	in	one	zone;	the	48
contiguous	 states	 of	 the	 United	 States	 are	 divided	 into	 four	 zones.	 A	 very
extensive	 list	of	 locations	and	 the	 times	 that	 they	use	 today	and	 that	 they	used
historically	appears	in	[29]	for	countries	outside	the	United	States	and	in	[28]	for
the	United	States.	We	ignore	the	issue	of	daylight-saving	(summer)	time	because
it	is	irrelevant	to	the	calendars	we	discuss.

Figure	14.2	
Standard	time	zones	of	the	world	as	of	January,	2017.	©	Crown	Copyright
and/or	database	rights.	(Reproduced	by	permission	of	the	Controller	of	Her
Majesty’s	Stationery	Office	and	the	UK	Hydrographic	Office,	gov.uk/ukho.)
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The	 local	mean	 time	zone	changes	every	15°.	We	express	 time	zones	as	a
fraction	of	a	day,	and	so	we	simply	divide	the	longitude	φ	by	a	full	circle:

Standard	time	zones	are	drawn	more	arbitrarily—see	Figure	14.2.
Converting	 between	Universal	Time	 and	 local	mean	 time	 is	 now	 an	 easy

matter:

In	the	other	direction,

where	 	 and	 	 are	 local	 time	 and	 Universal	 Time,	 respectively.	 To	 convert
between	Universal	Time	and	standard	zone	time,	we	need	to	use	the	time	zone	of
the	location:

In	the	other	direction,

where	 time	 differences	 or	 zones	 are	 expressed	 as	 a	 fraction	 of	 a	 day	 after
Greenwich	time.	To	convert	from	local	mean	time	to	standard	zone	time,	or	vice
versa,	we	 combine	 the	 differences	 between	Universal	 Time	 and	 standard	 time
and	between	local	mean	time	and	Universal	Time:
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and	in	the	other	direction

For	 example,	 Jerusalem	 is	 35.2°	 east	 of	 Greenwich;	 its	 time	 zone	 is	 U.T. .
Therefore,	to	obtain	standard	time	in	Jerusalem	from	the	local	mean	time,	a	net
offset	of	 	is	added.

Astronomical	 calculations	 are	 typically	done	using	Dynamical	Time,	with
its	unchanging	time	units.	(There	are	various	forms	of	Dynamical	Time,	but	the
differences	are	too	small	to	be	of	concern	to	us.)	Solar	time	units,	however,	are
not	constant	 through	 time,	mainly	because	of	 the	 retarding	effects	of	 tides	and
the	 atmosphere,	 which	 cause	 a	 relatively	 steady	 lengthening	 of	 the	 day;	 they
contribute	 what	 is	 called	 a	 “secular”	 (that	 is,	 steadily	 changing)	 term	 to	 its
length.	This	slowdown	causes	the	mean	solar	day	to	increase	in	length	by	about
1.7	milliseconds	 per	 century.	 Because	Universal	 Time	 is	 based	 on	 the	 Earth’s
speed	of	rotation,	which	is	slowly	decreasing,	the	discrepancy	between	Universal
and	 Dynamical	 Time	 is	 growing.	 It	 now	 stands	 at	 about	 67	 seconds	 and	 is
currently	increasing	at	about	an	average	of	1	second	per	year.	To	account	for	the
vagaries	in	the	length	of	a	U.T.	day,	every	now	and	then	a	leap	second	is	inserted
(usually	 between	 December	 31	 and	 January	 1),	 thereby	 keeping	 our	 clocks—
which	 show	 Universal	 Time—in	 tune	 with	 the	 gradually	 slowing	 rotation	 of
Earth.	Because	the	accumulated	discrepancy	is	not	entirely	predictable	and	is	not
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accurately	 known	 for	 the	 years	 prior	 to	 1600,	 we	 use	 the	 following	 ad	 hoc
function	for	this	ephemeris	correction:

where





(14.16)

We	 are	 using	gregorian-date-difference	 (page	62)	 to	 calculate	 the	 number	 of
centuries	c	 before	 or	 after	 the	 beginning	 of	 1900.	The	 factor	 	 converts
seconds	into	a	fraction	of	a	day.

To	convert	from	Universal	Time	to	Dynamical	Time,	we	add	the	correction
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where	t	is	an	R.D.	moment	measured	in	U.T.	We	approximate	the	inverse	of(14.16)
by

The	 function	 gregorian-date-difference	 is	 given	 on	 page	 62	 and	 gregorian-
year-from-fixed	on	page	61.

Figures	 14.3	 and	 14.4	 plot	 the	 difference	 between	 Universal	 Time	 and
Dynamical	Time	for	ancient	and	modern	eras,	respectively.

Figure	14.3	
Difference	between	Dynamical	(terrestrial)	Time	and	Universal	Time	in	atomic
seconds	plotted	by	Gregorian	year.	The	dashed	line	shows	the	values	of
ephemeris-correction.	Suggested	by	R.	H.	van	Gent	and	based	on
[31,	chap.	14].
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Figure	14.4	
Difference	between	Dynamical	(terrestrial)	Time	and	Universal	Time	in	atomic
seconds	plotted	by	Gregorian	year	(values	for	2012–2017	are	extrapolated).	The
dashed	line	shows	the	corresponding	values	computed	by	ephemeris-
correction.	Data	supplied	by	R.	H.	van	Gent	based	on	Astronomical	Almanac
for	the	Year	2014,	Nautical	Almanac	Office,	United	States	Naval	Observatory,
Washington,	D.C.,	pp.	K8–K9.

To	 keep	 the	 numbers	 within	 reasonable	 bounds,	 our	 astronomical
algorithms	 usually	 convert	 dates	 and	 times	 (given	 in	 Universal	 Time)	 into
“Julian	 centuries,”	 that	 is,	 into	 the	 number	 (and	 fraction)	 of	 uniform-length
centuries	 (36525	 days,	measured	 in	Dynamical	 Time)	 before	 or	 after	 noon	 on
January	1,	2000	(Gregorian):
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Sidereal	time	is	discussed	in	the	following	section.

14.3 The	Day
How	could	David	have	known	exactly	when	[true]	midnight	occurs?	Even	Moses	didn’t	know!

Babylonian	Talmud	(Bera ot,	3a)

The	 Earth	 rotates	 around	 its	 axis,	 causing	 the	 sun,	 moon,	 and	 stars	 to	 move
across	the	sky	from	east	to	west	in	the	course	of	a	day.	The	most	obvious	way	of
measuring	 days	 is	 from	 sunrise	 to	 sunrise	 or	 from	 sunset	 to	 sunset	 because
sunrise	and	sunset	are	unmistakable.	The	Islamic,	Hebrew,	and	Bahá’í	calendars
begin	their	days	at	sunset,	whereas	the	Hindu	day	starts	and	ends	with	sunrise.
The	disadvantage	of	these	methods	of	reckoning	days	is	the	wide	variation	over
the	 year	 in	 the	 beginning	 and	 ending	 times.	 For	 example,	 in	 London	 sunrise
occurs	anywhere	from	3:42	a.m.	to	8:06	a.m.	and	sunset	varies	from	3:51	p.m.	to
8:21	 p.m.	 By	 contrast,	 noon	 (the	 middle	 point	 of	 the	 day)	 and	 midnight	 (the
middle	 point	 of	 the	 night)	 vary	 only	 by	 about	 half	 an	 hour	 in	 London	 or
elsewhere	 (see	 below).	 Thus,	 in	 many	 parts	 of	 the	 world,	 sunset	 or	 sunrise
definitions	of	the	day	have	been	superseded	by	a	midnight-to-midnight	day.	For
instance,	 the	 Chinese	 in	 the	 twelfth	 century	 B.C.E.	 began	 their	 day	 with	 the
crowing	 of	 the	 rooster	 at	 2	 a.m.,	 but	 more	 recently	 they	 have	 been	 using
midnight.	A	noon-to-noon	day	is	also	plausible	and	indeed	is	used	in	the	julian
day	 system	 described	 in	 Section	 1.5,	 it	 has	 the	 disadvantage	 that	 the	 date
changes	in	the	middle	of	the	working	day.

Even	 with	 solar	 days	 measured	 from	 midnight	 to	 midnight	 there	 are
seasonal	 variations.	 With	 the	 advent	 of	 mechanical	 clocks,	 introduced	 in	 the
1600s,	the	use	of	mean	solar	time,	in	which	a	day	is	24	equal-length	hours,7	was



preferred	over	the	apparent	(that	is,	true)	time	as	measured	by	a	sundial8	(during

the	 daytime,	 at	 least).	 The	 elliptical	 orbit	 of	 the	 Earth	 and	 the	 obliquity
(inclination)	 of	 the	 Earth’s	 equator	with	 respect	 to	 its	 orbit	 cause	 a	 difference
between	the	time	the	sun	crosses	the	upper	celestial	meridian	and	12	noon	on	a
clock—the	difference	can	be	more	 than	16	minutes.	This	discrepancy	 is	 called
the	 equation	 of	 time,	 where	 the	 term	 equation	 has	 its	 medieval	 meaning	 of
“additive	corrective	factor.”

The	equation	of	time	gives	the	difference	between	apparent	midnight	(when
the	sun	crosses	the	lower	meridian	that	passes	through	the	nadir;	this	is	virtually
the	 same	 as	 the	 midpoint	 between	 sunset	 and	 sunrise)	 and	 mean	 midnight
(0	hours	on	the	24-hour	clock).	Similarly,	at	other	times	of	day	the	equation	of
time	gives	 the	difference	between	mean	 solar	 time	and	apparent	 solar	 time.	 In
the	past,	when	apparent	time	was	the	more	readily	available,	the	equation	of	time
conventionally	had	the	opposite	sign.



Figure	14.5	
The	current	equation	of	time,	as	computed	by	equation-of-time.	The	left-hand
vertical	axis	is	marked	in	minutes	and	the	right-hand	vertical	axis	is	marked	in
fractions	of	a	day.



Figure	14.6	
The	equation	of	time	wrapped	onto	a	cylinder.	The	rotational	range	is	1	year;	the
axial	range	is	Gregorian	years	1500–12500.	This	rendering	was	converted	into	a
three-dimensional	cam	by	Stewart	P.	Dickson	to	be	used	as	a	mechanical	cam	in
the	“Clock	of	the	Long	Now”	by	W.	Daniel	Hillis	and	the	Long	Now
Foundation.	The	clock	is	designed	to	keep	local,	absolute,	and	astronomical	time
over	a	span	of	10000	years.	The	cam	resynchronizes	the	clock	at	local	solar	noon
via	a	thermal	trigger.	See	The	Clock	of	the	Long	Now:	Time	and	Responsibility
by	Stewart	Brand,	Basic	Books,	New	York,	1999	for	more	information.
(Reproduced	by	permission.)
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The	 periodic	 pattern	 of	 the	 equation	 of	 time,	 shown	 in	 Figures	 14.5	 and
14.6,	 is	 sometimes	 inscribed	 as	 part	 of	 the	 analemma	 on	 sundials	 (usually	 in
mirror	 image);	 the	 frontispiece	 for	 Chapter	 18	 (page	 217)	 shows	 a	 three-
dimensional	 image	 of	 the	 equation	 of	 time.	 During	 the	 twentieth	 century,	 the
equation	 of	 time	 had	 zeroes	 around	 April	 15,	 June	 14,	 September	 1,	 and
December	 25;	 it	 is	 at	 its	 maximum	 at	 the	 beginning	 of	 November	 and	 at	 its
minimum	 in	 mid-February.	 The	 equation	 of	 time	 is	 needed	 for	 the	 French
Revolutionary	and	Persian	astronomical	calendars,	and	a	rough	approximation	is
used	 in	 the	 modern	 Hindu	 calendars.	 We	 use	 the	 following	 function	 for	 the
equation	of	time:

where
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The	parameter	 t	 is	 a	moment	 (R.D.	 day	 and	 fraction);	 it	 is	 converted	 to	 “Julian
centuries,”	 c.	 The	 function	 for	 obliquity	 is	 given	 below	 (page	 220).	 The
preceding	approximation	of	 the	equation	of	 time	 is	not	valid	 for	dates	 that	 are
many	millennia	in	the	past	or	future;	hence,	for	robustness,	we	limit	the	accuracy
of	the	calculated	value	to	half	a	day.

The	 equation	 of	 time	 permits	 us	 to	 convert	 easily	 to	 and	 from	 apparent
time:

In	the	other	direction,
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The	latter	function	is	slightly	inaccurate	because	the	function	equation-of-time
takes	the	local	mean	time,	not	the	apparent	time,	as	its	argument;	the	difference
in	the	value	of	the	equation	of	time	in	those	few	minutes	is	negligible,	however.

These	functions	may	be	composed	with	conversion	to	and	from	local	time:

and

Using	these	 time	conversion	functions,	we	can	find	 the	 true	middle	of	 the
night	(true,	or	apparent,	midnight)	or	the	true	middle	of	the	day	(apparent	noon)
in	Universal	Time:

and

The	 Earth’s	 rotation	 period	with	 respect	 to	 the	 fixed	 celestial	 sphere	 is
approximately	equal	to	 .	This	is	marginally	more	than	the	length
of	a	(mean)	sidereal	(or	tropical)	day,	namely,	 ,	which	is	the	time
of	rotation	relative	to	the	First	Point	of	Aries.	In	the	course	of	one	rotation	on	its
axis,	the	Earth	has	also	revolved	somewhat	in	its	orbit	around	the	sun,	and	thus
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the	 sun	 is	 not	 quite	 in	 the	 same	 position	 as	 it	 was	 one	 rotation	 prior.	 This
accounts	for	the	difference	of	almost	4	minutes	with	respect	to	the	solar	day.	The
sidereal	day	is	employed	in	the	Hindu	calendar.

Like	 the	 solar	 day,	 the	 sidereal	 day	 is	 not	 constant;	 it	 is	 steadily	growing
longer.	 In	 practice,	 sidereal	 time	 is	 measured	 by	 the	 hour	 angle	 between	 the
meridian	 (directly	 overhead)	 and	 the	 position	 of	 the	 First	 Point	 of	 Aries	 (see
page	219).	This	definition	of	 sidereal	 time	 is	 affected	by	 the	precession	of	 the
equinoxes—see	 page	 219.	 Converting	 between	 mean	 solar	 and	 mean	 sidereal
time	amounts	to	evaluating	a	polynomial:

where

The	modern	Hindu	lunar	calendar	uses	an	approximation	to	this	conversion.

14.4 The	Year
And	the	sun	rises	and	the	sun	sets–then	to	its	place	it	rushes;	there	it	rises	again.	It	goes	toward
the	south	and	veers	toward	the	north.10

Ecclesiastes	1,	5–6

The	vernal	equinox	 occurs	 at	 the	moment	when	 the	 sun’s	 position	 crosses	 the
true	celestial	equator	(the	line	in	the	sky	above	the	Earth’s	equator)	from	south
to	north,	on	approximately	March	20	each	year.	At	 that	 time	day	and	night	are



each	12	hours	all	over	the	world,	and	the	Earth’s	axis	of	rotation	is	perpendicular
to	 the	 line	 connecting	 the	 centers	 of	 the	 Earth	 and	 sun.11	 The	 point	 of

intersection	of	the	ecliptic	(the	sun’s	apparent	path	through	the	constellations	of
the	zodiac),	 inclined	from	south	to	north,	and	the	celestial	equator	 is	called	 the
true	 vernal	 equinox	 or	 the	 “First	 Point	 of	 Aries,”	 but	 it	 is	 currently	 in	 the
constellation	 Pisces,	 not	 Aries,	 on	 account	 of	 a	 phenomenon	 called	 the
precession	of	the	equinoxes.	In	its	gyroscopic	motion,	the	Earth’s	rotational	axis
migrates	 in	 a	 slow	 circle	 mainly	 as	 a	 consequence	 of	 the	 moon’s	 pull	 on	 a
nonspherical	 Earth.	 This	 nearly	 uniform	 motion	 causes	 the	 position	 of	 the
equinoxes	 to	 move	 backwards	 along	 the	 ecliptic	 in	 a	 period	 of	 about	 25725
years.	This	precession	has	caused	 the	vernal	equinox	 to	cease	 to	coincide	with
the	day	when	the	sun	enters	Aries,	as	it	did	some	2300	years	ago	(however,	since
the	absolute	length	of	a	day	is	getting	longer—see	page	210—the	sun	will	be	in
the	same	position	in	calendar	year	24500	as	it	was	in	2000).	Celestial	longitude
is	measured	from	the	First	Point	of	Aries.	As	a	consequence,	 the	 longitudes	of
the	stars	are	constantly	changing	(in	addition	to	the	measurable	motions	of	many
of	 the	“fixed”	stars).	This	precession	of	 the	equinoxes	also	causes	 the	celestial
pole	to	rotate	slowly	in	a	circular	pattern.	This	 is	why	the	 identity	of	 the	“pole
star”	has	changed	over	the	course	of	history.	In	13000	B.C.E.,	Vega	was	near	 the

pole;	currently	it	is	near	the	star	Polaris.	In	contrast,	the	Hindu	calendar	is	based
on	calculations	in	terms	of	the	sidereal	longitude,	which	ignores	precession	and
remains	fixed	against	the	backdrop	of	the	stars.

The	equator	is	currently	inclined	at	approximately

with	 respect	 to	 the	 plane	 of	 revolution	 of	 the	 Earth	 (the	 ecliptic)	 around	 the
sun.12	As	a	result,	the	sun,	in	the	course	of	a	year,	traces	a	path	through	the	stars
that	moves	towards	the	celestial	North	Pole,	back	towards	the	celestial	equator,
then	 towards	 the	 celestial	 South	 Pole	 and	 back	 again.	 The	 value	 of	 this
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inclination,	 called	 the	 obliquity,	 varies	 in	 a	 100000-year	 cycle,	 ranging	 from
24.2°	10000	years	ago	to	22.6°	 in	another	10000	years.	The	following	function
gives	an	approximate	value:

where

Given	 the	 obliquity,	 one	 can	 compute	 the	 declination	 and	 right	 ascension
corresponding	to	celestial	latitude	β	and	longitude	 :

where

and

where

which	is	measured	in	degrees,	not	hours.
In	addition	to	the	precession,	the	axis	of	rotation	of	the	Earth	wobbles	like	a

top	in	an	18.6-year	period	about	its	mean	position.	This	effect	is	called	nutation
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and	 is	 caused	 by	 the	 gravitational	 pull	 of	 the	moon	 and	 sun	 on	 the	 unevenly
shaped	 Earth.	 Nutation	 causes	 slight	 changes	 in	 the	 celestial	 latitudes	 and
longitudes	of	stars	and	planets.	It	also	causes	a	periodic	variation	in	the	lengths
of	the	sidereal	and	solar	days	of	up	to	about	0.01	second.	The	mean	sidereal	time
smoothes	out	(subtracts)	 this	nutation,	which	can	accumulate	 to	a	difference	of
about	 1	 second	 from	 the	 actual	 sidereal	 time.	 The	 moon	 also	 causes	 small
oscillations	 in	 the	 length	 of	 the	 day,	with	 periods	 ranging	 from	 12	 hours	 to	 1
(sidereal)	month,	but	these	can	safely	be	ignored.

The	true	position	of	the	sun	differs	from	the	“mean	sun”	in	both	longitude
and	 latitude.	 The	 (angular)	 speed	 of	 the	 longitude	 of	 the	 true	 sun	 oscillates
markedly	within	a	year,	so	that	the	lengths	of	the	four	annual	seasons	differ	by	as
much	as	5	days.	The	sun’s	mean	latitude	is	0°,	but	the	true	sun	does	not	always
stay	on	the	ecliptic.

The	tropical	year	is	the	time	it	takes	for	the	“mean	sun”	to	travel	from	one
mean	vernal	equinox	to	the	next.	As	the	speed	of	the	mean	sun	on	the	ecliptic	is
slowly	 increasing	 over	 the	 centuries,	 the	 tropical	 year	 as	 determined	 from	 the
instantaneous	speed	of	the	mean	sun	for	an	arbitrary	instant	is	slowly	decreasing.
The	 length	 of	 a	 tropical	 year	 is	 defined	 today	 with	 respect	 to	 a	 “dynamical”
equinox	 [21];13	 its	 current	 value	 is	 365.242177	 mean	 solar	 days,	 and	 it	 is
decreasing	by	about	 	solar	days	per	century.	We	use	the	following	older
value	in	our	calculations	for	estimation	purposes:

The	 time	 intervals	 between	 successive	 vernal	 equinoxes	 differ	 from	 those
between	 successive	 autumnal	 equinoxes	 and	 also	 from	 the	 tropical	 year.
Figure	 14.7	 shows	 for	 comparison	 the	 fluctuating	 equinox-to-equinox	 and
solstice-to-solstice	year	lengths,	measured	in	mean	solar	days	at	the	same	point
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in	 time,	 together	 with	 the	 mean	 year	 length	 used	 in	 various	 arithmetical
calendars.

Figure	14.7	
Length	of	the	year,	in	contemporaneous	mean	solar	days,	plotted	by	Gregorian
year.	(The	value	for	the	Julian/Coptic/Ethiopic	calendars,	365.25,	is	omitted
because	it	is	far	above	the	values	plotted.)	Suggested	by	R.	H.	van	Gent	and
based	on	formulas	from	[18,	chap.	27]	and	the	parabolic	approximation	from
Figure	14.3.

A	sidereal	year	is	the	time	it	takes	for	the	Earth	to	revolve	once	around	the
sun,	 that	 is,	 for	 the	 mean	 sun	 to	 return	 to	 the	 same	 position	 relative	 to	 the
background	of	the	fixed	stars.	The	sidereal	year	is	about	20	minutes	more	than
the	tropical:
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The	modern	Hindu	 calendar	 (Chapter	 20)	 uses	 approximations	 of	 the	 sidereal
and	tropical	year.

To	determine	the	times	of	equinoxes	or	solstices,	as	required	for	the	French
Revolutionary	 (Chapter	 17),	 Chinese	 (Chapter	 19),	 Persian	 astronomical
(Chapter	15),	and	proposed	Bahá’í	 (Section	16.3)	calendars,	we	must	calculate
the	 longitude	 of	 the	 sun	 at	 any	 given	 time.	 The	 following	 function	 takes	 an
astronomical	 time,	 given	 as	 an	 R.D.	 moment	 t,	 converts	 it	 to	 Julian	 centuries,
sums	 a	 long	 sequence	 of	 periodic	 terms,	 and	 adds	 terms	 to	 compensate	 for
aberration	 (the	 effect	 of	 the	 sun’s	 apparent	 motion	 while	 its	 light	 is	 traveling
towards	Earth)	and	nutation	(caused	by	the	wobble	of	the	Earth):

where

To	 avoid	 cluttering	 the	 page	with	 subscripts,	we	will	 use	 vector	 notation,
with	the	intention	that	the	operations	within	a	sum	are	performed	on	like-indexed
elements	of	 ,	 ,	and	 ,	 displayed	 in	 the	 rows	of	Table	14.1.	This	 function	 is
accurate	to	within	2	minutes	of	arc	for	current	times.

The	effect	of	nutation	on	the	longitude	is	approximately

where
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The	 aberration—the	 effect	 of	 the	 sun’s	 moving	 about	 20.47	 seconds	 of	 arc
during	the	8	minutes	during	which	its	light	is	en	route	to	Earth—is	calculated	as
follows:

where

We	 determine	 the	 time	 of	 an	 equinox	 or	 solstice	 by	 giving	 a	 generic
function	that	takes	a	moment	t	(in	U.T.)	and	a	number	of	degrees	 ,	indicating	the
season,	and	searches	for	the	moment	when	the	longitude	of	the	sun	is	next	equal
to	 	 degrees.	 In	 effect,	 we	 search	 for	 the	 inverse	 of	 solar-longitude,	 using
equation	 (1.36)	 on	 page	 25,	 within	 an	 interval	 beginning	 5	 days	 before	 the
estimate	τ	 (or	at	 the	given	moment,	whichever	comes	 later)	and	ending	5	days
after:

Table	14.1	Values	of	the	arguments	 ,	 ,	and	 	in	solar-longitude	(page	223).
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where

Equinoxes	and	solstices	occur	when	the	sun’s	longitude	is	a	multiple	of	90°.
Specifically,	 Table	 14.2	 gives	 the	 names,	 solar	 longitudes,	 and	 approximate
Gregorian	dates.	The	constants	for	the	four	seasons	were	defined	in	Chapter	3.
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It	will	be	convenient	to	be	able	to	determine	the	times	of	the	seasons	within
a	given	Gregorian	year.	So,	we	define

Table	14.2	The	solar	longitudes	and	approximate	current	dates	of	equinoxes	and
solstices,	along	with	the	approximate	length	of	the	following	season.

It	will	be	convenient	to	be	able	to	determine	the	times	of	the	seasons	within
a	given	Gregorian	year.	So,	we	define

where

To	 use	 this	 function	 to	 determine,	 say,	 the	 standard	 time	 of	 the	 winter
solstice	in	Urbana,	Illinois,	we	write

For	 year	 2000	 this	 gives	 us	 the	 answer	 R.D.	 730475.31751,	 which	 is
7:37:13	a.m.	on	December	21.

To	 calculate	 sidereal	 longitude,	 we	 use	 the	 following	 computation	 for
precession:
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where

To	 use	 precession,	 one	 needs	 to	 choose	 some	 moment,	 called	 sidereal-start
[such	 as	 formula	 (20.41)],	 at	 which	 one	 considers	 that	 sidereal	 and	 ecliptic
longitude	coincide.	Then	we	have

Astronomical	 Hindu	 calendars	 (see	 Section	 20.5)	 require	 the
determination	of	this	solar	attribute.

Finally,	the	altitude	of	the	sun	above	the	horizon	at	any	given	time	depends
on	 the	 ecliptical	 position	 of	 the	 sun	 at	 that	 time	 and	 on	 the	 latitude	 φ	 and
longitude	 	of	the	viewing	location:

where



Here	α	is	the	sun’s	right	ascension,	δ	is	its	declination,	and	 	is	the	local	sidereal
hour	angle.	The	result	is	not	corrected	for	parallax	(the	shift	in	observed	position
due	to	the	change	in	position	of	the	observer)	or	refraction,	and	ranges	from	
to	 .

14.5 Astronomical	Solar	Calendars
Astronomy	[lit.	seasons>]	and	geometry	are	accoutrements	of	wisdom.

Pirkei	Avoth	III,	23

Astronomical	 solar	 calendars	 are	 based	 on	 the	 precise	 solar	 longitude	 at	 a
specified	 time.	For	 example,	 the	 astronomical	Persian	 calendar	begins	 its	New
Year	on	 the	day	when	 the	vernal	 equinox	occurs	before	 true	noon	 (the	middle
point	of	 the	day,	 sundial	 time,	not	 clock	 time)	 in	Tehran;	 the	 start	 of	 the	New
Year	is	postponed	to	the	next	day	if	the	equinox	is	after	noon	(see	Chapter	15).
Other	calendars	of	this	type	include	the	astronomical	form	of	the	Bahá’í	calendar
(Chapter	16)	and	the	original	French	Revolutionary	calendar	(Chapter	17).
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(14.43)

The	key	to	implementing	an	astronomical	solar	calendar	is	to	determine	the
day	of	the	New	Year	on	or	before	a	given	fixed	date.	In	general,	the	New	Year
begins	 on	 the	 day	when	 the	 solar	 longitude	 reaches	 a	 certain	 value	φ	 at	 some
critical	moment,	such	as	noon	or	midnight.	For	this	purpose,	we	first	estimate	the
time	using	the	current	solar	longitude:

where

This	 is	done	in	a	 two-step	process.	First	we	go	back	to	 the	 time	when	the	sun,
traveling	at	mean	speed,	was	last	at	longitude	φ;	then	the	error	Δ	in	the	longitude
is	 used	 to	 refine	 the	 estimate	 to	 within	 a	 day	 of	 the	 correct	 time.	 The	 only
complication	 is	 handling	 the	 discontinuity	 from	 	 to	 ;	 this	 is	 done	 using
interval	modulus.

Since	 this	 estimate	 is	within	 a	 day	 of	 the	 actual	 occurrence,	 to	 determine
when	the	year	actually	starts	we	need	only	carry	out	a	short	search	of	the	form

where	f	is	a	function	that	returns	the	critical	time	of	day	for	measuring	longitude
for	 the	 specific	 calendar.	 The	 upper	 bound	 	 is	 only	 needed	when	 one	 is
looking	 for	 the	 spring	 equinox	 ( ),	 so	 that	 values	 close	 to	 ,	 which
precede	the	equinox,	do	not	stop	the	search	prematurely.	We	use	this	method	for
the	 astronomical	 Persian,	 the	 astronomical	 Bahá’í,	 the	 original	 French
Revolutionary,	and	Chinese	calendars.
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14.6 The	Month
Should	someone	rather	less	skilled	in	calculation	nonetheless	be	curious	about	the	course	of	the
moon,	we	have	also	for	his	sake	devised	a	formula	adapted	to	the	capacity	of	his	intelligence,	so
that	he	might	find	what	he	seeks.

The	Venerable	Bede:	De	Temporum	Ratione

The	 new	 moon	 occurs	 when	 the	 sun	 and	 moon	 have	 the	 same	 celestial
longitude;	it	is	not	necessarily	the	time	of	their	closest	encounter,	as	viewed	from
Earth,	because	the	orbits	of	the	Earth	and	moon	are	not	coplanar.	The	time	from
new	moon	(the	conjunction	of	the	sun	and	the	moon)	to	new	moon,	a	lunation,	is
called	 the	 synodic	month.	 Its	 value	 today	 ranges	 from	 approximately	 29.27	 to
29.84	days	[19],	with	a	mean	of	currently	about	29.530588	mean	solar	days:

in	days	of	86400	atomic	seconds.	Approximations	to	this	value	are	used	in	many
lunar	 and	 lunisolar	 calendars.	 The	 Chinese	 calendar,	 however,	 uses	 actual
astronomical	values	 in	 its	determinations.	The	mean	and	 true	 times	of	 the	new
moon	can	differ	by	up	to	about	14	hours.	Figure	14.8	shows	for	comparison	the
changing	length	of	the	month,	measured	in	mean	solar	days	at	the	same	point	in
time,	with	the	values	used	in	several	arithmetic	calendars.



Figure	14.8	
Length	of	the	synodic	month,	in	contemporaneous	mean	solar	days,	plotted	by
Gregorian	year.	(The	value	for	Orthodox	Easter,	29.530851,	is	omitted	because	it
is	far	above	the	values	plotted.)	Suggested	by	R.	H.	van	Gent	and	based	on	data
from	[18,	Chap.	49]	and	[31,	Chap.	14].

The	 synodic	 month	 is	 not	 constant	 but	 is	 decreasing	 in	 mean	 length	 by
about	 	solar	days	per	century	(though	it	is	increasing	in	length	by	about
0.021	 atomic	 seconds	 per	 century).	 The	 net	 effect	 of	 the	 decreases	 in	 synodic
month	 and	 tropical	 year	 is	 to	 increase	 the	 number	 of	months	 from	 its	 current
value	of	about	12.3682670	per	year	by	 	months	per	century.

The	full	moon	is	the	most	visible	feature	of	the	night	sky	and	has	thus	long
fascinated	human	observers.	Some	cultures	give	names	 to	 the	 full	moons—the
“Harvest	Moon”	is	the	full	moon	closest	to	the	autumnal	equinox,	for	example.
For	obscure	reasons,	when	four	full	moons	occur	within	one	solar	season	(from
equinox	to	solstice	or	solstice	to	equinox),	the	third	is	termed	a	blue	moon;	 see
[23].	 This	 event	 is	 similar	 to	 the	 conditions	 for	 a	 leap	month	 on	 the	 Chinese
calendar	and	Hindu	lunisolar	calendars,	which	mandate	a	leap	month	whenever
two	new	moons	occur	within	the	same	solar	month	(see	Chapters	19	and	20).
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The	sidereal	month	 is	 the	 time	 it	 takes	 the	moon	 to	make	 one	 revolution
around	the	Earth.	Its	mean	value	is	27.32166	days.	In	the	interim,	the	Earth	has
moved	in	its	orbit	around	the	sun,	and	thus	the	difference	in	longitude	between
the	sun	and	moon	has	increased,	which	is	why	the	synodic	month	is	longer.	The
mean	values	of	these	types	of	month	should	satisfy	the	equation

The	anomalistic	month	is	the	time	between	consecutive	perigees	(points	at
which	the	moon	is	closest	to	Earth).	The	anomalistic	month	averages	27.55455
days.	Approximations	to	these	values	are	used	in	calculating	the	position	of	the
moon	for	the	modern	Hindu	lunisolar	calendar.

We	also	use	the	notion	of	a	solar	month,	 the	time	for	the	sun’s	position	in
the	sky	 to	 traverse	one	sign	of	 the	zodiac	(30°	of	 longitude).	 Its	mean	value	 is
one-twelfth	of	a	solar	year	and	ranges	from	29.44	days	in	Northern	Hemisphere
winter	 (to	 traverse	Capricorn)	 to	 31.43	 days	 in	Northern	Hemisphere	 summer.
Solar	months	play	an	important	rôle	in	the	Chinese	calendar	(which	uses	tropical
longitude)	and	in	the	Hindu	calendar	(which	uses	sidereal	longitude).

The	 time	of	new	moon	can	be	determined	directly	using	sums	of	periodic
terms.	We	 use	 the	 following	 function	 for	 the	moment	 (in	U.T.)	 of	 the	nth	 new
moon	after	(before,	if	n	is	negative)	the	new	moon	of	January	11,	1	(Gregorian),
the	first	new	moon	after	R.D.	0:

where





Table	14.3		Values	of	the	arguments	 ,	 ,	 ,	 ,	and	 	in		nth-new-moon	(page
229).



Table	14.4		Values	of	the	arguments	 ,	 ,	and	 	in	nth-new-moon	(page	229).

There	 were	 	 months	 between	 January,	 1	 and	 January,	 2000,	 upon
which	 time	 this	 function	 is	 centered.	The	 first	 new	moon	after	 j2000	occurred
5.25952	 days	 later.	 The	 value	 of	 E	 depends	 on	 the	 eccentricity	 of	 Earth’s
elliptical	orbit;	Ω	is	the	longitude	of	the	moon’s	“ascending	node.”

To	 find	 the	 time	of	 the	new	moon	preceding	a	given	date	or	moment,	we
can	use
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(14.47)

where

For	the	following	new	moon,	we	have

where

Alternatively,	one	can	determine	the	time	of	new	moon	indirectly	from	the
longitude	of	 the	moon.	The	moon’s	 longitude	 is	 significantly	more	 difficult	 to
compute	than	that	of	the	sun,	because	it	is	affected	in	a	nonnegligible	way	by	the
pull	of	the	sun,	Venus,	and	Jupiter.	The	function	for	the	longitude	of	the	moon	is
given	by



(14.48)
where

Table	14.5	
Values	of	the	arguments	 ,	 ,	 ,	 ,	and	 	in	lunar-longitude	(page	232).



This	 function	 and	 other	 lunar	 functions	 use	 the	 following	 auxiliary
functions	 giving	mean	 values	 of	 the	moon’s	 longitude,	 its	 elongation	 (angular
distance	from	the	sun),	the	solar	anomaly	(angular	distance	from	perihelion),	the
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(14.51)

(14.52)

(14.49)

lunar	 anomaly	 (angular	 distance	 from	 perigee),	 and	 the	 moon’s	 “argument	 of
latitude”	(the	distance	from	the	moon’s	node,	that	point	at	which	the	moon’s	path
crosses	the	ecliptic	from	the	south	to	the	north):



(14.54)

(14.55)

(14.56)

(14.53)
These	 all	 take,	 as	 their	 argument,	 a	 moment	 expressed	 in	 Julian
centuries.	(Several	of	these	values	also	appear	in	nth-new-moon,	but	there	they
are	centered	around	the	year	2000.)

The	 following	 function	 shifts	 the	 distance	 from	 the	 equinoctial	 point	 into
the	range	 :

If	 one	wants	 the	 sidereal,	 rather	 than	 the	 equinoctial,	 lunar	 longitude,	 the
following	correction	for	precession	may	be	used:

Using	solar-longitude	 and	 lunar-longitude,	 one	 can	 determine	 the	 phase
of	 the	moon—defined	as	 the	difference	 in	 longitudes	of	 the	sun	and	moon—at
any	moment	t:

where
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(14.58)

To	 ensure	 the	 robustness	 of	 our	 code,	 this	 function	 checks	whether	 the	 phase
obtained	 in	 this	way	conflicts	with	 the	 time	of	new	moon	as	calculated	by	 the
more	precise	nth-new-moon	function.	If	it	does,	that	is,	if	one	method	puts	the
time	 just	 before	 a	 new	 moon	 and	 the	 other	 just	 after,	 then	 an	 approximation
based	on	the	nth-new-moon	moment	is	preferred.

To	determine	 the	 time	of	 the	new	moon,	or	other	phases	of	 the	moon,	we
search	 using	 (1.36)	 for	 a	 time	 before	 moment	 t	 when	 the	 solar	 and	 lunar
longitudes	differ	by	the	desired	amount,	φ:

where

The	search	is	centered	around	the	last	time	the	mean	moon	had	that	phase.	That
moment	τ	is	calculated	by	a	variant	of	equation	(1.63)	based	on	the	average	rate
at	which	the	phase	changes	by	1°.

The	search	for	the	next	time	the	moon	has	a	given	phase	is	analogous:
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(14.62)

(14.59)

(14.61)

where

For	the	computation	of	specific	phases	of	the	moon,	that	is,	new	moon,	first
quarter,	 full	moon,	 and	 last	 quarter,	we	 can	use	 lunar-phase-at-or-before	 and
lunar-phase-at-or-after,	along	with	the	following	set	of	constants:

Lunar	latitude	is	computed	in	nearly	the	same	way	as	longitude:

Table	14.6		Values	of	the	arguments	 ,	 ,	 ,	 ,	and	 	in	lunar-latitude	(page
236).





(14.63)

where

Lunar	latitude	ranges	from	 	to	 .
Finally,	the	altitude	of	the	moon	is	determined	in	a	similar	fashion	to	that	of

the	sun	(page	226).



(14.64)

where

The	result	has	not	been	corrected	for	parallax	or	refraction.

Table	14.7		Values	of	the	arguments	 ,	 ,	 ,	 ,	and	 	in	lunar-distance	(page
238).



To	 convert	 geocentric	 altitude	 (viewed	 from	 the	 center	 of	 the	 Earth),	 as
computed	by	lunar-altitude,	into	topocentric	altitude	(viewed	from	the	surface),
we	first	need	to	compute	the	parallax,	for	which	we	need	to	know	the	distance	in
meters	between	the	centers	of	the	Earth	and	the	moon:
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(14.66)

(14.67)

where

Now,	we	have:

where

and



14.7 Rising	and	Setting	of	the	Sun	and	Moon
Some,	like	the	Chaldees	and	the	ancient	Jews,	define	such	a	day	as	the	time	between	two	sunrises;
others,	like	the	Athenians,	as	that	between	two	sunsets;	or,	like	the	Romans,	from	midnight	to
midnight;	or	like	the	Egyptians,	from	noon	to	noon	…	It	was	necessary	…to	choose	some	mean
and	equal	day,	by	which	it	would	be	possible	to	measure	regularity	of	movement	without	trouble.

Nicolaus	Copernicus:	De	revolutionibus	orbium	coelestium	(1543)

We	occasionally	need	the	time	of	sunrise	or	sunset	for	a	location.	Astronomical
sunrise	is	nowadays	defined	as	the	time	of	first	appearance	of	the	upper	limb	of
the	sun;	sunset	is	the	moment	of	disappearance,	again	of	the	upper	limb.	This	is
also	the	definition	used	for	calendars	that	begin	their	day	at	sunset	(for	example,
the	Islamic	and	Hebrew	calendars)	or	sunrise	(the	Hindu	calendar,	according	to
some	authorities).	Because	of	the	asymmetry	involved,	on	the	day	of	the	equinox
the	 intervals	 from	sunrise	 to	 sunset	 and	 from	sunset	 to	 sunrise	differ	by	a	 few
minutes.	This	discrepancy	is	further	compounded	by	atmospheric	refraction	(the
bending	 of	 the	 sun’s	 light	 by	 the	 Earth’s	 atmosphere),	 which	 makes	 the	 sun
visible	2	to	3	minutes	before	a	straight	line	to	it	is	actually	above	the	horizon	and
keeps	it	visible	for	a	few	minutes	after	it	 is	geometrically	below	the	horizon	at
sunset	time.

We	 first	 write	 a	 general	 function	 to	 calculate	 the	moment,	 in	 local	mean
time,	when	the	“depression	angle”	of	the	geometric	center	of	the	sun	is	α	degrees
below	 (above,	 if	 the	 angle	 is	 negative)	 the	geometric	horizon	 at	 sea	 level	 at	 a
given	location	around	a	fixed	moment	t.	The	same	depression	angle	occurs	both
in	 the	 east	 (at	 around	 sunrise)	 and	 the	west	 (at	 around	 sunset),	 so	we	 use	 the
variable	early?	to	specify	which	we	want:	early?	is	true	for	the	eastern	horizon
and	false	for	the	western	horizon.	First,	an	approximation	is	determined:



(14.69)
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where

Here,	we	have

where

The	function	sine-offset	gives	the	sine	of	the	angle	α	between	where	the	sun	is	at
t	and	where	it	is	at	its	position	of	interest.	An	impossible	value	(that	is,	outside
the	 range	 of	 )	 is	 returned	 if	 the	 angle	 α	 is	 not	 reachable.	 That
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(14.72)

(14.73)

(14.70)

approximation	is	then	repeatedly	refined:

where

In	polar	 regions,	when	 the	 sun	does	 not	 reach	 the	 stated	 depression	 angle	 this
function	returns	the	constant	bogus.

The	function	moment-of-depression	may	then	be	used	in	the	determination
of	 the	 local	 time	 in	 the	morning	 or	 evening	when	 the	 sun	 reaches	 a	 specified
angle	below	the	true	horizon.	The	result	(for	nonpolar	regions)	is	then	converted
to	standard	time,	using	standard-from-local	(page	208):

where

Similarly	for	the	evening	we	have:
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where

The	 visible	 horizon	 depends	 on	 the	 elevation	 of	 the	 observer.	 The	 half-
diameter	of	the	sun	is	 ,	while	the	average	effect	of	refraction	is	 ,	for	a	total
depression	angle	of	 .	 If	 the	observer	 is	above	sea	 level	 then	 the	sun	 is	even
lower	when	its	upper	limb	touches	the	observer’s	horizon.

A	 standard	 value	 of	 the	 refraction,	 taking	 elevation	 into	 account,	 is
computed	as	follows:

where

The	 value	 for	 R	 is	 the	 radius	 of	 the	 Earth;	 	 is	 the	 approximate
contribution	 (in	 degrees)	 to	 the	 depression	 angle	 caused	 by	 an	 elevation	 of	 h
meters	 [34].	 This	 function	 ignores	 “elevations”	 that	 are	 below	 sea	 level	 or
obstructions	 of	 the	 line	 of	 sight	 to	 the	 horizon.	 Also,	 it	 cannot	 be	 perfectly
accurate	 because	 the	 observed	 position	 of	 the	 sun	 depends	 on	 atmospheric
conditions,	 such	 as	 atmospheric	 temperature,	 humidity,	 and	 pressure	 (see	 [26]
and	[32]).	The	 time	parameter	 t	 is	 not	 used	here,	 but	 could	be	used	 in	 a	more
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(14.79)

refined	calculation	that	takes	average	atmospheric	conditions	into	account.
Hence,	for	sunrise	we	write

where

The	extra	 	is	needed	because	we	want	the	time	when	the	upper	limb	of	the	sun
first	becomes	visible.	Similarly,	for	sunset	we	have

where

For	example,	to	calculate	the	standard	time	of	sunset	in	Urbana,	Illinois	on
a	given	Gregorian	date	we	could	write

where

On	November	12,	1945,	 this	gives	sunset	at	4:42	p.m.	At	 the	Canadian	Forces
Station	 Alert	 in	 Nunavut,	 the	 northernmost	 settled	 point	 in	 the	 western
hemisphere,	for	which
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we	get	bogus	for	an	answer	on	the	same	date.
The	contribution	of	 	to	the	depression	angle,	used	above,	is	based	on	the

average	 effect	 of	 refraction,	 but—as	 already	 mentioned—the	 refraction	 varies
greatly,	 depending	 on	 atmospheric	 conditions.	 Thus,	 the	 times	 of	 sunrise	 and
sunset	 can	 be	 calculated	 only	 to	 the	 nearest	 minute;	 for	 polar	 regions	 the
uncertainty	will	be	several	minutes.14	Furthermore,	at	high	latitudes,	because	of
the	 discrepancies	 between	 apparent,	 local,	 and	 standard	 time,	 dawn—or	 even
sunrise—on	 	 can	 actually	 occur	 on	 	 before	 midnight,	 and	 dusk	 or
sunset	 can	occur	on	 .	There	may	even	be	 two	occurrences	on	 the	 same
civil	day.

The	 times	 of	 occurrence	 of	 certain	 depression	 angles	 have	 religious
significance	 for	 Jews	 and	Muslims.	 Some	 Jews,	 for	 example,	 end	 Sabbath	 on
Saturday	night	when	the	sun	reaches	a	depression	angle	of	 ,

but	for	other	purposes	they	consider	dusk	to	end	earlier:

Table	14.8	gives	some	depression	angles	and	their	significance.

Table	14.8		Significance	of	various	solar	depression	angles.	The	Islamic	values
are	derived	from	[13];	the	Jewish	values	are	from	[15],	primarily,	and	from	[8].
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The	 rising	 and	 setting	 times	 of	 the	 moon,	 for	 nonpolar	 regions,	 can	 be
determined	in	a	similar	fashion	to	that	of	the	sun.	Refraction	is	used	to	adjust	the
topocentric	altitude:

	being	the	approximate	average	half-diameter	of	the	moon.
Moonrise	and	moonset	are	found	by	binary	search,	after	estimating	the	time

of	the	event,	based	on	altitude	at	midnight	and	on	whether	the	moon	is	waxing	or
waning:

where



(14.84)
where



A	bogus	 value	 is	 returned	 if,	 on	 the	 day	 in	 question,	 the	 event	 does	 not
occur,	as	happens	about	once	a	month:	since	the	search	for	the	moment	when	the
moon	is	at	 the	horizon	can	return	a	moment	 just	before	midnight	of	 the	day	in
question,	we	 need	 to	 take	 the	maximum	of	 the	 result	 and	 the	 start	 of	 the	 day.
This	function	is	not	robust	in	the	sense	that	it	returns	the	time	at	which	the	moon
gets	closest	 to	 the	horizon	 in	 those	cases	where	 it	does	not	appear	 to	cross	 the
horizon	at	all,	as	happens	in	polar	latitudes.

We	will	need	moonset	for	the	Babylonian	calendar	(Section	18.1).

14.8 Times	of	Day
May	the	gods	destroy	that	man	who	first	discovered	hours	and	who	first	set	up	a	sundial	here;
who	cut	up	my	day	piecemeal,	wretched	me.

Plautus:	The	Boeotian	Woman

Now	Peter	and	John	went	up	together	into	the	temple	at	the	hour	of	prayer,	being	the	ninth
hour.

The	Acts	of	the	Apostles	3:1

This	singular	and	inconvenient	method16	had	its	defenders,	and	that	even	among	the	French;
who	have	found	that	with	pencil,	and	a	little	astronomical	calculation,	one	may	fix	the	hour	of
dinner	with	very	little	embarrassment.

Jacques	Ozanam:	Recreations	in	Science	and	Natural	Philosophy	(1851)

Our	civil	day	is	divided	into	24	hours,	counting	from	zero	at	midnight	(so-called
“French	time”);	each	hour	is	divided	into	60	minutes,	and	each	minute	is	divided
into	60	seconds	(if	we	assume	no	leap	second	is	added	to	that	day).	Accordingly,
we	represent	the	time	of	day	as	a	triple

where	hour	is	an	integer	in	the	range	0	to	23,	minute	is	an	integer	in	the	range	0
to	 59,	 and	 second	 is	 a	 nonnegative	 real	 number	 less	 than	 60.	 (Sometimes	we
omit	 the	 third	 component	 and	 give	 only	 the	 hour	 and	minute.)	 Other	 cultures



subdivided	 the	day	differently.	For	 instance,	 the	ancient	Egyptians—as	well	 as
the	Greeks	and	Romans	in	classical	times—divided	the	day	and	night	separately
into	 12	 equal	 “hours”	 each.	 Because,	 except	 at	 the	 equator,	 the	 lengths	 of
daylight	 and	nighttime	vary	with	 the	 seasons,	 the	 lengths	of	 such	daytime	and
nighttime	hours	also	vary	with	the	season.	These	seasonally	varying	temporal	(or
seasonal)	hours	(horæ	temporales)	are	still	used	for	ritual	purposes	among	Jews.
In	London,	for	example,	the	length	of	such	an	hour	varies	from	about	39	minutes
in	December	to	about	83	minutes	in	June.

Ancient	Chinese	civilization	divided	a	day	into	10	shí	and	100	kè	based	on
marks	on	dripping	pot.	In	the	first	century	B.C.E.,	Chinese	astronomers	started	to
divide	 a	 day	 into	 12	 shí,	 beginning	 at	 midnight.	 Although	 100	 kè	 cannot	 be
divided	equally	into	12	shí,	the	kè	was	not	changed	until	1670,	during	the	early
Qīng	dynasty,	when	it	was	redefined	as	an	eighth	of	a	shí,	making	96	kè	per	day.

The	 Hindus	 divide	 the	 civil	 day	 into	 60	 gha ikás	 of	 24-minute	 duration,
each	of	which	is	divided	into	60	palas,	each	of	which	is	24	seconds.	They	also
divide	the	sidereal	day	into	60	nádís,	each	nádí	into	60	vinadis,	and	each	of	the

latter	into	6	asus.	The	Hebrew	calendar	divides	hours	into	1080	 alaqim	 (parts)
of	 	seconds	each;	each	part	is	divided	into	76	regaim	(moments).	The	French
Revolutionary	calendar	divided	each	day	into	10	“hours,”	each	“hour”	into	100
“minutes,”	and	each	“minute”	into	100	“seconds.”

There	have	been	various	conventions	for	the	start	of	the	hour	count	of	a	day.
In	many	places	 in	 the	past,	 town	clocks	were	 reset	 to	0	h	at	 sunset	or	at	dusk.
This	is	usually	referred	to	as	“Italian	time”	[7],	but	was	the	convention	in	many
other	places	in	Europe	and	the	Middle	East.	An	alternate	convention,	often	seen
on	 sundials,	 was	 to	 begin	 counting	 hours	 at	 sunrise;	 these	 were	 called
“Babylonian	hours.”	We	 can	 convert	 between	 Italian	 time	 and	 local	 time.	 For
example	the	clock	in	Padua,
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was	 reset	every	day	at	 the	moment	of	 local	dusk,	 taken	 to	be	30	minutes	after
sunset	(which	was	sometimes	computed	to	occur	at	a	solar	depression	angle	of	
).	Thus	we	define

where

To	 convert	 local	 time,	 measured	 from	 midnight,	 to	 and	 from	 Italian	 time,
measured	from	dusk,	we	use:

where

In	the	opposite	direction,

where
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Thus	when	the	clock	struck	2:00	according	to	Italian	apparent	time	in	Padua	on
November	 12,	 1732	 (Gregorian),	 it	 was	 19:16	 according	 to	 French	 apparent
time,	 which	 was	 7:01	 p.m.	 by	 local	 mean	 time;	 this	 would	 be	 7:13	 p.m.	 on
today’s	standard	time	clocks.

In	Ethiopia	and	 some	neighboring	 regions,	 this	 style	 of	 time	 reckoning	 is
still	 in	 use.	 Twelve	 daytime	 hours	 are	 counted	 from	 6	 a.m.	 until	 6	 p.m.,	 and
twelve	nightime	hours	are	counted	from	6	p.m.	until	the	next	morning.

With	 the	 functions	 for	 local	 sunrise	 and	 sunset	 times	 of	 the	 previous
section,	we	can	also	compute	the	time	based	on	temporal	(seasonal)	hours,	still
used	by	Jews	and	Hindus.	At	a	specified	location	on	a	particular	fixed	date,	the
lengths	of	daytime	and	nighttime	temporal	hours	are	given	by

and

This	allows	us	to	convert	“sundial	time”	to	standard	time	with
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where

which	 in	 turn	 allows	 us	 to	 determine,	 say,	 the	 end	 of	 morning	 according	 to
Jewish	ritual:

Temporal	hours	were	also	used	for	the	canonical	hours	of	the	Church	breviary:
Matins	 (midnight),	Lauds	(dawn),	Prime	(sunrise),	Terce	(9	a.m.),	Sext	 (noon),
None	(3	p.m.),	Vespers	(sunset),	and	Compline	(dusk).

The	 times	 of	 apparent	 noon	 and	 midnight	 could	 be	 calculated	 using
temporal	hours,	but	the	times	can	differ	by	a	few	seconds	from	midday	(14.26)
and	midnight	(14.25)	because	the	times	of	sunrise	and	sunset	sometimes	change
relatively	quickly.

An	 important	 time	 of	 day	 for	Muslim	prayer	 is	asr,	which	 is	 defined	 for
Hanafi	Muslims	as	the	moment	in	the	afternoon	when	the	shadow	of	a	gnomon
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has	 increased	 by	 double	 its	 own	 length	 over	 the	 shadow	 length	 at	 noon.	 By
trigonometry,	we	get	the	following	determination:

where

and	where	 δ	 is	 the	 solar	 declination	 at	 noon.	Shafi’i	Muslims	use	 the	moment
when	the	length	of	the	shadow	doubles:

where

On	certain	dates	in	polar	regions,	there	is	no	shadow.
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14.9 Lunar	Crescent	Visibility
So	patent	are	the	evils	of	a	purely	lunar	year	whose	length	varies,	owing	to	primitive	methods	of
observation	and	determination	of	the	new	moon,	that	efforts	to	correct	them	have	never	ceased
from	the	beginning	to	the	present	day.

K.	Vollers:	Encyclopædia	of	Religion	and	Ethics,	vol.	III,	p.	127	(1911)17

Astronomical	methods,	as	well	as	rules	of	thumb,	for	predicting	the	time	of	first
visibility	 of	 the	 crescent	 moon	 (the	 phasis)	 have	 been	 developed	 over	 the
millennia	 by	 the	 ancient	 Babylonians,	 medieval	Muslim	 and	Hindu	 scientists,
and	 by	 modern	 astronomers.	 We	 will	 require	 such	 a	 method	 to	 simulate	 the
observation-based	calendars	of	Chapter	18.

One	simple	criterion	for	likely	visibility	of	the	crescent	moon,	proposed	by
S.	K.	Shaukat	[2],	requires	a	minimum	difference	in	altitudes	between	the	setting
sun	and	moon	(ignoring	parallax	and	refraction,	for	simplicity),	and	a	minimum-
size	crescent,	which	depends	on	the	elongation	(angular	separation),	arc-of-light,
between	the	two	bodies.	The	elongation	is	computed	as	follows:

A	good	time	for	viewing	the	young	moon	is	when	the	sun	is	 	below	the
horizon:

where
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The	 following	 boolean	 function	 checks	whether	 the	moon	was	 visible	 on
the	eve	of	date	at	location,	according	to	Shaukat’s	method:

where

This	definition	is	not	designed	for	high	altitudes	and	polar	regions	(where	dusk
may	not	occur	or	where	the	moon	may	only	become	visible	late	in	the	month).

Scientists	 have	 continued	 working	 on	 improved	 criteria	 for	 predicting
visibility.	 For	 example,	 one	 may	 prefer	 to	 base	 visibility	 on	 the	 topocentric
altitude	 (page	 239),	 rather	 than	 the	 geocentric	 altitude	 (page	 237).	 Some
proposed	criteria	use	what	 is	called	 the	arc	of	vision,	 the	 angular	 difference	 in
altitudes	of	the	sun	and	moon	at	a	given	time	and	place:

In	particular,	B.	D.	Yallop	[33]	suggested	using	the	following	ideal	time	for
visibility,	based	on	[6]:

where
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Yallop’s	criterion	is	as	follows:

where

To	 determine	 the	 angular	 width	 of	 the	 crescent,	 Yallop’s	 criterion	 takes	 into
account	the	moon’s	topocentric	semi-diameter	(in	degrees):

where
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An	 approximation	 for	 the	 geocentric	 apparent	 lunar	 diameter	 is	 used,	 for
example,	by	[22]:

For	a	recent	synthesis	of	modern	methods	of	determining	visibility,	see	[10].
Adopting	Shaukat’s	relatively	simple	criterion	for	the	determination	of	first

visibility,	we	define

Other	criteria	may,	of	course,	be	used	instead.
With	the	function	visible-crescent,	we	can	calculate	 the	day	on	which	the

new	moon	is	first	observable	before—or	after—any	given	date	by	checking	for
first	visibility	after	the	relevant	new	moon:

where
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where

This	 method	 will	 be	 used	 in	 Chapter	 18	 for	 the	 observation-based	 Islamic
(Section	18.3)	and	Hebrew	(Section	18.4)	calendars.
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1			This	is	in	agreement	with	the	standard	of	the	International	Astronomical	Union	but	inconsistent	with
common	sense	and	a	century	of	common	practice.	See	[18,	p.	93].



2			Imperfect	arithmetic	accuracy	can	result	in	meaningless	values	of	direction	when	location	and	focus
are	nearly	coincident	or	antipodal.

3			Despite	the	antiquity	of	such	great-circle	calculations	in	Muslim	and	Jewish	sources,	many	mosques
and	synagogues	are	designed	according	to	other	conventions.	See	[1].

4			Ephemeris	time,	which	takes	the	orbital	motions	in	the	solar	system	as	the	basic	building	block,	is	an
outdated	time	scale	as	of	1984.

5			The	formal	recognition	of	Greenwich	as	the	“prime	meridian”	dates	from	the	International	Meridian
Conference	of	1884,	but	it	had	been	informal	practice	from	1767.	The	French,	however,	continued	to	treat
Paris	as	the	prime	meridian	until	1911,	when	they	switched	to	Greenwich,	referring	to	it	as	“Paris	Mean
Time,	minus	nine	minutes	twenty-one	seconds.”	France	did	not	formally	switch	to	Universal	Time	until
1978;	see	[30]	and	[11].

6			The	International	Telecommunications	Union	states	in	ITU-R	TF.460-6,	sec.	2.1,	that	“A	positive	or
negative	leap-second	should	be	the	last	second	of	a	UTC	month,	but	first	preference	should	be	given	to	the
end	of	December	and	June,	and	second	preference	to	the	end	of	March	and	September.”	See	[5]	for	a
concise	history	of	leap	seconds.

7			The	24-hour	day	is	sometimes	called	a	nychthemeron	to	distinguish	it	from	the	shorter	period	of
daylight.

8			The	hands	on	early	mechanical	clocks	were	imitating	the	movement	of	the	shadow	of	the	gnomon	(in
the	northern	hemisphere	where	clocks	were	developed)	as	the	sun	crosses	the	sky.	This	is	the	origin	of	our
notion	of	“clockwise.”	See	“The	Last	Word,”	New	Scientist,	March	27,	1999.

10			This	translation	follows	the	interpretation	of	Solomon	ben	Isaac.
11			Perhaps	this	perpendicularity	explains	the	odd	belief	that	fresh	eggs	balance	more	easily	on	the	day

of	the	vernal	equinox.	This	turned	into	a	minor	craze	in	the	United	States;	see	Martin	Gardner’s	“Notes	of	a
Fringe	Watcher,”	The	Skeptical	Inquirer,	May/June	1996.

12			There	has	recently	been	much	worry	in	the	fringe	science	community	about	the	change	in	the	tilt	of
the	Earth’s	axis	causing	a	global	calamity	New	Scientist	(August	9,	2008,	p.	56)	refers	to	this	as
“fruitloopery.”

13			This	dynamical	equinox	is	the	intersection	of	the	mean	celestial	equator	with	the	ecliptic,	where	the
movement	of	the	ecliptic	is	derived	from	a	dynamical	model	of	the	movement	of	the	Earth-moon	barycenter
(center	of	gravity)	within	the	solar	system.

14			A	12-minute	discrepancy	between	the	calculated	and	observed	times	of	sunrise	is	documented	in
[26].

16			Counting	hours	from	zero	at	sunset.
17			

	



First	14	of	28	Arabian	lunar	stations	from	a	late	fourteenth-century	manuscript
of	Kitab	al-Bulhan	by	the	celebrated	ninth-century	Muslim	astrologer	Abu-
Ma’shar	al-Falaki	(Albumazar)	of	Balkh,	Khurasan,	Persia.	(Courtesy	of	the
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The	Persian	Calendar
◈

It	was	the	custom	of	the	Persians	not	to	begin	a	march	before	sunrise.	When	the	day	was	already
bright,	the	signal	was	given	from	the	king’s	tent	with	the	horn;	above	the	tent,	from	which	it	might
be	seen	by	all,	there	gleamed	an	image	of	the	sun	enclosed	in	crystal.	Now	the	order	of	march	was
as	follows.	In	front	on	silver	altars	was	carried	the	fire	which	they	called	sacred	and	eternal.	Next
came	the	Magi,	chanting	their	traditional	hymn.	These	were	followed	by	three	hundred	and	sixty
five	young	men	clad	in	purple	robes,	equal	in	number	to	the	days	of	the	whole	year;	for	the
Persians	also	divided	the	year	into	that	number	of	days.

Quintus	Curtius	Rufus:	History	of	Alexander,	III,	iii	(circa	35	C.E.)

The	modern	Persian	calendar,	adopted	in	1925,	is	a	solar	calendar	based	on	the
Jalālī	calendar	designed	in	the	eleventh	century	by	a	committee	of	astronomers,
including	 a	 young	 Omar	 Khayyām,	 the	 noted	 Persian	 mathematician,
astronomer,	 and	 poet.	 The	 Jalālī	 calendar	 had	 12	 months	 of	 30	 days	 each,
followed	by	a	5-day	period	 (6	 in	 leap	years),	 just	 like	 the	Coptic	and	Ethiopic
calendars	 described	 in	 Chapter	 4.	 In	 addition	 to	 the	 Jalālī	 calendar,	 the
Zoroastrian	calendar,	whose	structure	is	described	in	Section	1.11,	was	also	used
historically	 in	 Persia.	The	 lengthy	 history	 of	 Persian	 calendars	 is	 discussed	 in
[3],	 [5],	 and	 [7];	 [2]	 gives	 a	 briefer	 history,	 together	 with	 tables	 and
computational	 rules	 for	 the	 arithmetic	 form	 of	 the	 calendar	 to	 be	 discussed	 in
Section	 15.3.	 A	 identical	 to	 the	 modern	 Persian	 calendar,	 but	 with	 different
month	names,	was	adopted	in	Afghanistan	in	1957.



(15.1)

15.1 Structure
Epochæ	celebriores,	astronomis,	historicis,	chronologis,	Chataiorvm,	Syro-Græcorvm	Arabvm,
Persarvm,	Chorasmiorvm,	usitatæ	[Famous	epochs	customarily	in	use	by	astronomers,	historians,
chronologists,	Hittites,	Syrian-Greeks,	Arabs,	Persians,	and	Chorasmians]

Title	of	John	Greaves’	Latin/Persian	edition	(1650)	of	a	work	by	the	fourteenth-century	Persian
astronomer	Ulugh	Beg,	grandson	of	Tamerlane

The	epoch	of	the	modern	Persian	calendar	is	the	date	of	the	vernal	equinox	prior
to	the	epoch	of	the	Islamic	calendar;	that	is,	1	A.P.1	began	on

According	to	Birashk	[2],	there	is	no	Persian	year	0	(as	on	the	Julian	calendar).
The	year	begins	on	the	day	when	the	vernal	equinox	(approximately	March

20)	occurs	before	true	noon	(midday)	and	it	 is	postponed	to	the	next	day	if	 the
equinox	is	on	or	after	true	noon.

There	are	12	Persian	months,	containing	29,	30,	or	31	days,	as	follows:

(1)	Farvardīn 			 			 31	days

(2)	Ordībehesht 			 			 31	days

(3)	Xordād 			 			 31	days

(4)	Tīr 			 			 31	days

(5)	Mordād 			 			 31	days

(6)	Shahrīvar 			 			 31	days

(7)	Mehr 			 			 30	days

(8)	Ābān 			 			 30	days

(9)	Āzar 			 			 30	days



(10)	Dey 			 			 30	days

(11)	Bahman 			 			 30	days

(12)	Esfand 			 			 29	{30}	days

The	 leap-year	structure	 is	 given	 in	 braces;	 the	 last	month,	Esfand,	 contains	 30
days	in	leap	years.	Thus,	an	ordinary	year	has	365	days,	and	a	leap	year	has	366
days.

Days	 begin	 at	 local-zone	 midnight	 just	 like	 Gregorian	 days.	 The	 week
begins	on	Saturday;	the	days	of	the	week	are	numbered,	not	named:

Saturday Shanbēh 			 			

Sunday Yek-shanbēh 			 			

Monday Do-shanbēh 			 			

Tuesday Se-shanbēh 			 			

Wednesday Chār-shanbēh 			 			

Thursday Panj-shanbēh 			 			

Friday Jom‘ēh 			 			

The	 1925	 law	 establishing	 the	 modern	 Persian	 calendar	 is	 silent	 on	 the
matter	 of	 leap-year	 determination,	 possibly	 intending	 a	 purely	 astronomical
calendar	 in	which	 the	accurate	determination	of	 the	vernal	equinox	defines	 the
calendar–a	leap	year	occurs	when	successive	spring	equinoxes	are	separated	by
366	 days.	 Various	 commentators	 ([2]	 and	 [7],	 for	 example)	 have	 suggested
arithmetic	cycles	approximating	such	a	calendar.	Taqizadeh	[5]	rejects	arithmetic



(15.2)

(15.3)

cycles	 altogether,	 claiming	 that	 the	 correct	 rule	 is	 astronomical,	 both	 for	 the
medieval	 and	 modern	 calendars.	 (Cycles	 may	 have	 been	 used	 in	 the	 past,	 or
present,	for	limited	periods	to	implement	or	approximate	the	astronomical	rule.)
Like	Birashk,	Taqizadeh	was	an	influential	politican,	a	member	of	parliament,	a
government	 minister,	 and	 a	 member	 of	 the	 parliamentary	 committee	 that
introduced	 the	new	calendar	 in	1925;	we	 rely	on	him	 for	 the	 intentions	of	 the
1925	law.

In	 this	 chapter	 we	 give	 implementations	 of	 the	 pure	 astronomical	 form
favored	by	Taqizadeh	and	Birashk’s	complex	arithmetic	form	[2].	Implementing
other	 arithmetic	 rules	 [5,	 pp.	 115–116]	 would	 be	 similar	 to	 the	 arithmetic
implementation	we	present.

15.2 The	Astronomical	Calendar
Die,	age,	frigoribus	quare	novus	incipit	annus,	qui	melius	per	ver	incipiendus	erat?	[Come,	say,
why	doth	the	new	year	begin	in	the	cold	season?	Better	had	it	begun	in	spring.]

Ovid:	Fasti,	I,	lines	149–150

Because	the	occurrence	of	the	New	Year	depends	on	true	(apparent)	noon	in
Iran,	we	define

and

Historically,	 Isfahan	might	have	been	used,	but	because	 the	1925	 law	does	not
give	 a	 location,	we	opt	 for	 the	 capital,	Tehran.	The	difference	 in	 longitudes	 is
only	a	negligible	 	of	arc.2



(15.4)

(15.5)

We	find	the	date	of	the	New	Year	(the	vernal	equinox)	on	or	before	a	given
fixed	date	using	(14.43):

where

Once	we	know	the	date	of	the	New	Year	it	is	straightforward	to	convert	to
an	 R.D.	 date	 from	 a	 Persian	 date	 by	 finding	 the	 R.D.	 date	 of	 the	 appropriate
Persian	year	(correcting	for	the	absence	of	a	year	0)	and	adding	the	elapsed	days
so	far	that	year:

where

Similarly,	to	convert	an	R.D.	date	to	a	Persian	date,	we	find	the	Persian	New	Year
preceding	 the	R.D.	 date	 and	base	our	 calculations	on	 that	 (again,	 correcting	 for



(15.6)

the	absence	of	a	year	0):

where

15.3 The	Arithmetical	Calendar
One	of	the	most	remarkable	peculiarities	of	the	Persians	is	their	fondness	for	arithmetical
puzzles,	and	their	expertise	in	the	secrets	of	figures.

Charles	Dickens:	All	the	Year	Round	(1863)

Birashk	[2,	p.	38],	 [1],	explicitly	 rejects	 the	determination	of	 leap	years	by	 the
occurrence	 of	 the	 astronomical	 equinox.	 He	 favors	 the	 fixed	 arithmetic
intercalation	scheme	we	now	describe.3

The	intricate	arithmetic	leap-year	pattern	chosen	by	Birashk	follows	a	cycle
of	2820	years,	containing	a	total	of	683	leap	years,	with	the	following	structure.
The	 2820-year	 cycle	 consists	 of	 twenty-one	 128-year	 subcycles	 followed	 by	 a
132-year	subcycle:



Each	 128-year	 subcycle	 is	 divided	 into	 one	 29-year	 sub-subcycle	 followed	 by
three	33-year	sub-subcycles:

Similarly,	 the	 132-year	 subcycle	 is	 divided	 into	 one	 29-year	 sub-subcycle
followed	by	two	33-year	sub-subcycles,	followed	by	one	37-year	sub-subcycle:

Finally,	a	year	y	in	a	sub-subcycle	is	a	leap	year	if	 	and	 .	That	is,
years	5,	9,	13,	…	of	a	sub-subcycle	are	leap	years.	Thus,	a	29-year	sub-subcycle
has	 7	 leap	 years,	 a	 33-year	 sub-subcycle	 has	 8	 leap	 years,	 and	 a	 37-year	 sub-
subcycle	has	9	leap	years	for	a	total	of

leap	years	and	a	total	of

days	in	the	2820-year	cycle.	The	true	number	of	days	in	2820	tropical	years	is

and	thus	Birashk	claims	that	the	arithmetic	Persian	calendar	is	in	error	by	only	a
few	minutes	in	2820	years.4

Years	475	A.P.,	3295	A.P. 	are	the	first	years	of	the	cycle.	To	facilitate	the
use	 of	modular	 arithmetic,	 however,	 it	 is	 more	 convenient	 for	 us	 to	 view	 the
cycles	 as	 beginning	 in	 the	 years	 474	A.P.,	 3294	A.P. ,	which	we	 consider	 the
zeroth	years	of	the	cycle	rather	than	the	2820th	years	of	the	cycle.

Unfortunately,	 the	 distribution	 of	 the	 683	 leap	 years	 in	 the	 cycle	 of	 2820
years	does	not	obey	the	cycle-of-years	formulas	from	Section	1.14,	and	thus	our
implementation	must	be	more	complex	 than	 that	 for,	 say,	 the	 Islamic	calendar,



(15.7)

described	in	Chapter	7.	Fortunately,	the	distribution	of	the	leap	years	in	the	range
of	443–3293	A.P.	does	satisfy	the	cycle-of-years	formulas	with	 ,	 ,	and	

,	 a	 leap-year	 rule	 noted	 by	 Abdollahy	 [7,	 p.	 672].5	 This	 range	 of	 years
contains	 a	 full	 cycle	 of	 2820	 Persian	 years,	 474–3293	 A.P.;	 consequently,	 by
shifting	 into	 that	 range	 we	 can	use	 the	 cycle-of-years	 formulas	 from	 Section
1.14.	First	we	find	the	number	of	years	since	the	zeroth	year	of	the	Persian	cycle
that	started	 in	474	A.P.;	 then	we	 find	 the	equivalent	position	 to	 that	year	 in	 the
range	474–3293	A.P.;	and	finally	we	apply	formula	(1.83).	Our	test	for	a	Persian
leap	year	according	to	Birashk’s	cycle	is	thus

where

However,	we	do	not	need	this	function	to	convert	arithmetic	Persian	dates	to	and
from	R.D.	dates.	We	include	it	because	it	is	much	simpler	than	the	rule	given	in
[2].

To	 convert	 an	 arithmetic	 Persian	 date	 to	 an	 R.D.	 date	 we	 first	 find	 the
equivalent	year	in	the	2820-year	cycle	474–3293	A.P.;	then	we	use	that	year	and
imitate	 our	 function	 for	 converting	 from	 an	 Islamic	 date	 to	 an	 R.D.	 date
(page	 107).	 We	 add	 together:	 the	 number	 of	 days	 before	 the	 epoch	 of	 the
calendar;	the	number	of	days	in	2820-year	cycles	since	474	A.P.;	 the	number	of
nonleap	days	 in	prior	years;	 the	number	of	 leap	days	 in	prior	years,	 computed
using	formula	(1.85);	the	number	of	days	in	prior	months	of	the	given	date;	and
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the	number	of	days	in	the	given	month	up	to	and	including	the	given	date.	Thus,
we	have

where

The	inverse	problem,	determining	the	arithmetic	Persian	date	corresponding
to	a	given	R.D.	 date,	must	 be	handled	 as	 for	 the	Gregorian	 calendar	 (page	62).
First	we	must	determine	the	Persian	year	in	which	a	given	R.D.	date	occurs.	This
calculation	 is	 done	 as	 in	 the	 Gregorian	 calendar	 (page	 61),	 but	 by	 taking	 the
number	of	days	elapsed	since	Farvardīn	1,	475	A.P.,	dividing	by	1029983	to	get
the	 number	 of	 completed	 2820-year	 cycles,	 and	 using	 the	 remainder	 of	 that
division	 to	 get	 the	 number	 of	 prior	 days	 since	 the	 start	 of	 the	 last	 2820-year
cycle.	 Then	 we	 add	 together	 474	 (the	 number	 of	 years	 before	 the	 2820-year
cycles	started),	 	(the	number	of	years	in	prior	2820-year	cycles),	and
the	number	of	years	since	the	start	of	the	last	2820-year	cycle.	This	last	value	is
computed	 from	 formula	 (1.90),	 but	with	 	 to	 account	 for	 the
shift	of	the	range	of	years	to	474–3293	A.P.	Moreover,	formula	(1.90)	is	based	on
a	cycle	of	years	numbered	1,	2,	…,	 ,	whereas	the	range	of	applicability
of	our	cycle	structure	is	474–3293	A.P.,	which	corresponds	to	years	in	the	cycle
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numbered	0,	1,	…,	2819;	hence,	(1.90)	does	not	apply	to	the	last	year.	The	 last
year	differs	from	the	cycle-of-years	formula	only	because	it	 is	a	 leap	year,	and
thus	it	is	only	to	the	last	day	of	that	year	that	the	formula	does	not	apply–that	is,
day	1029982,	 the	 last	day	of	a	2820-year	cycle–and	we	must	handle	 that	as	an
exception.	Therefore	we	have

where

Now	that	we	can	determine	the	Persian	year	of	an	R.D.	date,	we	can	easily
find	 the	 day	 number	 in	 the	 Persian	 year	 of	 an	 R.D.	 date;	 from	 that	 we	 can
compute	 the	Persian	month	number	by	division.	Knowing	 the	year	and	month,
we	determine	the	day	of	the	month	by	subtraction.	Putting	these	pieces	together,
we	have

where



Table	15.1	Years	in	the	range	1000–1800	A.P.	(1621–2421	Gregorian)	for	which
the	astronomical	Persian	calendar	differs	from	the	arithmetic	Persian	calendar.



Comparing	the	dates	of	the	Persian	New	Year	on	the	astronomical	calendar
with	 those	 of	 the	 arithmetic	 calendar,	 for	 1000–1800	 A.P.	 (=	 1637–2417
Gregorian),	 we	 find	 that	 they	 disagree	 on	 the	 28	 years	 shown	 in	 Table	 15.1.
Outside	 this	 range	 disagreement	 is	 far	 more	 common,	 occurring	 almost	 every
fourth	year.	Notice	that	there	is	complete	agreement	for	the	range	of	Gregorian
years	 1865–2024	 (1244–1403	 A.P.);	 over	 that	 same	 range,	 a	 simple	 33-year



arithmetic	 cycle	 with	 ,	 ,	 	 is	 in	 phase	 with	 Birashk’s	 cycle.
Because	 	is	an	excellent	approximation	to	the	present	equinoctial	year,	this
33-year	cycle	agrees	with	the	astronomical	calendar	over	an	even	longer	period,
1046–1468	A.P.	(1621–2421	Gregorian).

15.4 Holidays
A	philosopher	of	the	Ḥashwiyya-school	relates	that	when	Solomon	the	son	of	David	had	lost	his
seal	and	his	empire,	but	was	reinstated	after	forty	days,	he	at	once	regained	his	former	majesty,
the	princes	came	before	him,	and	the	birds	were	busy	in	his	service.	Then	the	Persians	said,
“Naurôz	âmadh,”	i.e.	the	new	day	has	come.	Therefore	that	day	was	called	Naurôz.

Abū-Raiḥān	Muḥammad	ibn	’Aḥmad	al-Bīrūnī:	Al-āthār	al-Bāqiyah	‘an	al-Qurūn	al-Khāliyah
(1000)

As	 throughout	 this	 book,	we	 consider	 our	 problem	 to	 be	 the	 determination	 of
holidays	 that	 occur	 in	 a	 specified	Gregorian	 year.	Because	 the	 Persian	 year	 is
almost	 consistently	 aligned	 with	 the	 Gregorian	 year,	 each	 Persian	 holiday	 (as
long	as	it	is	not	very	near	January	1)	occurs	just	once	in	a	given	Gregorian	year.
Holidays	that	occur	on	fixed	days	on	the	Persian	calendar	are	almost	fixed	on	the
Gregorian	 calendar–such	 holidays	 are	 easy	 to	 determine	 on	 the	 Gregorian
calendar	 by	 observing	 that	 the	 Persian	 year	 beginning	 in	 Gregorian	 year	 y	 is
given	by

but	 we	must	 compensate	 for	 the	 lack	 of	 year	 0	 by	 subtracting	 1	 if	 the	 above
value	is	not	positive.	Thus,	 to	 find	 the	R.D.	date	of	Nowruz	 (Persian	New	Year,
Farvardīn	 1),	 according	 to	 the	 astronomical	 Persian	 calendar,	 that	 falls	 in	 a
specified	Gregorian	year,	we	would	use



(15.11)

where

If	we	want	the	date	of	Nowruz	according	to	the	arithmetic	Persian	calendar,	we
would	 substitute	 the	 function	 fixed-from-arithmetic-persian	 for	 fixed-from-
persian	in	(15.11).
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1			Anno	Persico	or	Anno	Persarum;	Persian	year.
2			We	have	read	that	the	location	used	for	the	Persian	calendar	calculations	was	not	fixed	in	the	1925

law.	However,	in	a	letter	dated	March	7,	1998	to	E.M.R.,	Masahallah	Ali-Ahyaie	of	Tehran	said,	“The	exact



time	of	equinox	(in	Iranian	Standard	Time,	i.e.,	U.T.	+	3.5	hours)	is	compared	to	the	time	of	the	apparent	or
true	solar	noon	on	longitude	52.5	E	(3.5	hours).	Then	if	the	time	of	the	equinox	(to	the	nearest	second)	is
before	the	true	solar	noon,	that	year	is	not	a	leap	year.	But	if	the	equinox	time	happens	exactly	at	the	time	of
the	true	solar	noon,	as	defined	above,	or	after	the	true	solar	noon,	that	particular	year	will	be	considered	as	a
leap	year	(366	days).”	He	repeated	this	claim	in	email	messages	on	October	2–3,	2003,	saying	that	the
fixing	of	the	longitude	is	part	of	the	1925	law;	however,	a	French	translation	of	the	law	does	not	specify	the

location.	There	are	a	number	of	years	in	the	range	0–3000	C.E.	in	which	the	difference	causes	the	date	of
Persian	New	Year—according	to	the	astronomical	functions	we	are	using—to	be	one	day	later.	By	Ali-
Ahyaie’s	claim,	in	Gregorian	years	428,	1600,	1699,	1798,	2091,	2157,	and	2648	Persian	New	Year	would
occur	on	March	21	instead	of	March	20;	in	395,	1406,	and	2714	it	would	occur	on	March	22	instead	of
March	21.	One	should	bear	in	mind	that	more	accurate	astronomical	functions	might	lead	to	other
differences:	these	calculations	are	sensitive.

3			Birashk	[2]	contains	some	significant	numerical	errors	in	the	treatment	of	negative	Persian	years.	For
example,	the	leap-year	test	in	his	sec.	2.5.2	works	only	for	positive	years.	His	Table	2.2	shows	the	subcycle
–41	.	.	86,	which	contains	only	127	years	because	there	is	no	year	0;	this	leads	to	errors	in	his	examples	in
his	sec.	2.6.2.	His	Table	I	shows	–1260	as	a	leap	year,	which	it	is	not.	There	are	various	other	minor	errors
in	his	Table	I	as	well.

4			Birashk’s	calculation	is	overly	simplistic:	the	length	of	the	spring	equinoctial	year	(currently
365.242374	days)	is	not	the	same	as	the	tropical	year,	and	in	either	case	the	year	length	is	slowly	changing,
as	is	the	length	of	a	day.	See	Section	14.4.

5			Abdollahy’s	rule	repeats	the	pattern	of	the	first	128-year	cycle	of	Birashk’s	rule,	so	it	does	not	work
directly	to	implement	Birashk’s	rule.	A	direct	implemention	of	an	arithmetic	Persian	calendar	based	on
Abdollahy’s	leap-year	rule	involves	a	simple	combination	of	the	ideas	used	in	implementing	the	arithmetic
Islamic	calendar	in	Chapter	7	together	with	the	method	used	below.

	



Shrine	of	the	Bāb,	located	on	Mount	Carmel,	Israel,	and	built	in	stages	from
1899	to	1953.	The	Bāb	(Mīrzā	‘Alī	Moḥammad	of	Shiraz),	who	was	executed	in
1850,	was	the	originator	of	the	19-year	cycle	of	the	Bahá’í	calendar.	(Photograph



by	N.	Wong,	©	2006	Bahá’í	International	Community,	used	with	permission.)
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The	Bahá’í	Calendar
◈

In	the	not	far	distant	future	it	will	be	necessary	that	all	peoples	in	the	world	agree	on	a	common
calendar.	It	seems,	therefore,	fitting	that	the	new	age	of	unity	should	have	a	new	calendar	free
from	the	objections	and	associations	which	make	each	of	the	older	calendars	unacceptable	to
large	sections	of	the	world’s	population,	and	it	is	difficult	to	see	how	any	other	arrangement	could
exceed	in	simplicity	and	convenience	that	proposed	by	the	Báb.

John	Ebenezer	Esslemont:	Bahá’u’lláh	and	the	New	Era:
An	Introduction	to	the	Bahá’í	Faith	(1923)1

16.1 Structure

The	Bahá’í	(or	Badī‘)	calendar	begins	its	years	on	the	day	of	the	vernal	equinox.
If	 the	 actual	 time	 of	 the	 equinox	 in	 Tehran	 occurs	 after	 sunset,	 then	 the	 year
begins	 a	 day	 later	 [3].	This	 astronomical	 version	 of	 the	Bahá’í	 calendar	 [4]	 is
described	in	Section	16.3.	Until	recently,	practice	in	the	West	had	been	to	begin
years	 on	 March	 21	 of	 the	 Gregorian	 calendar,	 regardless.	 This	 arithmetical
version	 is	described	 in	Section	16.2.	The	calendar,	based	on	cycles	of	19,	was
established	 by	 the	 Bāb	 (1819–1850),	 the	 martyred	 forerunner	 of	 Bahā’u’llāh,
founder	of	the	Bahá’í	faith.

As	 in	 the	Hebrew	 and	 Islamic	 calendars,	 days	 are	 from	 sunset	 to	 sunset.
Unlike	those	calendars,	years	are	solar;	 they	are	composed	of	19	months	of	19



days	each	with	an	additional	period	of	4	or	5	days	after	 the	eighteenth	month.
Until	 recently,	 leap	 years	 in	 the	Western	 version	 of	 the	 calendar	 followed	 the
same	pattern	as	in	the	Gregorian	calendar.	As	on	the	Persian	calendar,	the	week
begins	on	Saturday;	weekdays	have	the	following	names	(in	Arabic):

Saturday				 Jalāl 			 			 (Glory)

Sunday				 Jamāl 			 			 (Beauty)

Monday				 Kamāl 			 			 (Perfection)

Tuesday				 Fiḍāl 			 			 (Grace)

Wednesday			 ‘Idāl 			 			 (Justice)

Thursday				 Istijlāl 			 			 (Majesty)

Friday				 Istiqlāl 			 			 (Independence)

The	months	are	called

(1)	Bahā’ 			 			 (Splendor) 19	days

(2)	Jalāl 			 			 (Glory) 19	days

(3)	Jamāl 			 			 (Beauty) 19	days

(4)	‘Aẓamat 			 			 (Grandeur) 19	days

(5)	Nūr 			 			 (Light) 19	days

(6)	Raḥmat 			 			 (Mercy) 19	days

(7)	Kalimāt 			 			 (Words) 19	days



(8)	Kamāl 			 			 (Perfection) 19	days

(9)	Asmā’ 			 			 (Names) 19	days

(10)	‘Izzat 			 			 (Might) 19	days

(11)	Mashīyyat 			 			 (Will) 19	days

(12)	‘Ilm 			 			 (Knowledge) 19	days

(13)	Qudrat 			 			 (Power) 19	days

(14)	Qawl 			 			 (Speech) 19	days

(15)	Masā’il 			 			 (Questions) 19	days

(16)	Sharaf 			 			 (Honor) 19	days

(17)	Sulṭān 			 			 (Sovereignty) 19	days

(18)	Mulk 			 			 (Dominion) 19	days

								Ayyām-i-Hā 			 			 (Days	of	God) 4	{5}	days

(19)	‘Alā’ 			 			 (Loftiness) 19	days

The	leap-year	variation	is	given	in	braces.	The	19	days	of	each	month	have	the
same	names	as	the	months,	except	that	there	is	no	intercalary	Ayyām-i-Hā.

Years	are	also	named	in	a	19-year	cycle,	called	Vāḥid,	meaning	“unity”	and
having	a	numerological	value	of	19	in	Arabic	letters:

(1)	Alif 			 			 (letter	A)

(2)	Bā’ 			 			 (letter	B)

(3)	Ab 			 			 (Father)



(4)	Dāl 			 			 (letter	D)

(5)	Bāb 			 			 (Gate)

(6)	Vāv 			 			 (letter	V)

(7)	Abad 			 			 (Eternity)

(8)	Jād 			 			 (Generosity)

(9)	Bahā’ 			 			 (Splendor)

(10)	 ubb 			 			 (Love)

(11)	Bahhāj 			 			 (Delightful)

(12)	Javāb 			 			 (Answer)

(13)	Aḥad 			 			 (Single)

(14)	Vahhāb 			 			 (Bountiful)

(15)	Vidād 			 			 (Affection)

(16)	Badī’ 			 			 (Beginning)

(17)	Bahī 			 			 (Luminous)

(18)	Abhā 			 			 (Most	Luminous)

(19)	Vāḥid 			 			 (Unity)

There	is	also	a	361-year	major	cycle,	called	Kull-i-Shay	(the	name	has	the
numerological	value	 	in	Arabic).	Thus,	for	example,	Monday,	April	21,
1930	would	be	called	“Kamāl	 (Monday),	 the	day	of	Qudrat	 (the	 thirteenth),	of
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the	month	of	Jalāl,	of	 the	year	Bahhāj	(the	eleventh),	of	 the	fifth	Vāḥid,	of	 the
first	Kull-i-Shay,	of	the	Bahá’í	Era.”

Accordingly,	we	represent	a	Bahá’í	date	by	a	list

The	 first	 component,	major,	 is	 an	 integer	 (positive	 for	 real	 Bahá’í	 dates);	 the
components	 cycle,	 year,	 and	 day,	 take	 on	 integer	 values	 in	 the	 range	 ;
because	the	intercalary	period	interrupts	the	sequence	of	month	numbers,	month
is	either	an	integer	between	1	and	19	or	else	the	special	constant	value

The	 epoch	 of	 the	 calendar,	 day	 1	 of	 year	 1	 B.E.,2	 is	 March	 21,	 1844
(Gregorian):

which	is	R.D.	673222.

16.2 The	Arithmetical	Calendar
Mr.	Frank	E.	Osborne	read	a	complete	Bahai	calendar	on	which	he	has	been	working	for	the	past
four	or	five	years.	Abdul-Baha	gave	it	his	verbal	sanction.	It	was	referred	to	the	executive	board.

Star	of	the	West,	vol.	8	(1917)

The	Bahá’í	 calendar	 used	 in	 the	West	 until	 2015	was	 based	 on	 the	Gregorian
calendar,	and	thus	its	functions	are	relatively	straightforward:
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where

We	 first	 find	 the	 corresponding	 Gregorian	 year	 by	 counting	 how	many	 years
(361	for	each	major	cycle	and	19	for	each	minor	cycle)	have	elapsed	since	the
epoch	in	1844.	Starting	with	the	R.D.	date	of	the	last	day	(March	20)	of	the	prior
Bahá’í	year,	we	add	the	number	of	days	in	the	given	month	plus	19	days	for	each
month,	except	that	the	intercalary	period	has	only	4	or	5	days	(for	a	total	of	346
or	347	days),	depending	on	whether	February	of	 the	Gregorian	calendar	had	a
leap	day	or	not.

The	inverse	function	is

where



Here	we	 compute	 the	 number	 of	 years	 that	 have	 elapsed	 since	 the	 start	 of	 the
Bahá’í	calendar	by	 looking	at	 the	Gregorian	year	number,	considering	whether
the	date	is	before	or	after	Bahá’í	New	Year,	and	then	using	the	result	to	get	the
number	of	elapsed	major	and	minor	cycles	and	years	within	the	cycle.	Division
of	the	remaining	days	by	19,	the	length	of	a	month,	gives	the	month	number,	but
again	special	consideration	must	be	given	for	the	intercalary	period	and	for	the
last	month	of	the	Bahá’í	year.



16.3 The	Astronomical	Calendar
The	chief	element	of	the	day	after	to-morrow	in	the	political	calendar	will	be	All	Europe	as	One.
There	can	be	no	doubt	on	this	point.	Unhappily,	however,	no	European	nation	seems	yet	to	have
realized	the	fact.

German	contributor	to	Revue	de	Genéve,	quoted	in
The	Literary	Digest,	vol.	75	(1922)

The	Bahá’í	 year	was	 intended	 [3]	 to	 begin	 at	 the	 sunset	 preceding	 the	 vernal
equinox,	 which	 is	 frequently	 a	 day	 before	 or	 after	March	 21.	 The	 location	 at
which	sunset	occurs	 for	 this	purpose	had	been	undetermined	for	some	 time,	as
explained	in	the	following	explanatory	letter	[2]	written	in	1974:

Until	 the	 Universal	 House	 of	 Justice	 decides	 upon	 the	 spot	 on	 which	 the	 calculations	 for
establishing	the	date	of	Naw-Rúz	each	year	are	to	be	based	it	is	not	possible	to	state	exactly	the
correspondence	between	Bahá’í	dates	and	Gregorian	dates	for	any	year.	Therefore	for	the	present
the	believers	in	the	West	commemorate	Bahá’í	events	on	their	traditional	Gregorian	anniversaries.
Once	 the	 necessary	 legislation	 to	 determine	 Naw-Rúz	 has	 been	 made,	 the	 correspondence
between	 Bahá’í	 and	Gregorian	 dates	 will	 vary	 from	 year	 to	 year	 depending	 upon	whether	 the
Spring	Equinox	falls	on	the	20th,	21st	or	22nd	of	March.	In	fact	in	Persia	the	friends	have	been,
over	the	years,	following	the	Spring	Equinox	as	observed	in	Tehran,	to	determine	Naw-Rúz,	and
the	National	Spiritual	Assembly	has	to	issue	every	year	a	Bahá’í	calendar	for	the	guidance	of	the
friends.	The	 Universal	 House	 of	 Justice	 feels	 that	 this	 is	 not	 a	 matter	 of	 urgency	 and,	 in	 the
meantime,	is	having	research	conducted	into	such	questions.

Thus,	the	version	of	the	Bahá’í	calendar	employed	in	the	Near	East	(which
included,	 besides	 Iran,	 also	 Israel,	 Persian	 Gulf	 countries,	 and	 the	 Arabian
Peninsula)	 used	 Tehran	 for	 determining	 the	 time	 of	 sunset	 on	 the	 day	 of	 the
equinox,	which	in	turn	fixes	the	first	day	of	the	year.	In	2014,	the	decision	was
taken	to	use	Tehran	as	the	determining	location	the	world	over	[4]:

“The	Festival	of	Naw-Rúz	falleth	on	the	day	that	the	sun	entereth	the	sign	of	Aries,”	Bahá’u’lláh
explains	 in	 His	 Most	 Holy	 Book,	 “even	 should	 this	 occur	 no	 more	 than	 one	 minute	 before

sunset.”	However,	details	have,	until	now,	been	left	undefined.	We	have	decided	that	 ihrán,	the
birthplace	of	 the	Abhá	Beauty,	will	 be	 the	 spot	 on	 the	 earth	 that	will	 serve	 as	 the	 standard	 for
determining,	 by	means	 of	 astronomical	 computations	 from	 reliable	 sources,	 the	moment	 of	 the
vernal	equinox	in	the	northern	hemisphere	and	thereby	the	day	of	Naw-Rúz	for	the	Bahá’í	world.

This	change	took	effect	with	the	year	that	began	on	March	21,	2015.
For	fixing	the	time	of	sunset	in	Tehran,	these	coordinates	are	used:3
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The	 determination	 of	 the	 U.T.	moment	 of	 sunset	 on	 any	 specified	 day	 is
straightforward:

The	 first	day	of	 the	year	on	 the	new,	astronomical,	Bahá’í	calendar	 is	 the
day	 on	 which	 the	 vernal	 equinox	 occurs	 before	 sunset.	 To	 implement	 the
astronomical	 form	 of	 the	 calendar,	 we	 imitate	 the	 method	 used	 for	 the
astronomical	 Persian	 calendar	 in	 Section	 15.2.	 The	 date	 of	 the	 new	 year	 is
computed	using	formula	(14.43),	analogously	to	what	was	done	for	the	Persian
calendar	(page	259),	by	beginning	shortly	before	the	equinox	and	searching	for
the	sunset	when	the	longitude	of	the	sun	first	switches	from	large	(close	to	360 )
to	small	(less	than	2 ):

where

Because	of	the	unequal	distribution	of	leap	years	on	the	Gregorian	calendar,	the
equinox	will	be	as	early	as	5:27	p.m.	in	Tehran	on	March	19	in	2096,	which	is
before	sunset,	and	it	was	as	late	as	10:41	p.m.	on	March	21	in	1903,	long	after
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sunset.	By	the	new	rule,	 the	year	would	begin	on	March	19	 in	 the	former	case
and	March	22	in	the	latter.

To	convert	a	Bahá’í	date	on	the	new	calendar	into	a	fixed	date,	we	take	the
R.D.	date	of	the	Bahá’í	New	Year	and	add	19	days	for	each	full	month	plus	the
number	 of	 elapsed	 days	 in	 the	 current	 month.	 The	 intercalary	 days	 and	 last
month	 of	 the	 year	 must	 be	 treated	 as	 exceptions:	 days	 in	 Ayyām-i-Hā	 are
preceded	by	18	full	months	(that	is,	342	days);	because	the	length	of	that	period
differs	 in	 ordinary	 and	 leap	 years,	 for	 dates	 in	 the	 last	 month,	 we	 count
backwards	from	the	following	New	Year.	In	the	following	function,	we	multiply
the	number	of	years	 since	 the	 epoch	by	 the	mean	 tropical	 year	 length,	 plus	or
minus	half	a	year,	and	 then	use	astro-bahai-new-year-on-or-before	 to	get	 the
R.D.	date	of	the	subsequent	or	prior	Bahá’í	New	Year:
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where

The	inverse	function	is

where

Here	we	 compute	 the	 number	 of	 years	 that	 have	 elapsed	 since	 the	 start	 of	 the
Bahá’í	 calendar	by	dividing	 the	numbers	of	days	 since	 the	epoch	by	 the	mean
tropical	year	length	and	then	using	the	result	to	get	the	number	of	elapsed	major
and	minor	cycles	and	years	within	the	cycle.	Division	of	the	remaining	days	by
19	 (the	 length	 of	 a	 Bahá’í	 month)	 gives	 the	 month	 number	 but,	 again,
consideration	must	be	given	to	the	intercalary	days	and	for	the	last	month	of	the
Bahá’í	year.4

16.4 Holidays	and	Observances
In	all,	there	are	58	excusable	days	of	observance	for	various	religions	on	the	state’s	academic
calendar	–	which	requires	schools	to	open	180	days	a	year.	It	should	be	noted	that	in	many
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schools,	Christmas	and	Hanukkah	are	losing	ground	to	Birth	of	the	Bab	Day	(Baha’i),	and	the
Rama	Navami	(Hindu)	and	Eid	El	Fitr	(Islamic)	holy	days.

Lisa	Suhay:	“Want	the	Day	Off?	Get	Some	Religion,”
The	New	York	Times	(September	19,	1999)

When	 the	 Bahá’í	 calendar	 used	 in	 the	 West	 was	 synchronized	 with	 the
Gregorian,	 holidays	 were	 a	 trivial	 matter.	 Bahá’í	 New	 Year	 was	 always
celebrated	on	March	21,	the	assumed	date	of	the	spring	equinox.	It	is	called	the
Feast	of	Naw-Rūz,	 like	 the	Persian	New	Year,	which	also	celebrates	 the	vernal
equinox	(see	Chapter	15).	The	computation	is	trivial:

The	 only	 holiday	 that	 was	 not	 aligned	 with	 the	 Gregorian	 calendar	 was
Ayyām-i-Hā	4,	which	fell	on	March	1	in	ordinary	years,	but	on	February	29	in
leap	years.

The	other	major	holidays	are	the	Birth	of	the	Bāb	(which	was	celebrated	on
‘Ilm	5	=	October	20),	the	Birth	of	Bahā’u’llāh	(which	was	celebrated	on	Qudrat
9	=	November	12),	the	Feast	of	Riḍvān	(Jalāl	13	=	April	21	with	the	old	Western

version),	 Riḍvān	 9	 (Jamāl	 2	 =	 April	 29),	 Ri vān	 12	 (Jāmal	 5	 =	May	 2),	 the

Declaration	 of	 the	 Bāb	 (‘A amat	 8	 =	May	 24),	 the	 Ascension	 of	 Bahā’u’llāh
(‘Aẓamat	13	=	May	29),	and	the	Martyrdom	of	the	Bāb	(Raḥmat	17	=	July	10).
Two	 other	 obligatory	 observances	 are	 the	 Day	 of	 the	 Covenant	 (Qawl	 4	 =
November	26)	 and	 the	Ascension	 of	 ‘Abdu’l-Bahā	 (Qawl	 6	 =	November	 28).
There	are	additional	days	of	significance,	including	the	first	day	of	each	month
(known	as	 the	Nineteen	Day	Feast)	 and	 the	whole	 last	month	 (comprising	 fast
days).
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With	 the	 new	 calendar,	 which	 depends	 on	 the	 actual	 time	 at	 which	 the
equinox	 occurs,	 Bahá’í	Naw-Rūz,	 on	 Bahá	 1,	 coincides	 with	 Persian	 Nowruz
unless	the	equinox	occurs	between	noon	and	sunset	in	Tehran.	A	straightforward
way	to	determine	the	date	of	Bahá’í	Naw-Rūz	is	as	follows:

Determining	the	date	of	holidays,	apart	from	Birth	of	 the	Bāb
and	 the	Birth	 of	Bahā’u’llāh,	 on	 the	 new	 astronomical	 calendar	 (as	 previously
for	 the	Eastern	version)	 is	simply	a	matter	of	counting	a	 fixed	number	of	days
from	 Naw-Rūz,	 or	 before	 Naw-Rūz	 in	 the	 case	 of	 the	 month	 of	 ‘Alā’.	 For
example,	we	have

The	 other	 major	 holidays	 on	 the	 Bahá’í	 calendar	 are	 also	 observed	 on
Bahá’í	dates	(given	above),	except	for	four	that	had	been	linked	in	the	East	to	the
Islamic	 calendar	 (Chapter	 7)	 instead:	 Declaration	 of	 the	 Bāb	 (Islamic	 date
Jamādā	I	5),	Martyrdom	of	the	Bāb	(Sh‘abān	28),	Birth	of	 the	Bāb	(Muḥarram
1),	and	the	Birth	of	Bahā’u’llāh	(Muḥarram	2).	(At	 the	Bahá’í	World	Centre	 in
Israel,	 these	 four	 had	 been	 observed	 on	 their	 Islamic	 dates	 whereas	 the	 other
holidays	 had	 been	 observed	 on	 their	 Gregorian	 dates.)	 Following	 the	 recent
decision	 Bahá’í	 dates	 are	 to	 be	 used	 for	 the	 first	 two	 of	 these	 four	 holidays,
Declaration	of	the	Bāb	(on	‘Aẓamat	8)	and	Martyrdom	of	the	Bāb	(Raḥmat	17),
while	astronomical	lunisolar	dates	are	to	be	used	everywhere	for	the	other	two:
The	rule	is	that	the	Birth	of	the	Bāb	and	the	Birth	of	Bahā’u’llāh	are	observed	on
the	 first	 and	 second	 day,	 respectively,	 of	 the	 eighth	 lunisolar	month,	 counting
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new	moons	 from	 sunset	 at	 the	 end	of	Naw-Rūz.	Using	new-moon-at-or-after
(page	231)	for	this	purpose,	we	have:

where

and	 	is	the	moment	of	the	eighth	new	moon	of	the	year.	If	new	moon	is	before
sunset,	then	the	eighth	month	begins	at	sunset;	if	the	new	moon	is	after	sunset,
the	month	begins	one	day	later.
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3			The	elevation	of	Tehran	(1180	m)	is	not	taken	into	account	in	the	sunset	calculation,	because	the
mountains	to	its	west	are	at	about	the	same	height,	so	apparent	sunset	occurs	at	approximately	the	same
time	as	astronomical	sunset	at	zero	elevation	[1].

4			The	published	tables	of	the	ad	hoc	calendar	committee	at	the	Bahá’í	World	Centre	for	the	years	172–
221	B.E.	(2015–2064	C.E.)	were	prepared	“using	data	provided	by	Her	Majesty’s	Nautical	Almanac	Office	in
the	United	Kingdom”	and	are	available	at	wilmetteinstitute.org/wp-content/uploads/2014/11/Bahai-Dates-
172-to-221-B-E-_UK-December-2014.pdf.	There	is	almost	complete	correspondence	between	the	dates
calculated	with	our	functions	and	those	in	the	table.	The	only	divergence	is	for	2026,	for	which	the	table	has
New	Year	occurring	on	March	21,	and	our	calculations	place	it	on	the	previous	day.	This	is,	however,	a	very
close	call,	since	both	sunset	and	the	equinox	will	occur	on	March	20	between	6:15	and	6:16	p.m.	local
standard	time	in	Tehran.	On	account	of	the	very	close	proximity	of	the	two	events,	the	decision	was	made	to
set	Bahá’í	New	Year	to	be	March	21	[1].

	



Print	of	the	French	Revolutionary	calendar	month	of	Vendémiaire	by	Laurent
Guyot,	after	Jean-Jacques	Lagrenée,	the	younger,	Paris.	(Courtesy	of
Bibliothèque	Nationale	de	France,	Paris.)
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The	French	Revolutionary	Calendar
◈

Of	the	Republican	calendar,	the	late	John	Quincy	Adams	said:	“This	system	has	passed	away	and
is	forgotten.	This	incongruous	composition	of	profound	learning	and	superficial	frivolity,	of
irreligion	and	morality,	of	delicate	imagination	and	coarse	vulgarity,	is	dissolved.”	Unfortunately
the	effects	of	this	calendar,	though	it	was	used	for	only	about	twelve	years,	have	not	passed	away.
It	has	entailed	a	permanent	injury	on	history	and	on	science.

Joseph	Lovering:	Proceedings	of	the	American
Academy	of	Arts	and	Sciences,	p.	350	(1872)1

The	French	Revolutionary	calendar	 (Le	Calendrier	Républicain)	was	 instituted
by	the	National	Convention	of	the	French	Republic	in	October	1793.	Its	epoch	is
R.D.	654415,	 that	 is,	Saturday,	September	22,	 1792	 (Gregorian),	 the	day	of	 the
autumnal	equinox	of	that	year	and	also	the	first	day	following	the	establishment
of	 the	Republic.	The	calendar	went	 into	effect	on	Sunday,	November	24,	1793
(Gregorian)	 and	 was	 used	 by	 the	 French	 until	 Tuesday,	 December	 31,	 1805
(Gregorian);	 on	 Wednesday,	 January	 1,	 1806	 (Gregorian),	 the	 Revolutionary
calendar	 was	 abandoned	 by	 Napoleonic	 edict	 and	 France	 reverted	 to	 the
Gregorian	 calendar,	 but	 the	Revolutionary	 calendar	was	 used	 again	 during	 the
“Paris	Commune”	of	May	6–23,	1871	(Gregorian),	an	insurrection	that	occurred
after	the	collapse	of	Napoleon	III’s	Second	Empire.

Following	 the	 example	 of	 several	 ancient	 calendars,	 including	 the	Coptic
and	Ethiopic	(see	Chapter	4),	the	French	Revolutionary	calendar	divided	the	year



into	 12	 months	 containing	 exactly	 30	 days	 each,	 followed	 by	 a	 period	 of	 5
monthless	 days	 (6	 in	 leap	 years).	 The	 poetic	 names	 of	 the	months,	 coined	 by

Fabre	d’Églantine,	were	taken	from	the	seasons	in	which	they	occurred:2

(1)	Vendémiaire	(vintage)
(2)	Brumaire	(fog)
(3)	Frimaire	(sleet)
(4)	Nivôse	(snow)
(5)	Pluviôse	(rain)
(6)	Ventôse	(wind)
(7)	Germinal	(seed)
(8)	Floréal	(blossom)
(9)	Prairial	(pasture)
(10)	Messidor	(harvest)
(11)	Thermidor	(heat)
(12)	Fructidor	(fruit)

An	English	wit	who	was	“disgusted	with	the	‘namby	pamby’	style	of	the	French
calendar”	 dubbed	 them	 Slippy,	 Drippy,	 Nippy,	 Showery,	 Flowery,	 Bowery,
Hoppy,	Croppy,	Poppy,	Wheezy,	Sneezy,	Freezy	[2,	vol.	I,	pp.	38–39].

As	usual,	we	use

to	represent	the	date,	treating	the	monthless	days	as	a	thirteenth	month,	as	in	the
Mayan	haab	calendar	(Chapter	11).

Although	not	 relevant	 to	our	 calculations,	 each	month	was	divided	 into	3
décades	(decades)	of	10	days	each;	 the	tenth	day	was	considered	a	day	of	rest.
This	made	 the	new	calendar	unpopular	because,	under	 the	Gregorian	calendar,



the	workers	had	had	every	 seventh	day	off.	The	10	days	were	named	by	 their
ordinal	position	in	the	decade:
(1)	Primidi
(2)	Duodi
(3)	Tridi
(4)	Quartidi
(5)	Quintidi
(6)	Sextidi
(7)	Septidi
(8)	Octidi
(9)	Nonidi
(10)	Décadi

The	5	 or	 6	monthless	 days	 that	were	 added	 at	 the	 end	of	 each	year	were
holidays	called	sansculottides	celebrating	various	attributes	of	the	Revolution:
(1)	Fête	de	la	Vertu	(Virtue	Day)
(2)	Fête	du	Génie	(Genius	Day)
(3)	Fête	du	Travail	(Labor	Day)
(4)	Fête	de	l’Opinion	(Opinion	Day)
(5)	Fête	de	la	Récompense	(Reward	Day)
{(6)	Jour	de	la	Révolution	(Revolution	Day)}

The	leap-year	intercalary	day	is	given	in	curly	brackets.

17.1 The	Original	Form
…	je	ne	regrette	presque	plus	le	calendrier	républicain	[…	I	almost	no	longer	regret	the	French
Revolutionary	calendar	]

Stendhal:	Journal	(January	20,	1806)
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Originally,	 the	 calendar	 was	 kept	 in	 synchronization	 with	 the	 solar	 year	 by
setting	the	first	day	of	Vendémiaire	to	occur	at	the	autumnal	equinox,	just	as	the
Persian	astronomical	calendar	fixes	the	start	of	the	year	according	to	the	spring
equinox	(see	Chapter	15).	That	is,	there	was	no	leap-year	rule	per	se;	a	leap	year
occurred	 when	 successive	 autumnal	 equinoxes	 were	 366	 days	 apart,	 which
happens	 roughly	 every	 4	 years.	 However,	 the	 pattern	 is	 not	 regular,	 and	 the
precise	 calculation	 of	 the	 equinox	 is	 not	 easy,	 and	 thus	 the	 original	 rule	 was
changed	 to	 the	 simple	 Gregorian-like	 rule	 that	 we	 discuss	 in	 the	 following
section.	In	this	section	we	give	the	original	form	of	the	calendar.

To	 implement	 the	original	 form	of	 the	calendar	we	need	 to	determine	 the
moment	of	 the	autumnal	equinox	in	Paris.	The	Paris	Observatory	is	 	

	 north,	 	 	 east,	 27	 meters	 above	 sea	 level,
and	1	hour	after	Universal	Time,	so	we	define

Because	eighteenth-century	France	used	apparent	solar	time,	days	began	at
true	(apparent)	midnight.	The	New	Year	began	on	the	day	on	which	the	autumnal
equinox	occurs	after	true	midnight.	That	 is,	 the	“critical	moment”	(in	 the	sense
of	Section	14.5)	for	the	French	Revolutionary	calendar	is

We	 find	 the	date	 of	 the	New	Year	 (the	 autumnal	 equinox)	 on	or	 before	 a
given	fixed	date	using	(14.43):



(17.4)

(17.5)

(17.6)

where

We	define

Now	we	can	convert	from	a	French	Revolutionary	date	to	an	R.D.	date	by	finding
the	preceding	New	Year	and	doing	some	simple	arithmetic:

where

In	the	other	direction	we	have

where



(17.7)

To	determine	whether	a	year	is	leap	on	this	calendar,	we	can	count	the	days
between	successive	New	Years:

The	same	sort	of	leap-year	calculation	could	be	done	for	other	astronomical	solar
calendars,	such	as	the	Persian	(Section	15.2)	and	Bahá’í	(Section	16.3).

17.2 The	Modified	Arithmetical	Form
We	are	informed,	that	the	present	French	Calendar	will	soon	be	abolished,	it	being	found
productive	of	endless	inconvenience	in	mercantile	transactions,	in	comparing	dates	of	letters	and
bills	of	exchange,	and	possessing	not	one	advantage	in	return,	as	it	was	not	even	astronomically
just,	and	actually	separated	us	from	all	the	rest	of	Europe.

The	Times	(London;	August	8,	1805)

A	simpler,	arithmetical,	leap-year	rule	for	the	French	Revolutionary	calendar	was
proposed	by	Gilbert	Romme	in	1795:

every	4th	year	is	a	leap	year,	except	that

every	100th	year	is	not	a	leap	year,	except	that

every	400th	year	is	a	leap	year,	except	that

every	4000th	year	is	not	a	leap	year,

giving	an	average	of	 	days	per	year,	which	is	an	error
of	about	1	day	in	14000	years	compared	to	the	present	mean	tropical	year	length.
Although	 the	 calendar	 was	 abandoned	 before	 this	 rule	 could	 be	 adopted,	 we



(17.8)

(17.10)

(17.9)

show	how	to	implement	this	strictly	arithmetical	form	of	the	calendar.
We	do	not	need	to	test	for	leap	years	for	the	date	conversions,	but	we	give

the	definition	anyway:

Conversion	of	a	French	Revolutionary	date	to	an	R.D.	date	is	 thus	done	by
summing	 all	 days	 before	 that	 date,	 including	 the	 number	 of	 days	 before	 the
calendar	 began,	 365	 days	 for	 each	 prior	 year,	 all	 prior	 leap	 days	 (using	 the
inclusion/exclusion	method	described	for	the	Gregorian	calendar—see	page	60),
and	the	number	of	prior	days	in	the	present	year:

Calculating	 the	 French	Revolutionary	 date	 from	 the	R.D.	 date
involves	 sequentially	 determining	 the	 year,	month,	 and	day	of	 the	month.	The
year	number	is	first	approximated	to	within	one	year	of	its	true	value	and	then	is
found	 precisely	 by	 checking	 the	 two	 possible	 years.	 The	month	 is	 then	 found
exactly	by	division,	and	the	day	of	the	month	is	determined	by	subtraction:



where
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18

Astronomical	Lunar	Calendars
◈

He	spent	his	days	and	half	his	nights	writing	a	book	on	the	history	of	calendars.

Isaac	Bashevis	Singer:	The	Family	Moskat	(1950)

In	 this	 chapter,	 we	 apply	 the	 methods	 of	 Chapter	 14	 to	 compute	 the	 old
Babylonian	 calendar,	 the	 proposed	 uniform	 date	 of	 Easter,	 the	 observational
Islamic	 lunar	 calendar,	 the	 classical	 Hebrew	 lunisolar	 calendar,	 and	 the
Samaritan	calendar.	All	but	the	calculation	of	Easter	and	the	Samaritan	calendar
share	the	feature	that	the	start	of	the	month	is	determined	by	the	first	visibility	of
the	crescent	moon	after	new	moon.

Around	the	time	of	the	new	moon,	when	the	sun	and	moon	are	close	to	each
other	in	the	sky,	the	moon	cannot	be	seen	with	the	naked	eye.	Leading	up	to	that
time,	 a	 crescent	moon	 is	 visible	 in	 the	morning	 sky	 near	 the	 eastern	 horizon,
while	 shortly	 after	 the	 new	moon	 conjunction	 a	 crescent	moon	 appears	 in	 the
evening	 just	 after	 sunset,	 low	 in	 the	western	 sky.	On	 very	 rare	 occasions,	 the
moon	 can	 be	 seen	 in	 the	 morning	 one	 day	 and	 in	 the	 evening	 the	 next	 [5];
usually,	it	is	invisible	for	1	to	3	days.

18.1 The	Babylonian	Calendar



In	the	house	of	history	studying	chronology	is	like	puttering	about	the	basement	working	on	the
plumbing	or	furnace	instead	of	joining	the	conversation	in	the	dining	room.	But	it	is	occasionally
useful	to	check	the	basic	apparatus.

Leo	Depuydt:	“On	the	Consistency	of	the	Wandering	Year	as
Backbone	of	Egyptian	Chronology,”	Journal	of	the	American

Research	Center	in	Egypt	(1995)

The	classical	Babylonian	calendar,	 from	about	380	B.C.E.,	or	earlier,	was	of	 the
lunisolar	type,	with	a	fixed	19-year	Metonic	cycle.	Prior	to	that	date,	leap	years
were	irregular	(see	[6],	[9]).	The	month	names	are
(1)	Nisanu
(2)	Ayaru
(3)	Simanu
(4)	Du‘uzu
(5)	Abu
(6)	Ululu
(7)	Tashritu
(8)	Arakhsamna
(9)	Kislimu
(10)	Tebetu
(11)	Shabatu
(12)	Adaru

The	 day	 of	 the	 new	 moon	 was	 often	 determined	 by	 an	 approximate
calculation	based	on	the	 lag	 time	between	sunset	and	moonset.	The	lag	time	is
simply	the	difference	between	the	times	of	the	setting	of	the	moon	(14.84)	and
the	 sun	 (14.77).Taking	 into	 account	 the	 possibility	 of	 the	 nonoccurrence	 of
sunset	or	moonset,	we	have:



(18.1)

(18.2)

(18.3)

where

We	take	Babylon

as	 the	 determining	 location.	 The	 precise	 method	 of	 prediction	 seems	 to	 have
varied	[9].	Requiring	that	the	month	be	at	least	a	day	old	and	that	the	lag	be	at
least	48	minutes	[3],	we	have

where

Now,	 the	 start	 of	 the	 new	 month	 is	 found	 by	 linear	 search,	 in	 a	 similar
fashion	to	phasis-on-or-before	(page	252):



(18.4)

(18.5)

(18.6)

(18.7)

where

We	use	the	beginning	of	the	Seleucid	era,	April	3,	311	B.C.E.	(Julian),	as	the
calendar’s	epoch:

The	 leap-year	 rule	 follows	 the	 same	 pattern	 as	 that	 of	 the	 Hebrew
calendar	(8.14),	but	the	cycle	is	shifted	7	years:

The	last	month	of	the	year,	Adaru,	was	intercalated	in	years	1,	4,	7,	9,	12,
and	15	of	the	cycle;	the	sixth	month,	Ululu,	was	intercalated	instead	during	the
18th	year.	Taking	this	anomaly	into	account,	the	conversions	are	straightforward:

where



(18.8)

In	the	other	direction,

where



(18.9)

Since	it	is	not	always	certain	how	the	evening	of	the	occurrence	of	the	new
moon	was	 actually	 determined,	 these	 dates	 should	 be	 considered	 approximate.
See	[6].

18.2 Astronomical	Easter
Snout:	Doth	the	moon	shine	that	night	we	play	our	play?
Bottom:	A	calendar,	a	calendar!	look	in	the	almanac;
find	out	moonshine,	find	out	moonshine.
Quince:	Yes,	it	doth	shine	that	night.

William	Shakespeare:	A	Midsummer	Night’s	Dream,	
Act	III,	scene	i	(1600)

In	1997,	the	World	Council	of	Churches	[1]	proposed	a	uniform	date	for	Easter
for	 the	 Eastern	 and	Western	 churches	 (see	Chapter	 9).	With	 the	 algorithms	 of
Chapter	 14,	 the	 proposed	 astronomical	 determination	 of	 Easter	 is
straightforward.	We	need	to	find	the	first	Sunday	in	Jerusalem1	after	the	first	true
full	moon	after	the	true	vernal	equinox:

where

Table	9.1	 in	Chapter	 9	 (page	151)	 gives	 the	 traditional	 dates	 of	 Passover
and	Easter	along	with	those	obtained	by	the	preceding	astronomical	calculations.

18.3 The	Observational	Islamic	Calendar



(18.10)

(18.11)

It	is	He	who	gave	the	sun	its	radiance,	the	moon	its	luster,	and	appointed	its	stations	so	that	you
may	compute	years	and	numbers.	God	did	not	create	them	but	with	deliberation.	He	distinctly
explains	His	signs	for	those	who	can	understand.

Koran	(X,	5)

Muslims	 in	 India,	 Pakistan,	 and	 Bangladesh	 base	 their	 calendar	 on	 reported
moon	 sightings.	 In	 Egypt,	 they	 require	moonset	 to	 be	 at	 least	 5	minutes	 after
sunset	 on	 the	 first	 day	 of	 the	month.	 In	 the	United	 States,	 according	 to	 S.	K.
Shaukat	 (who	 was	 national	 coordinator	 and	 consultant	 for	 America):	 “A
confirmed	crescent	sighting	report	in	North	America	will	be	accepted	as	long	as
such	 a	 report	 does	 not	 contradict	 indisputable	 astronomical	 information.”	 In
Saudi	Arabia	and	most	of	the	Gulf	countries,	the	rule	is	that	the	moon	must	set
after	the	sun	on	the	last	day	of	the	month	as	seen	from	Mecca.

With	 the	 functions	 of	 Section	 14.9,	we	 can	 approximate	 the	 observation-
based	 Islamic	 calendars	 that	 are	 used	 in	 practice.	 Suppose	 that	we	 take	Cairo,
site	of	Al-Azhar	University,	a	major	Islamic	religious	center,	as	 the	 location	of
observation:2

Then	we	calculate	the	calendar	as	follows:

where

In	the	other	direction,



(18.12)

where

These	functions	for	the	Islamic	calendar	are	approximate	at	best	for	many
reasons:	The	phenomenon	of	visibility	 is	 still	 an	area	of	astronomical	 research
and	is	not	yet	fully	understood;	this	criterion	is	just	one	of	many	suggestions.	It
ignores	 the	variation	 in	 the	distance	 to	 the	moon	and	also	 in	 the	 clarity	of	 the
atmosphere,	which	depends	on	location	and	season	as	well	as	on	unpredictable
factors.	 Muslim	 countries	 base	 the	 calendar	 on	 reported	 observations,	 not
calculated	observability.	The	best	location	for	seeing	the	new	moon	varies	from
month	 to	 month	 (western	 locations	 are	 always	 better),	 and	 different	 religious
authorities	accept	testimony	from	within	different	regions.

The	 above	 functions	 allow	 for	 a	 31st	 day	 of	 an	 Islamic	month,	 which	 is
longer	than	is	actually	allowed	by	the	rules.3	Instead,	that	day	would	be	the	first
of	 the	 following	 month—were	 the	 moon	 actually	 observed	 when	 the	 simple
criterion	we	are	using	says	it	becomes	visible.	This	shift	can	cascade	for	several
months.	 We	 have	 not	 taken	 this	 into	 account	 because	 there	 is	 no	 way	 to
determine	when	in	fact	the	new	moons	are	actually	observed,	and	which	months
are	affected.

Imagining	 that	 the	 functions	precisely	capture	observability,	 the	 following
functions	do	take	this	rule	into	account	by	checking	month	after	month:



(18.13)

(18.14)

(18.15)

(18.16)

where

where

where

where



(18.17)

(18.18)

Saudi	 Arabia	 employs	 the	 Umm	 al-Qura	 calendar	 for	 some	 secular
purposes,	as	an	approximation	of	the	observational	Islamic	calendar.	The	rule—
since	 March	 2002—is	 that	 the	 month	 begins	 on	 the	 first	 evening	 after	 the
conjunction	 on	 which	 the	 moon	 sets	 after	 the	 sun.4	 This	 criterion	 can	 be
expressed	as

where

where



(18.19)

(18.20)

The	 functions	 fixed-from-saudi-islamic	 and	 saudi-islamic-from-fixed
below	 are	 analogous	 to	 fixed-from-observational-islamic	 and	 observational-
islamic-from-fixed,	respectively,	except	that	saudi-new-month-on-or-before	is
used:

where

In	the	other	direction,

where



(18.21)

(18.22)

18.4 The	Classical	Hebrew	Calendar
O,	swear	not	by	the	moon,	th’	inconstant	moon,
That	monthly	changes	in	her	circle	orb	…

William	Shakespeare:	Romeo	and	Juliet,	Act	II,	scene	ii	(1591)

In	classical	times,	the	Hebrew	month	began	with	the	reported	observation	of	the
crescent	 new	 moon,	 just	 like	 the	 Islamic	 religious	 calendar	 of	 the	 previous
section.5	Unlike	in	the	Islamic	calendar,	leap	months	were	intercalated	in	such	a
way	 that	 the	 spring	 equinox	 always	 fell	 before	 the	 onset	 of	Nisan	16	 [4,	4:2].
The	 exact	method	 of	 determining	 the	 day	 of	 the	 equinox	 and	 the	 exact	 cutoff
date	are	uncertain;	also,	the	courts	had	leeway	to	declare	a	leap	year	when	spring
came	late.

We	will	take	Haifa,	a	city	at	the	western	edge	of	Israel,	as	the	location	from
which	observations	are	made	(being	at	the	west	makes	visibility	more	likely):

With	 the	methods	of	 this	chapter,	 it	 is	 straightforward	 to	convert	dates	 for	 this
classical	Hebrew	observational	calendar.	The	first	of	Nisan	is	determined	on	the
basis	of	the	vernal	equinox:

where



(18.23)

(18.24)

The	start	of	each	month	is	determined	by	the	observability	(visibilty)	of	the	new
moon:

where

The	inverse	computation	is

where



(18.25)

(18.26)

Using	 the	 above	 functions,	 we	 can	 approximate	 the	 classical	 date	 of
Passover	Eve	(Nisan	14)	in	any	given	Gregorian	year:

As	we	did	for	the	observational	Islamic	calendar	of	the	previous	section,	we
can	take	into	account	the	rule	disallowing	31-day	months:

where



(18.27)

In	the	other	direction,

where

18.5 The	Samaritan	Calendar
The	last	of	such	tables	ever	written	was	sent	by	Shalmah	…	in	1820	…	As	it	is,	most	probably,	the
last	document	of	its	kind	that	ever	will	be	drawn	up	by	a	Samaritan	priest,	I	shall	here	subjoin	it.

John	Mills:	Three	Months’	Residence	at	Nablus,	and	
an	Account	of	the	Modern	Samaritans	(1864)

The	Samaritan	calendar	is	lunisolar,	like	the	Hebrew.	Months	are	numbered,	as
in	most	of	the	Bible.	The	first	day	of	each	month	is	that	on	which	the	new	moon
occurs,	 unless	 it	 occurs	 after	 apparent	noon,	 in	which	 case	 the	next	 day	 is	 the
first	of	 the	month.	The	moment	of	new	moon	 is	determined	according	 to	 their
traditional	method,	referred	 to	as	 the	“True	Reckoning,”	which	agrees	with	 the
medieval	 tables	 of	 al-Battānī	 [7]	 for	 finding	 the	 true	 positions	 of	 the	 sun	 and
moon.



(18.28)

(18.29)

(18.30)

(18.31)

Time	 is	measured	 in	 temporal	hours	beginning	at	 sunset	 and	 sunrise.	The
critical	 time	 for	 determining	 the	 beginning	 of	 the	month	 is	 apparent	 noon	 on
Mount	Gerizim,	for	which	we	have

and

Rather	than	replicate	these	traditional	approximations	of	the	true	times,	we
use	our	astronomical	code	to	find	the	actual	day	of	the	new	moon:

and

(Since	we	are	working	with	high	precision	reals,	we	can	ignore	the
possibility	of	a	new	moon	occurring	precisely	at	noon.)

The	 first	 month	 of	 the	 year	 is	 that	 which	 begins	 on	 or	 after	 March	 12
(Julian);	this	ensures	that	the	Festival	of	the	Unleavened	Bread,	which	runs	from
the	 15th	 through	 the	 21st	 of	 the	 first	 month,	 occurs	 after	 the	 Julian	 vernal
equinox,	which	was	March	25	when	 the	 Julian	calendar	was	 instituted.	A	 leap



(18.32)

(18.33)

(18.34)

month	is	added	when	necessary	at	the	end	of	the	year.	Years	begin	with	the	sixth
lunar	month.	 (The	Hebrew	calendar	of	Chapter	8	begins	 its	calendar	year	with
the	 seventh	 month.)	 They	 are	 counted	 from	 the	 summer	 of	 1639	 B.C.E.,	 the
traditional	 year	 when	 the	 Israelites	 entered	 the	 Promised	 Land.	 As	 epoch,	we
take	month	1,	day	1	of	year	0	A.S.:6

The	conversions	are	not	difficult:

where

We	search	for	the	relevant	March	11	from	the	list	dates.

where



(18.35)

In	the	other	direction,

where

The	 term	 	 serves	 to	 adjust	 for	 the	 fact	 that	 the	 calendar	 year
begins	with	the	sixth	month.

The	major	holidays	are	 those	 listed	 in	 the	Pentateuch:	Passover	 (month	1,
day	14),	 Festival	 of	 the	Unleavened	Bread	 (month	1,	 days	 15–21),	Festival	 of
Pentecost	 (the	 eighth	 Sunday	 after	 Passover),	 Festival	 of	 the	 Seventh	 Month
(month	7,	day	1),	Day	of	Atonement	(month	7,	day	10),	Festival	of	Tabernacles
(month	 7,	 days	 15–21),	 and	 the	 Eighth	 Day	 (month	 7,	 day	 22).	 All	 holidays
begin	 on	 the	 prior	 evening.	 There	 are	 two	 additional,	 preparatory	 feast	 days:
Ṣimmut	of	Passover,	which	occurs	on	the	Sabbath	that	falls	seven	weeks	before



Passover,	and	Ṣimmut	of	Tabernacles,	which	occurs	on	the	Sabbath	seven	weeks
before	Tabernacles.	On	these	days,	 the	semi-annual	calendar	is	delivered	to	the
community	by	the	high	priest.
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1			“Astronomical	observations,	of	course,	depend	upon	the	position	on	Earth	which	is	taken	as	the	point
of	reference.	This	consultation	believes	that	it	is	appropriate	to	employ	the	meridian	of	Jerusalem	…”	[1].

http://www.staff.science.uu.nl/


2			In	our	Calendrical	Tabulations,	we	made	the	less-than-obvious	choice	of	Los	Angeles	as	the	location
for	the	Islamic	calendar	based	on	the	following	advice	of	S.	K.	Shaukat	[8]:

The	 reason	 I	 pick	 Los	Angeles	 is	 that	 according	 to	 the	 known	 practices	 these	 dates	would	 be
closest	to	Middle	Eastern	countries’	practices	although	the	visibility	would	not	be	in	the	Middle
East.	Moreover,	 in	many	 cases,	 if	 the	 visibility	 is	 not	 in	 Los	Angeles	 then	most	 of	 the	 world
would	see	it	the	next	day	and	that	would	be	reflected	in	the	calculated	dates	for	Los	Angeles.	The
dates	for	Los	Angeles	would	also	be	good	for	the	rest	of	North	America	if	an	aided	eye	is	used,
which	will	 also	 be	 in	 line	with	 actual	 practice	 and	 I	 think	 these	 dates	would	 be	 the	 closest	 to
practices	all	around	the	world.

In	other	words,	 the	actual	observance	of	Ramadan,	and	other	 Islamic	events	 frequently	precedes	dates	as
calculated	astronomically,	for	various	nonscientific	reasons.	Thus,	choosing	Los	Angeles	gave	dates	that	are
both	 scientifically	 and	 religiously	 reasonable	 for	 the	 United	 States	 and	 in	 good	 agreement	 with	 actual
observance	in	the	Middle	East.

3			It	is	possible	for	there	to	be	31	days	from	first	visibility	to	first	visiblity.	For	example,	using	Yallop’s
criterion	(page	251),	there	would	be	have	been	a	31-day	observation-based	lunar	month	in	Babylon
extending	from	August	27,	2006	through	September	26,	2006.	As	R.	H.	van	Gent	points	out	[2],	there	is
also	a	31-day	month	in	the	10th	year	of	Darius	I		according	to	the	tables	of	[6,	p.	30].

4			See	www.kacst.edu.sa/en/services/ummalqura	on	the	King	Abdulaziz	City	for

Science	and	Technology	web	site.
5			Karaite	Jews	still	use	this	form	of	the	Hebrew	calendar	and	intercalate	based	on	the	state	of	the	barley

crop.
6			Anno	Samaritanorum.

	

http://www.kacst.edu.sa/en/services/ummalqura


Pottery	figurines	of	the	12	traditional	Chinese	calendrical	animals	(terrestrial
branches)	excavated	from	a	Táng	Dynasty	(618–907	c.e.)	tomb.	These	figures,
shown	left	to	right	in	the	order	given	on	page	319,	have	animal	faces	on	human
bodies	with	long	robes;	such	funerary	use	of	the	12	animals	is	still	in	practice.
(Image	©	The	Metropolitan	Museum	of	Art,	New	York.	Image	source:	Art
Resource,	New	York.)
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The	Chinese	Calendar
◈

The	complexity	of	calendars	is	due	simply	to	the	incommensurability	of	the	fundamental	periods
on	which	they	are	based	…	Calendars	based	on	[the	synodic	month],	depending	only	on
lunations,	make	the	seasons	unpredictable,	while	calendars	based	on	[the	tropical	year]	cannot
predict	the	full	moons,	the	importance	of	which	in	ages	before	the	introduction	of	artificial
illuminants	was	considerable.	The	whole	history	of	calendar-making,	therefore,	is	that	of
successive	attempts	to	reconcile	the	irreconcilable,	and	the	numberless	systems	of	intercalated
months,	and	the	like,	are	thus	of	minor	scientific	interest.	The	treatment	here	will	therefore	be
deliberately	brief.

Joseph	Needham:	Science	and	Civilisation	in	China	(1959)1

The	Chinese	calendar	 is	a	 lunisolar	calendar	based	on	astronomical	events,	not
arithmetical	rules.	Days	begin	at	civil	midnight.	Months	are	lunar,	beginning	on
the	day	of	the	new	moon	and	ending	on	the	day	before	the	next	new	moon.	Years
contain	 12	 or	 13	 such	months,	with	 the	 number	 of	months	 determined	 by	 the
number	 of	 new	moons	 between	 successive	winter	 solstices.	The	 details	 of	 the
Chinese	 calendar	 have	 varied	 greatly—there	 have	 been	more	 than	 50	 calendar
reforms—since	its	inception	in	the	fourteenth	century	B.C.E.;	some	of	its	history,
in	particular	its	effect	on	the	development	of	mathematics	in	China,	is	described
in	[14];	other	historical	details	can	be	found	in	[6],	[18],	and	[25].2	The	version
we	 implement	 here	 is	 the	 1645	 version,	 established	 in	 the	 second	 year	 of	 the
Qīng	dynasty;3	detailed	calculations	of	earlier	forms	of	the	Chinese	calendar	are
given	 in	 [17]	 (see	also	 [24]).	We	 discuss	 some	 common	misconceptions	 about



the	 Chinese	 calendar	 later	 in	 Section	 	 19.5.	 The	 Japanese,	 Korean,	 and
Vietnamese	lunisolar	calendars	are	nearly	identical	 to	the	Chinese;	we	describe
them	in	Sections		19.9–	19.11.

19.1 Solar	Terms
It	is	better	to	have	no	decent	calendar	than	have	Westerners	in	China.

Yáng	Guāngxiān	(1664)4

The	 Chinese	 year,	 called	 a	 nián	 ,	 consists	 of	 true	 lunar	 months,	 but	 the
arrangement	 of	 those	 months	 depends	 on	 the	 sun’s	 course	 through	 the	 12
zodiacal	signs.	Specifically,	the	Chinese	divide	the	solar	year	into	24	solar	terms
or	 jiéqì:	12	major	 solar	 terms	 called	 zhōngqì	 	 and	 12	minor	 solar	 terms
known	by	the	general	term	jiéqì	 .	These	terms	correspond	to	15°	segments
of	solar	longitude,	with	the	major	terms	starting	at	 	of	solar	longitude	and
the	minor	terms	starting	at	 	of	solar	longitude,	k	=	0,	1,	.	.	.	,	11;	the
names	of	the	24	terms	are	shown	in	Table	19.1.

Table	19.1	The	solar	terms	of	the	Chinese	year:	major	solar	terms,	zhōngqì	
,	are	given	in	boldface;	minor	solar	terms,	jiéqì	 ,	are	given	in

lightface.	Adapted	from	[7].



(19.1)

The	dates	of	the	terms	in	Table		19.1	are	only	approximate;	the	true	motion
of	 the	 sun	 varies,	 and	 thus	 to	 implement	 the	 Chinese	 calendar	 we	 need	 to
calculate	the	precise	date	of	a	given	solar	longitude.	We	use	the	solar	longitude
function	(14.33)	to	determine	the	index	of	the	last	major	solar	term	on	or	before
a	given	date:

where

We	define



(19.2)

(19.3)

(19.4)

where

because	before	1929	the	local	mean	time	of	Beijing	was	used—since	Beijing	 is
at	longitude	116°25′	east,	the	time	difference	from	U.T.	was	7h45m40s	=	1397/180
hours.	After	1928,	however,	China	adopted	the	standard	time	zone	and	calendar
makers	used	the	120°	meridian,	or	8	hours	after	U.T.5

Although	 not	 needed	 for	 date	 conversion,	 a	 printed	 Chinese	 calendar
usually	indicates	the	major	and	minor	solar	terms.	The	solar	longitude	functions
in	Section		14.4	also	allow	us	to	calculate	the	moment	after	the	start	of	a	given
R.D.	date	when	the	solar	longitude	will	be	a	given	value:

where

from	which	we	can	determine	the	start	of	the	major	solar	term	on	or	after	a	given
date:

where



(19.5)

(19.6)

(19.7)

We	can	also	compute	the	index	of	the	last	minor	solar	term	prior	to	a	given	date:

where

and	the	date	of	the	minor	solar	term	on	or	after	a	given	date:

where

One	of	the	solar	terms,	the	winter	solstice	(dōngzhì),	plays	a	dominant	role
in	the	calendar,	and	we	need	to	determine	the	date	it	occurs;	because	days	end	at
civil	midnight,	the	U.T.	moment	of	midnight	is	given	by

Now,	using	(	14.43),	we	have



(19.8)

(19.9)

where

19.2 Months
Although	there	is	a	very	large	literature,	still	growing	almost	daily,	on	the	Chinese	calendar,	its
interest	is,	we	suggest,	much	more	archaeological	and	historical	than	scientific.	A	calendar	is
only	a	method	of	combining	days	into	periods	suitable	for	civil	life	and	religious	or	cultural
observances.

Joseph	Needham:	Science	and	Civilisation	in	China	(1959)

Chinese	months	begin	on	the	day	of	the	new	moon	in	Beijing,	and	thus	we
must	be	able	 to	calculate	 that.	We	use	 the	function	new-moon-at-or-after	 (see
page	231)	 to	 tell	us	 the	moment	 in	universal	 time	of	 the	 first	new	moon	on	or
after	 a	 given	 date	 and	 the	 function	 standard-from-universal	 to	 convert	 to
standard	Beijing	time	(Section		14.2).	With	these	functions	we	can	write

where

Similarly,	we	use	new-moon-before	(page	230)	in



(19.10)

where

Once	 we	 can	 calculate	 the	 solar	 terms	 and	 new	moons,	 we	 are	 ready	 to
compute	 the	 arrangement	 of	 months	 in	 a	 Chinese	 year.	 The	 basic	 rule	 that
determines	the	calendar	is

The	winter	solstice	(dōngzhì)	always	occurs	during	the	eleventh	month	of	the	year.

To	enforce	this	rule	for	a	given	Chinese	year,	we	must	examine	the	winter-
solstice-to-winter-solstice	period,	called	a	suì	 .	Hence,	we	must	compute	the
dates	of	two	successive	winter	solstices.	For	example,	in	1989	the	winter	solstice
occurred	 at	 9:23	 p.m.	 U.T.	 on	 December	 21,	 which	 was	 December	 22
(R.D.	 726458)	 in	 Beijing.	 The	 next	 winter	 solstice	 was	 at	 3:08	 a.m.	 U.T.	 on
December	22,	1990	(R.D.	726823),	which	was	the	same	date	in	Beijing.	The	list
of	the	new	moons	in	Beijing	with	R.D.	dates	d	such	that	726458 	is

(i) R.D.	726464 (December	28,	1989)

(ii) R.D.	726494 (January	27,	1990)

(iii) R.D.	726523 (February	25,	1990)

(iv) R.D.	726553 (March	27,	1990)

(v) R.D.	726582 (April	25,	1990)

(vi) R.D.	726611 (May	24,	1990)

(vii) R.D.	726641 (June	23,	1990)



(viii) R.D.	726670 (July	22,	1990)

(ix) R.D.	726699 (August	20,	1990)

(x) R.D.	726729 (September	19,	1990)

(xi) R.D.	726758 (October	18,	1990)

(xii) R.D.	726788 (November	17,	1990)

(xiii) R.D.	726818 (December	17,	1990)

These	13	dates	are	the	beginnings	of	months	on	the	Chinese	calendar	during
the	suì	from	December	23,	1989	to	December	22,	1990.

The	average	length	of	a	lunar	month	is	about	29.53	days;	the	length	varies
from	 approximately	 29.27	 to	 29.84.	 Because	 there	 can	 be	 365	 or	 366	 days
between	successive	solstices,	there	will	be	either	12	or	13	new	moons.	To	have
fewer	than	12	new	moons	is	impossible	because	the	longest	period	containing	at
most	 11	 new	 moons	 is	 just	 short	 of	 12	 consecutive	 lunar	 months	 and
considerably	 less	 than	 365	 days;	more	 than	 13	 new	moons	 is	 also	 impossible
because	 the	 shortest	 period	 containing	 at	 least	 14	 new	moons	 contains	 13	 full
lunar	months,	which	 is	much	more	 than	 366	 days.	 The	 12	 or	 13	months	 thus
found	form	the	months	following	the	eleventh	month	of	 the	preceding	Chinese
year	to	the	eleventh	month	of	the	Chinese	year	in	question.

Months	 on	 the	 Chinese	 calendar	 are	 numbered	 1	 to	 12;	 a	 leap	 month
duplicates	the	number	of	the	preceding	month.	The	possible	numberings	of	 the
12	or	13	months	from	a	winter	solstice	to	the	following	winter	solstice	are	thus
as	shown	in	Figure	19.1.	It	is	clear	from	this	figure	that	if	there	are	only	12	new
moons,	they	must	be	numbered	12,	1,	2,	.	.	.	,	11;	but	if	there	are	13	new	moons,
which	one	is	the	leap	month?	The	answer	follows	from	the	rule	that

The	leap	month	of	a	13-month	winter-solstice-to-winter-solstice	period	is	the	first	month	that	does



not	contain	a	major	solar	term–that	is,	the	first	lunar	month	that	is	wholly	within	a	solar	month.

There	must	be	such	a	lunar	month	because	the	period	from	one	winter	solstice	to
the	next	contains	only	12	major	solar	terms,	yet	there	are	13	lunar	months.	(This
is	 an	 application	 of	 the	 famous	 “Dirichlet	 box	 principle”	 or	 “pigeonhole
principle”—see,	for	example,	[16,	sec.	4.8].)	A	solar	month	can	also	fall	entirely
within	a	lunar	month—that	is,	a	lunar	month	can	contain	two	major	solar	terms.
Such	 an	 occurrence	 in	 a	 13-month	Chinese	 year	 can	 cause	 two	 or	more	 lunar
months	without	major	solar	terms;	in	a	12-month	Chinese	year	it	can	cause	one
or	more	months	without	major	solar	terms.

We	 can	 test	 for	 a	 leap	 year	 by	 computing	 the	 year’s	 first	 new	 moon,
computing	its	last	new	moon,	and	rounding

to	the	nearest	integer;	if	the	value	obtained	is	12,	the	year	is	a	leap	year	with	13
months.

Figure	19.1	
The	theoretical	possible	numberings	of	the	lunar	months	(i)–(xiii)	for	the
Chinese	calendar	in	the	solstice-to-solstice	period	of	year	y.	Each	column
corresponds	to	the	new	moon	beginning	a	lunar	month	and	contains	the	number



of	that	lunar	month.	The	winter	solstice	of	Gregorian	year	 	occurs	in	the
lunar	month	numbered	 ,	that	is,	in	the	month	before	the	new	moon	(i),	and
the	winter	solstice	for	Gregorian	year	yoccurs	in	the	lunar	month	numbered	 ,
that	is,	in	the	month	of	the	new	moon	(xii)	or	(xiii).	The	solid	arrows	show	the
only	possible	numbering	when	there	are	12	new	moons	between	the	successive
solstices.	The	dashed	lines	show	possible	numberings	when	there	are	13	new
moons	between	successive	solstices.	Before	1645,	when	mean	solar	terms	were
used,	any	month	could	be	followed	by	a	leap	month.	The	relatively	swift
movement	of	the	sun	in	the	winter	means	that	in	current	practice,	because	true
solar	terms	are	used,	leap	months	9,	10,	11,	or	1	are	rare	(these	numberings	are
shown	in	gray);	leap	month	12	is	exceptionally	rare	(this	rare	numbering	is
shown	in	light	gray).	The	dashed	lines	from	a	month	i	to	a	following	leap	month
i	are	labeled	with	the	approximate	probability	that	a	randomly	chosen	month	i	is
followed	by	a	leap	month;	these	probabilities	are	based	on	data	from	[3]	for	the
Chinese	calendar	for	the	thousand	years	1645–2644.

There	cannot	be	more	than	one	leap	month	in	a	suì,	but	how	do	we	know
that	a	Chinese	year	cannot	require	two	leap	months?	That	is	impossible	because
the	 two-solar-year	 period	 between	 the	 winter	 solstice	 of	 year	 	 and	 the
winter	 solstice	 of	 year	 y	 can	 contain	 either	 24	 or	 25	 lunar	 months;	 since	 the
period	from	the	winter	solstice	of	year	 	to	the	winter	solstice	of	year	y	has
13	 months,	 the	 period	 from	 the	 winter	 solstice	 of	 year	 	 to	 the	 winter
solstice	of	year	 	can	have	only	12	lunar	months	and	hence	no	leap	month.
Thus,	 the	 first	 month	 in	 a	 winter-solstice-to-winter-solstice	 period	 without	 a
major	solar	term	will	be	the	leap	month,	and	no	second	leap	month	is	possible.

To	determine	whether	a	given	month	 lacks	a	major	solar	 term,	we	write	a
function	 that	 compares	 the	 major	 solar	 term	 at	 a	 given	 date	 with	 that	 at	 the
beginning	of	the	next	month:



(19.12)

(19.11)
Applying	 this	 function	 to	 the	 first	day	of	a	month	 tells	us	whether
the	month	 lacks	a	 solar	 term.	Because	we	want	only	 the	 first	month	missing	a
major	term	to	be	a	leap	month,	we	also	need	the	following	function:

which	determines	(recursively)	whether	there	is	a	Chinese	leap	month	on	or	after
the	lunar	month	starting	on	fixed	day	 	and	at	or	before	the	lunar	month	starting
at	fixed	date	m.

Figure	19.2	shows	the	structure	of	 the	Chinese	calendar	for	a	hypothetical
year.	Notice	that	the	winter	solstice	is	in	the	eleventh	month,	as	required,	and	the
month	following	the	tenth	month	is	a	leap	month	containing	no	major	solar	term.
Major	terms	and	new	moons	are	considered	without	regard	to	their	time	of	day.
Thus,	for	example,	even	if	 the	major	term,	dōngzhì,	occurred	 in	Beijing	before
the	new	moon	on	 that	date,	dōngzhì	 is	considered	 to	be	 in	 that	month,	not	 the
previous	month.	 In	 contrast,	 in	 the	modern	Hindu	 calendars	 (Chapter	 	 20)	 the
predicted	time	of	day	of	an	event	is	critical.



Figure	19.2	
The	Chinese	calendar	for	a	hypothetical	year.	Division	into	the	major	solar	terms
is	shown	above	the	time	line	and	new	moons	are	shown	below.	Solar	and	lunar
events	are	specified	by	the	day	of	occurrence	irrespective	of	the	exact	time	of
day.	Chinese	month	numbers	are	in	italic.

Continuing	our	 example	of	1989–90,	we	have	 the	 following	dates	 for	 the
major	solar	terms:

12. Dàhán R.D.	726487 (January	20,	1990)

1. Yǔshuǐ R.D.	726517 (February	19,	1990)

2. Chūnfēn R.D.	726547 (March	21,	1990)

3. Gǔyǔ R.D.	726577 (April	20,	1990)

4. Xiǎomǎn R.D.	726608 (May	21,	1990)

5. Xiàzhì R.D.	726639 (June	21,	1990)

6. Dàshǔ R.D.	726671 (July	23,	1990)

7. Chǔshǔ R.D.	726702 (August	23,	1990)

8. Qiūfēn R.D.	726733 (September	23,	1990)

9. Shuāngjiàng R.D.	726764 (October	24,	1990)



10. Xiǎoxuě R.D.	726793 (November	22,	1990)

11. Dōngzhì R.D.	726823 (December	22,	1990)

Collating	this	list	with	the	list	of	new	moons,	we	find

(i) R.D.	726464 (December	28,	1989)

12. Dàhán R.D.	726487 (January	20,	1990)

(ii) R.D.	726494 (January	27,	1990)

1. Yǔshuǐ R.D.	726517 (February	19,	1990)

(iii) R.D.	726523 (February	25,	1990)

2. Chūnfēn R.D.	726547 (March	21,	1990)

(iv) R.D.	726553 (March	27,	1990)

3. Gǔyǔ R.D.	726577 (April	20,	1990)

(v) R.D.	726582 (April	25,	1990)

4. Xiǎomǎn R.D.	726608 (May	21,	1990)

(vi) R.D.	726611 (May	24,	1990)

5. Xiàzhì R.D.	726639 (June	21,	1990)

(vii) R.D.	726641 (June	23,	1990)

(viii) R.D.	726670 (July	22,	1990)

6. Dàshǔ R.D.	726671 (July	23,	1990)

(ix) R.D.	726699 (August	20,	1990)



7. Chǔshǔ R.D.	726702 (August	23,	1990)

(x) R.D.	726729 (September	19,	1990)

8. Qiūfēn R.D.	726733 (September	23,	1990)

(xi) R.D.	726758 (October	18,	1990)

9. Shuāngjiàng R.D.	726764 (October	24,	1990)

(xii) R.D.	726788 (November	17,	1990)

10. Xiǎoxuě R.D.	726793 (November	22,	1990)

(xiii) R.D.	726818 (December	17,	1990)

11. Dōngzhì R.D.	726823 (December	22,	1990)

Hence	month	(vii),	from	June	23	to	July	21,	1990,	 is	a	 leap	month;	 that	 is,	 the
numbering	of	the	13	months	(i)–(xiii)	must	be	(see	Figure	19.1)

Month	12 R.D.	726464 (December	28,	1989)

Month	1 R.D.	726494 (January	27,	1990)

Month	2 R.D.	726523 (February	25,	1990)

Month	3 R.D.	726553 (March	27,	1990)

Month	4 R.D.	726582 (April	25,	1990)

Month	5 R.D.	726611 (May	24,	1990)

Leap	month	5 R.D.	726641 (June	23,	1990)

Month	6 R.D.	726670 (July	22,	1990)



(19.13)

Month	7 R.D.	726699 (August	20,	1990)

Month	8 R.D.	726729 (September	19,	1990)

Month	9 R.D.	726758 (October	18,	1990)

Month	10 R.D.	726788 (November	17,	1990)

Month	11 R.D.	726818 (December	17,	1990)

Thus	the	date	of	the	Chinese	New	Year	in	this	suì	is	found	to	be	R.D.	726494.
Describing	the	process	outlined	above	algorithmically,	we	find	the	Chinese

New	Year	in	the	suì	containing	date:

where

This	latter	function	allows	us	to	find	the	Chinese	New	Year	on	or	before	a
given	date:



(19.14)

(19.15)

where

We	first	find	the	Chinese	New	Year	in	the	suì	containing	the	given	date;	if	that
New	Year	is	after	date	(which	can	happen	if	date	is	late	in	the	Chinese	year),	we
go	back	to	the	previous	suì.

19.3 Conversions	to	and	from	Fixed	Dates
Ancient	Chinese	texts	say	that	“the	calendar	and	the	pitch	pipes	have	such	a	close	fit,	that	you
could	not	slip	a	hair	between	them.”

Giorgio	de	Santillana	and	Hertha	von	Dechend:	Hamlet’s	Mill	(1969)

By	 tradition,	 Chinese	 years	 go	 in	 cycles	 of	 60,	 each	 year	 having	 a	 special
sexagenary	name	(discussed	in	the	next	section);	the	first	year	of	the	first	cycle
commences	in	year	–2636	(Gregorian).	Thus	we	define

This	is	the	traditional	date	of	the	first	use	of	the	sexagesimal	cycle,	February	15,
–2636	(Gregorian)	=	March	8,	2637	B.C.E.	(Julian).

Although	 it	 is	 not	 traditional	 to	 count	 these	 cycles,	 we	 do	 so	 for
convenience	to	identify	a	year	uniquely.	The	conversion	between	Chinese	dates
and	R.D.	 dates	 can	 now	 be	 done	 by	 a	method	 nearly	 identical	 to	 our	 function



(19.16)

chinese-new-year-in-sui.	Notice	 that	most	 of	 the	work	 lies	 in	 determining	 the
month	number	and	whether	it	is	a	leap	month:

where



(19.17)

The	 calculation	 of	 elapsed-years	 is	 done	 by	 finding	 the	 elapsed	 years	 to	 the
midsummer	 of	 the	 desired	Chinese	 year	 so	 that	 the	 irregular	 character	 of	 leap
years	cannot	affect	the	truncation.

Finally,	to	convert	a	Chinese	date	to	an	R.D.	date,	we	find	a	midyear	date	of
the	given	cycle	and	year,	then	find	the	prior	Chinese	New	Year,	go	forward	to	the
appropriate	month,	and	add	the	day	of	the	month:

where

19.4 Sexagesimal	Cycle	of	Names
The	learned	and	indefatigable	missionaries	in	China,	to	whose	labours	and	researches	the	history
and	antiquities	of	that	country	are	so	much	indebted…	have	taken	it	for	granted,	that	the	lunar
calendar,	of	the	time	of	Confucius,	or	of	the	times	to	which	these	observations	refer,	and	the



sexagesimal	cycle	also,mutatis	mutandis	were	absolutely	one	and	the	same	with	the	lunar
calendar,	and	with	the	sexagesimal	cycle,	of	their	own	time.	This	assumption	was	a	great	mistake:
and	it	could	not	fail	to	lead	them	wrong,	in	their	attempts	to	verify	and	confirm	these	eclipses	in
particular.

Edward	Greswell:On	the	Two	Miracles,	Affecting	the	Sun,	in	the	Time	of	Joshua,	and	in	the	Time
of	Hezekiah,	Respectively:	and	on	their	Effect	upon	the	Measures	of	Time	in	General,	and	on	the

Lunar	Measure	of	Time	in	Particular,	and	on	the	Precession	of	the	Equinoxes	(1847)

The	Chinese	calendar	uses	a	cycle	of	60	names	 (see	 [26]	 for	a	history	of	 their
ritual	foundations)	for	years.	The	name	is	formed	by	combining	a	celestial	stem,
tiān	gān	 ,	with	a	terrestrial	branch,	dì	zhī	 .	The	celestial	stems,

(1)	Jiǎ	 				

(2)	Yǐ	 				

(3)	Bǐng	 			

(4)	Dīng	 				

(5)	Wù	 				

(6)	Jǐ	

(7)	Gēng	

(8)	Xīn	

(9)	Rén	

(10)	Guǐ	

are	 untranslatable,	 though	 they	 are	 sometimes	 associated	 with	 the	 5	 elements
(tree,	 fire,	 earth,	 metal,	 and	 water),	 each	 in	 its	 male	 and	 female	 form.	 These
stems	 have	 another	 use	 as	 well—they	 correspond	 to	 “A,	 B,	 C,	 D,	 ….”	 For



example,	because	written	Chinese	uses	word	 symbols,	 rather	 than	an	alphabet,

jiǎ,	yǐ,	bǐng,	and	dīng	are	used	as	letter	grades	on	Chinese	exam	papers.
The	terrestrial	branches

(1)	Zǐ	 (Rat)				

(2)	Chǒu	 (Ox)				

(3)	Yín	 (Tiger)				

(4)	Mǎo	 (Hare)				

(5)	Chén	 (Dragon)			

(6)	Sì	 (Snake)				

(7)	Wǔ	 (Horse)

(8)	Wèi	 (Sheep)

(9)	Shēn	 (Monkey)

(10)	Yǒu	 (Fowl)

(11)	Xū	 (Dog)

(12)	Hài	 (Pig)

are	also	untranslatable;	the	English	names—traditional	animal	totems—given	for
the	 12	 branches	 corresponding	 to	 the	 years	 of	 the	 Chinese	 “Zodiac”	 are	 not
translations	from	the	Chinese.

The	 names	 are	 assigned	 sequentially,	 running	 through	 the	 decimal	 and
duodenary	lists	simultaneously.	The	first	name	is	jiǎzǐ,	the	second	is	yǐchǒu,	the
third	is	bǐngyín,	and	so	on.	Because	the	least	common	multiple	of	10	and	12	is



(19.18)

(19.19)

(19.20)

60,	the	cycle	of	names	repeats	after	the	sixtieth	name,	guǐhài.	Representing	 the
name	 as	 a	 pair	 of	 numbers	 giving	 the	 celestial	 stem	 and	 the	 terrestrial	 branch
(which	must	have	 the	same	parity),	 respectively,	and	using	equation	(1.70),	we
can	thus	obtain	the	nth	name	of	the	sexagenary	cycle	of	names	by	means	of	the
function

Determining	 the	 number	 of	 names	 from	 the	 sexagesimal	 name	
	 to	 the	 next	 occurrence	 of	 the	 sexagesimal	 name	
	is	an	instance	of	formula	(1.74):

where

Because	 the	 name	 of	 the	 first	 year	 of	 any	 cycle	 is	 jiǎzǐ,	 the	 name	 of	 the
Chinese	year	in	any	cycle	is	given	by

This	representation	can	be	inverted	to	give	the	year	within	a	cycle	corresponding
to	a	given	sexagesimal	name	by	using	formula	(1.74).



(19.21)

(19.22)

(19.23)

(19.24)

At	 one	 time	 the	 Chinese	 used	 the	 same	 sequence	 of	 60	 names	 to	 name
months	and	days	as	well.	Extrapolating	backward	from	known	dates,	we	find	the
number	of	elapsed	months	on	the	Chinese	calendar	at	the	start	of	a	name	cycle	to
be

Because	leap	months	were	unnamed,	we	can	write

where

For	days,	the	repeating	sequence	of	60	names	acts	like	a	“week.”	We	find
that	a	day-cycle	began	on	R.D.	46,	so	that	day	0	(or,	60)	of	the	cycle	is:

which	allows	us	to	write

Just	as	we	did	for	the	7-day	week	in	kday-on-or-before,	we	can	apply	formula
(1.63)	to	compute	the	R.D.	date	of	the	last	date	with	a	given	sexagesimal	name	on
or	before	a	given	R.D.	date:



(19.25)

The	 60-element	 cycle	 of	 stem-branch	 combinations	 is	 applied	 to	Chinese
hours	 as	 well	 as	 to	 years,	 months,	 and	 days.	 Because	 the	 Chinese	 hours	 are
intervals	that	are	2	ordinary	hours	in	length	(from	odd	hour	to	odd	hour),	the	60-
element	 cycle	 repeats	 in	 5	 days,	 and	 the	 12-element	 cycle	 of	 branches	 repeats
daily	 from	11	p.m.	 to	 11	 p.m.	The	12	 branches	 are	 therefore	 used	 on	Chinese
medicine	labels–the	herbalist	tells	the	patient	to	take	the	medicine	every	day	in
time	slots	yín	and	shēn,	for	example.

19.5 Common	Misconceptions
Cuiusvis	hominis	est	errare;	nullius	nisi	insipientis	in	errore	perseverare.	[Any	man	can	make	a
mistake;	only	a	fool	keeps	making	the	same	one.]

Attributed	to	Cicero

Not	much	has	been	written	in	Western	languages	about	the	Chinese	calendar,	but
much	 of	what	 has	 been	written	 is	 ill-informed,	 out	 of	 date,	 oversimplified,	 or
wrong.

For	 instance,	 it	 is	 not	 true	 that	 the	 19-year	 Metonic	 cycle	 is	 used	 to
determine	 leap	 years;	 for	 example,	 the	 Chinese	 year	 4664	 (overlapping
Gregorian	years	1966–67)	was	a	leap	year	but,	19	years	later,	the	Chinese	year
4683	 (overlapping	Gregorian	years	1985–86)	was	 a	 common	year.	Since	 1645
the	true,	not	the	mean,	behavior	of	the	moon	and	sun	is	used	in	calculations	and,
as	a	consequence,	months	11	and	12	can	be	followed	by	a	leap	month	(rarely—
but	it	can	happen:	in	2033	on	the	Chinese	calendar	there	will	be	a	leap	month	11
and	in	1890	on	the	Japanese	lunisolar	calendar,	 identical	 to	 the	Chinese	except



for	the	location	at	which	the	calculations	are	done,	there	was	a	leap	month	12).

Thus,	Chinese	New	Year	 is	not	 always	 the	 second	 new	moon	 after	 the	winter
solstice,	 as	 is	 sometimes	 claimed	 (in	 [33],	 for	 example).	 Far	 enough	 in	 the
future,	as	the	perihelion	moves,	winter	leap	months	will	become	more	and	more
common,	including	leap	twelfth	months.

There	is	a	popular	“rule”	that	says	that	Chinese	New	Year	is	the	new	moon
closest	 to	 lìchūn	 (the	 beginning	 of	 spring),	 which	 occurs	 on	 approximately
February	4	(see,	for	example,	[22]).	Most	of	the	time	this	is	true,	but	if	there	is	a
new	moon	around	January	21	(and	hence	again	around	February	20),	the	rule	is
difficult	to	apply.	In	such	close	situations	the	rule	can	fail,	as	it	did	for	1985.

It	 is	 not	 traditional	 to	 count	 cycles	 or	 years;	 years	 are	 generally	 given	 as
regnal	 years	 and	 by	 sexagesimal	 name.	 Our	 code	 describes	 the	 Chinese	 New
Year	 that	 began	 on	 January	 28,	 1998	 as	 year	 15	 in	 cycle	 78,	 making	 it	 year
60×(78−1)+15	=	4635	in	Chinese	chronology.	This	era	agrees	with	that	used	in
Fritsche	[8].	However,	the	popular	press	at	the	time	described	that	new	Chinese
year	as	year	4696.	The	difference	in	year	numbers	stems	from	different	choices
of	epoch	and	a	 likely	error	 in	calculation.	We	chose	 the	 traditional	date	of	 the
first	use	of	 the	sexagesimal	cycle,	February	15,	−2636	(Gregorian)	=	March	8,
2637	B.C.E.	(Julian);	hence	1998	−	(−2636)	=	4634	Chinese	years	elapsed	prior	to
January	28,	1998.	Others,	including	Sun	Yat-sen,	choose	to	number	years	from
2697	B.C.E.,	 the	 first	 year	 of	 Emperor	 Huángdì,	 the	 traditional	 ancestor	 of	 the
Chinese	nation;	this	starting	point	would	correctly	give	4694	elapsed	years	as	of
January	28,	1998.	Then,	erroneously	adding	1	to	compensate	for	a	year	0	on	the
Gregorian	 calendar	 gives	 4695	 elapsed	 years	 and	 hence	 year	 number	 4696,	 as
reported	in	the	press.	In	any	case,	because	the	epoch	in	2637	B.C.E.	corresponds
to	year	61	of	Huángdì,	the	sexagesimal	name	of	a	Chinese	year	is	independent	of
the	epoch.



(19.26)

The	calculations	are	done	for	the	120°	east	meridian	(after	1928).	Calendars
for	other	Asian	countries	may	use	other	points	of	 reference—see	Section	19.9,
for	example.

19.6 Holidays
Please	note…	Islamic	and	Chinese	new	year	dates	are	approximate.6

American	Express	Publishing	Company:1995	Pocket	Diary

The	last	day	of	the	Chinese	lunisolar	year,	followed	by	the	first	day	of	the	next
year,	is	a	major	celebration	on	the	Chinese	calendar.	We	have	already	seen	how
to	determine	the	Chinese	New	Year	on	or	before	a	given	fixed	date.	It	is	easy	to
use	this	to	determine	Chinese	New	Year	in	a	given	Gregorian	year:

We	ask	for	the	New	Year	on	or	before	a	summer	date	because	that	New	Year	is
the	one	found	in	the	first	suì	examined	in	chinese-new-year-on-or-before.	The
more	 obvious	 choice	 of	 asking	 for	 the	 New	 Year	 on	 or	 before	 December	 31
results	in	two	suìs	being	examined	because	December	31	always	falls	at	the	end
of	the	Chinese	year.

Chinese	New	Year	falls	in	the	range	January	21	through	February	21	on	the
Gregorian	calendar.	Figure	19.3	shows	the	relative	frequency	with	which	it	falls
on	the	various	Gregorian	dates	for	1645–2644.



Figure	19.3	
Distribution	of	Chinese	New	Year	dates,	1645–2644	(suggested	by	Helmer
Aslaksen).	The	single	year	that	has	Chinese	New	Year	on	February	21	is	2319.

Because	 the	Chinese	 calendar	 is	 consistently	 aligned	with	 the	 sufficiently
accurate	Gregorian	calendar,	the	determination	of	holidays	is	handled,	as	on	the
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Hebrew	calendar,	by	observing	that	fixed	dates	on	the	Chinese	calendar	occur	in
fixed	seasons	of	the	year.	Specifically,

For	example,	the	Chinese	year	that	began	in	the	winter	of	year	0	(Gregorian)	was
2637	 (cycle	 44,	 year	 57).	 This	 means	 that	 holidays	 occurring	 in	 the	 spring,
summer,	and	fall	of	Gregorian	year	y	occur	in	the	Chinese	year	 ,	whereas
holidays	in	the	winter	occur	in	either	Chinese	year	 	or	 ,	depending
on	whether	they	are	before	or	after	January	1;	such	holidays	need	to	be	handled
like	Islamic	holidays	(Section		7.2).

Aside	from	Chinese	New	Year,	the	main	fixed-Chinese-date	holidays	on	the
Chinese	 calendar	 are	 the	 Lantern	 Festival	 (fifteenth	 day	 of	 first	 month);	 the
Dragon	Festival	 (fifth	day	of	 the	fifth	month);	Qǐqiǎo	or	Qīxī,	 called	 “Chinese
Valentine’s	Day”	(seventh	day	of	the	seventh	month);	Hungry	Ghosts	(fifteenth
day	of	the	seventh	month);	the	Mid-Autumn	Festival	(fifteenth	day	of	the	eighth
month);	and	the	Double-Ninth	Festival	(ninth	day	of	the	ninth	month).	Buddha’s
Birthday	 is	celebrated	 in	many	Asian	countries	on	 the	eighth	day	of	 the	fourth
month	 of	 the	 Chinese	 calendar,	 but	 the	 date	 of	 observance	 is	 not	 uniform	 (in
Japan,	 for	 instance,	 it	 is	 celebrated	 as	 the	 “Flower	 Festival”	 on	 April	 8).
Holidays	are	never	observed	in	leap	months.	For	example,	to	find	the	R.D.	date	of
the	Dragon	Festival	in	a	Gregorian	year,	we	would	use

where
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In	addition	to	the	fixed-date	holidays,	two	holidays	are	determined	by	solar
terms,	Qīngmíng	and	Dōngzhì	(the	winter	solstice).	To	determine	the	exact	dates
for	Gregorian	year	g-year	we	look	for	the	next	(major	or	minor)	solar	term	after
a	date	shortly	before	the	approximate	date	of	the	term	of	interest.	For	example,

Qīngmíng	 is	 the	 annual	 “tomb	 sweeping”	 festival	 in	 which	 people	 pay	 their
respects	 to	 their	 dead	 ancestors	 by	 tidying	 their	 graves	 and	 burning	 paper
offerings.	 It	 was	 banned	 in	 China	 in	 1949	 because	 of	 its	 feudal	 links,	 but
reinstated	as	a	public	holiday	in	2008.

Many	interesting	holiday	customs	are	described	in	[5]	and	[31].

19.7 Chinese	Age
Since	the	system	of	counting	age	differs	in	English	and	Chinese,	“-years	old”	is	only	an
approximate	rendering.

Elizabeth	Latimore	Boyle	and	Pauline	Ng	Delbridge:

Cantonese:	Basic	Course

According	 to	 the	 Chinese	 custom,	 a	 person’s	 age	 is	 considered	 to	 be	 1
immediately	 at	 birth;	 a	 person	 becomes	 a	 year	 older	 with	 each	 subsequent
Chinese	 New	 Year,	 and	 thus	 a	 child	 born	 a	 week	 before	 the	 New	 Year	 is
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considered	 to	 be	 age	 2	 a	 week	 after	 birth!	 This	 difference	 in	 the	 meaning	 of
“age”	has	caused	difficulties	in	gathering	and	interpreting	sociological	data	[23].
To	compute	the	age	of	a	person	according	to	this	custom,	given	the	Chinese	date
of	birth	and	the	present	fixed	date,	we	would	use

where

19.8 Chinese	Marriage	Auguries
I	am	only	sorry	that	my	daughter	has	so	little	merit,	and	that	she	has	not	had	all	the	education
desirable.	I	fear	she	is	good	for	nothing,	yet,	nevertheless,	since	the	augury	is	favourable,	I	dare
not	disobey	you,	and	I	accept	your	present,	I	salute	you,	and	I	consent	to	the	day	appointed	for	the
wedding.

The	Guernsey	Magazine:	A	Monthly	Illustrated	Journal	of	Useful	Information,	Instruction,	and
Entertainment	(1877)

Chinese	years	that	do	not	contain	the	minor	term	Lìchūn	(“Beginning	of	Spring”
around	 February	 4)	 are	 called	 “widow”	 years	 or	 “double-blind”	 years	 and	 are
deemed	 unlucky	 for	marriage.	 Because	 of	 the	 lunisolar	 nature	 of	 the	 Chinese
calendar,	widow	years	occur	about	7	times	in	19	years,	mimicking	the	Metonic
cycle;	for	example,	2005,	2008,	and	2010	are	widow	years.	By	contrast,	years	in
which	 Lìchūn	 occurs	 both	 at	 the	 start	 of	 the	 year	 and	 at	 the	 end	 (which	 also
happens	about	7	times	in	19	years)	are	“double-bright”	years	and	offer	“double
happiness”	 for	newlyweds;	2004,	2006,	 and	2009	are	 such	years,	 for	 example.
Years	 missing	 the	 first	 Lìchūn	 but	 containing	 the	 second	 are	 “blind”;	 years



(19.30)

(19.31)

(19.34)

(19.32)

(19.33)

containing	the	first	but	not	the	second	are	called	“bright.”	Let	3	mean	a	double-

bright	year,	2	a	bright	year,	1	a	blind	year,	and	0	a	widow	year:

We	can	determine	the	character	of	a	year	on	the	Chinese	calendar	from

where

19.9 The	Japanese	Calendar
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It	has	often	been	remarked	that	the	Japanese	do	many	things	in	a	way	that	runs	directly	counter
to	European	ideas	of	what	is	natural	and	proper.	To	the	Japanese	themselves	our	ways	appear
equally	unaccountable.

B.	H.	Chamberlain::	Things	Japanese	(1911)7

The	 development	 of	 calendars	 in	 Japan	 closely	 paralleled	 that	 in	 China	 with
similar	 improvements	 to	 the	 traditional	 Japanese	 calendar	 in	 years	 following
those	 improvements	 to	 the	Chinese	calendar.	For	example,	 the	use	of	 true	new
moons	 began	 in	China	 in	 619	C.E.,	 but	 in	 Japan	 in	 697	C.E.;	 true	 solar	months
have	been	used	in	the	Chinese	calendar	since	1645	and	in	the	Japanese	calendar
since	 1798.	 Since	 1844,	 the	 traditional	 Japanese	 calendar	 has	 followed	 the
principles	 described	 in	 this	 chapter	 except	 that	 the	 calculations	 are	 based	 on
locations	 in	 Japan.	 Although	 Japan	 officially	 changed	 over	 to	 the	 Gregorian
calendar	in	1873,	the	traditional	calendar	continues	to	be	published	and	used,	if
only	for	astrological	purposes.	During	1873–1887	calculations	were	done	using
Tokyo’s	longitude,	 	east,	which	is	 	after	U.T.	Since	1888,
longitude	135°	east	(9	hours	after	U.T.)	has	been	used.	Thus,	we	define

where

As	 with	 the	 Chinese	 calendar,	 the	 sexagesimal	 cycles	 are	 not	 numbered.
Rather,	years	are	given	according	to	the	nengō	system;	 this	 is	a	system	of	eras,
the	most	recent	of	which	are

Heisei	 January	8,	1989–



Showa	 December	26,	1925–January	7,	1989

Taisho	 July	31,	1912–December	25,	1925

Meiji	 January	1,	1869–July	30,	1912

Keio	 April	7,	1865–December	31,	1868

The	nengō	changes	when	the	emperor	dies,	even	if	that	occurs	in	the	middle	of
the	year.	Some	tables	(like	[18])	give	not	only	nengō	years	but	also	the	kigen,	a
count	 of	 years	 since	 the	mythological	 founding	of	 the	 Japanese	 empire	 in	 660
B.C.E.	 by	 Emperor	 Jimmu	 Tennō.	 Months	 are	 numbered	 as	 in	 Chinese;	 solar
terms	 are	 given	 by	 the	 Chinese	 ideograms	 in	 Table	 	 19.1,	 but	 they	 are
pronounced	using	Japanese	pronunciation	of	the	Chinese	characters.

To	 calculate	 the	 Japanese	 calendar,	we	 just	 replace	chinese-location	with
japanese-location	throughout	our	functions	for	the	Chinese	calendar	and	change
the	epoch.	The	results	match	those	in	[20],	which	covers	the	period	1873–2050.8

For	 earlier	 years,	 our	 results	 approximate	 those	 in	 [32]	 for	 1844–1872	 fairly
well.9	The	Japanese	dates	given	in	[34]	are	untrustworthy.

The	 function	 chinese-age	 also	 conforms	 to	 the	 Japanese	 system	 of
determining	age	in	the	“kazoe	doshi”	(literally,	“counted-year”)	system.

19.10 The	Korean	Calendar10

This	information	is,	of	course,	partially	erroneous,	since	the	Korean	calendar	conformed
precisely	with	the	Chinese.

George	McAfee	McCune:	Korean	Relations	with	China	and	Japan,	1800–1864	(1941)

During	 the	Chosun	 dynasty,	 1392–1897,	Korea	 used	 the	 Chinese	 calendar	 for
reference	but	did	their	own	independent	calculations.	In	1896	Korea	adopted	the
Gregorian	 calendar,	 but	 a	 Korean	 form	 of	 the	 Chinese	 calendar	 is	 still	 used
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traditionally.11	The	geographic	location	currently	used	for	computations	of	solar
terms	 and	 lunar	 phases	 is	 the	 Seoul	 City	 Hall	 at	 latitude	 	 north	 and
longitude	 	east	(9	hours	after	U.T.).	Prior	to	April	1,	1908	local	mean	time
was	used;	for	some	intervals	since	then,	8.5	hours	after	U.T.	was	used	as	the	time
zone	(from	April	1,	1908	to	December	31,	1911	and	from	March	21,	1954	until
August	9,	1961).	Thus,	to	implement	the	Korean	calendar	we	use

where

Years	on	the	Korean	calendar	are	counted	on	the	“Danki	system,”	counting
from	 2333	B.C.E.,	 the	 traditional	 year	 of	 the	 founding	 of	 Go-Chosun,	 the	 first
Korean	nation.	In	terms	of	the	Chinese	cycle	and	year	numbers,	the	Danki	year
number	is	given	by

The	solar	 terms	are	as	follows	in	Korean	(the	 translations	are	 the	same	as
those	given	in	Table		19.1	on	page	307	):



The	Korean	calendar	names	years,	months,	and	days	according	to	the	same
sexagesimal	system	use	in	the	Chinese	calendar,	with	stems

and	branches

The	main	Korean	 holidays	 are	Gregorian	New	Year	 ,	 Korean	 New
Year	 ;	computed	like	Chinese	New	Year),	and	Thanksgiving	 	;
day	 15	 of	 the	 eighth	 month).	 In	 addition,	 the	 dates	 of	 solar	 longitudes
297°	(January	17–18),	27°	(April	17–18),	117°	 (July	20–21),	and	207°	 (October
20–21)	are	called	Toe-Wang-Yong-Sa	 ;	on	these	days,	the	energy	from
the	 soil	 is	 thought	 to	 dominate,	 so	 traditionally	 no	work	 related	 to	 the	 soil	 is



(19.38)

done.	 Our	 function	 chinese-solar-longitude-on-or-after	 makes	 the
determination	of	the	toe-wang-yong-sa	an	easy	matter.

19.11 The	Vietnamese	Calendar12

Minister	Tranh	gazed	ahead	at	the	far	wall,	as	though	divining	some	message	from	the	mildewed
wallpaper.	“Are	you	familiar	with	the	Vietnamese	calendar,	Miss	Maitland?”	he	asked	quietly.
“Your	calendar?”	She	frowned,	puzzled	by	the	new	twist	of	conversation.	“It—it’s	the	same	as	the
Chinese,	isn’t	it?”

Tess	Gerritsen:	Never	Say	Die	(1996)

The	 traditional	 Vietnamese	 calendar	 used	 today	 is	 the	 Chinese	 calendar
computed	for	Hanoi	(Vietnam	Standard	Time,	U.T.+	8	before	1968,	U.T.+	7	since
1968):13

where

It	 was	 adopted	 in	 1967	 in	 North	 Vietnam	 and	 in	 1976	 in	 the	 whole	 country.
Between	 1813	 and	 1967	 the	 Chinese	 calendar	 was	 used.	 Before	 1813	 the
Vietnamese	calendar	was	computed	with	slightly	different	 formulas	and	 tables,
so	 it	 differs	 occasionally	 from	 the	 Chinese	 calendar,	 especially	 in	 the	 period
1645–1813.14	See	[12]	and	[13]	for	the	full	history	of	Vietnamese	calendars.

The	 years	 are	 not	 counted,	 but	 are	 named.	 The	 names	 of	 the	 stems	 and
branches	 are	 translations	 of	 the	 Chinese	 names,	 but	 the	 animal	 totems	 are
different	from	those	of	Chinese	calendar	in	some	cases:	Water	buffalo	instead	of
Ox;	Cat	instead	of	Rabbit.	In	Vietnamese	the	names	of	the	stems	are:



(1)	Giáp			

(2)	Ất			

(3)	Bính			

(4)	Đinh			

(5)	Mậu			

(6)	Kỷ

(7)	Canh

(8)	Tân

(9)	Nhâm

(10)	Quý

and	the	names	of	the	branches	are:

(1)	Tý (Rat)			

(2)	Sửu (Water	buffalo)			

(3)	Dần (Tiger)			

(4)	Mão (Cat)			

(5)	Thìn (Dragon)			

(6)	T (Snake)			

(7)	Ngọ (Horse)

(8)	Mùi (Goat)



(9)	Thân (Monkey)

(10)	Dậu (Chicken)

(11)	Tuất (Dog)

(12)	Hợi (Pig)

Months	 are	 named	 in	 two	 ways,	 using	 the	 sexagesimal	 system	 as	 in	 the
Chinese	calendar	or	by	the	name	of	the	month	in	the	year	only.	The	names	are:

(1)	Tháng	Giêng			

(2)	Tháng	Hai			

(3)	Tháng	Ba			

(4)	Tháng	Tư			

(5)	Tháng	Năm			

(6)	Tháng	Sáu			

(7)	Tháng	Bảy

(8)	Tháng	Tám

(9)	Tháng	Chín

(10)	Tháng	Mười

(11)	Tháng	Một

(12)	Tháng	Chạp



Months	1,	11,	and	12	have	proper	names;	the	other	names	are	just	numbers:
“hai”	 is	 “second,”…,	 “mười”	 is	 “tenth,”	 and	 “tháng”	 is	 “month.”	 Month	 12
(Tháng	Chạp)	 is	sometimes	called	“Tháng	Mười	Hai”	 (the	 twelfth	month),	but
Month	11	 (Tháng	Một)	 is	almost	 never	 called	 “the	 eleventh	month.”	The	 first
month	 (Tháng	 Giêng)	 is	 never	 called	 “the	 first	 month.”	 Leap	 months	 are
indicated	with	“nhuận,”	for	example	“Tháng	Tám	nhuận.”
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1			
2			The	three	most	significant	of	calendar	reforms	were	the	following.	In	104B.C.E.,	the	rule	that	the	lunar

month	without	a	major	solar	term	is	intercalary	was	established	(page	311),	andmean	values	were	used	for
both	solar	and	lunar	months,	much	like	the	old	Hindu	lunisolar	calendar	described	in	Chapter		10.	In	619
C.E.,	the	use	of	true	new	moons	was	introduced.	In	1645	C.E.,	the	use	of	true	solar	month	s	was	introduced.

3			Specifically,	we	follow	the	principles	of	Baolin	Liú,	the	former	calendrist	of	the	Purple	Mountain
Observatory,	Nanjing,	China,	as	given	in	[15];	for	a	summary	of	this	manuscript,	see	[7].	Our	functions
accurately	reproduce	the	third	printing	of	[2],	of	which	Liú	is	the	primary	author,	for	1907	onward;	they
reproduce	Xú’s	table	[34]	for	1907	onward,	except	for	2033;	Xú	used	the	first	printing	of	[2],	which	was
later	corrected	(Xú	takes	the	month	beginning	on	August	25	as	a	leap	month,	forcing	the	solstice	into	the
tenth	month,	thus	violating	Liú’s	basic	principle	given	on	page	310).

For	years	1645–1906,	our	functions	very	occasionally	err	because	of	disagreements	by	a	few	minutes

in	 the	 astronomical	 calculations	 (the	Chinese	 used	 seventeenth-century	models	 of	 the	 solar	 system	 until
1913,	and	thus	their	calculated	times	of	solar	and	lunar	events	were	not	as	accurate	as	ours);	nevertheless,
our	calculated	dates	for	Chinese	New	Year	agree	with	Xú’s	table	for	1644–2050.

4			Yáng	had	attempted	to	amend	the	calendar,	but	his	inadequate	knowledge	resulted	in	frequent	errors
[14].	He	had	had	the	Jesuits,	who	had—through	superior	astronomical	calculations—achieved	positions	of



importance	in	determining	the	calendar,	framed	and	sentenced	to	death	before	the	errors	caused	by	his
ignorance	caused	him	to	be	sent	into	exile	and	the	Jesuits	to	be	released	[3].

5			Actual	practice	for	1928	is	uncertain.
6			In	the	next	section	we	will	see	that	Chinese	New	Year	can	be	determined	exactly,	in	contrast	with	the

observation-based	Islamic	New	Year	(Section	18.3),	which	cannot.
7			 ,	 .
8			Except	for	1947;	Nishizawa	[20]	follows	the	published	calendar	for	1947,	which	erroneously	had	a

leap	month	3	instead	of	a	leap	month	2	as	the	rules	would	dictate	(in	fact,	the	correct	time	is	given	for
Gǔyǔ	in	[20]	but	is	inconsistent	with	the	calendar	there!).	Nishizawa	[21]	suggests	that	the	erroneous
calendar	occurred	because	of	post-war	confusion.	Our	algorithms	give	the	“correct”	calendar.

9			Perfectly	from	1860	onward	but	with	occasional	minor	errors	in	1844–1859,	except	for	a	major
disagreement	from	the	end	of	1851	to	the	spring	of	1852.	Such	disagreement	is	not	surprising	because,
during	1844–1872,	the	Japanese	calendar	was	based	on	apparent	time	whereas	our	functions	use	local	mean
time.	Furthermore,	as	with	the	Chinese	calendar	before	the	twentieth	century,	the	astronomical	models	used
for	the	Japanese	calendar	in	the	nineteenth	century	are	less	accurate	than	our	astronomical	functions.

10			Based	on	information	provided	by	S.	Sohn	[27]	of	the	Korea	Astronomy	&	Space	Science	Institute.
11			The	most	reliable	tables	of	the	Korean	calendar	for	the	modern	era	are	found	in	[1].	These	tables,

however	have	two	peculiarities.	All	calculations	for	years	after	1911	were	made	using	the	time	zone	U.T.+9.
For	1900–1911	the	tables	were	taken	from	calendars	of	that	period,	but	all	times	given	for	solar	terms	were
computed	using	U.T.+9	(rather	than	either	local	mean	time	or	U.T.+8.5),	except	for	eight	scattered	dates	in
1903–1911	in	which	U.T.+8	was	used	to	give	agreement	with	old	records.	Because	of	this	situation,	the
calendar	as	computed	by	our	Chinese	calendar	functions	together	with	korean-location	gives	perfect
agreement	with	[1]	for	all	dates	after	1911	until	August	9,	1961	except	March	21,	1954.

12			Based	on	information	provided	by	 	[9]	of	the	Institut	für	Informationssysteme,
Universität	zu	Lübeck.

13			Historical	time-zone	use	in	Vietnam	is	extremely	complex,	varying	geographically	(North	versus
South,	before	unification	versus	after),	as	well	as	historically	(under	the	French,	the	Japanese,	and	after
independence).	What	we	use	is	simplistic	but	follows	the	TZ	database	and	gives	agreement	with	[29],	as
detailed	in	the	following	note.

14			Our	functions	have	complete	agreement	with	[29]	for	1999–2100.	For	1901–1998	historical	practice
differed	from	our	calculated	values	for	six	scattered	months	as	given	in	Table	10	of	[29,	p.	69]	but,	with
those	corrections	to	[29],	our	functions	also	agree	for	1901–1998.	For	the	years	after	1890,	except	for	those
six	months,	our	calculations	agree	with	[12],	on	which	[29]	is	based	for	1901–2010.	Our	functions	are	also
in	complete	agreement	with	the	calculations	of	Hồ	Ngọc	Đức	[9]	for	1891–2100.

	



Twelfth-century	black	stone	slab	from	Andhra	Pradesh,	India,	depicting	the	12
signs	of	the	zodiac	surrounding	a	lotus	in	full	bloom	representing	the	sun.
(Courtesy	of	the	Prince	of	Wales	Museum	of	Western	India,	Bombay.)
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The	Modern	Hindu	Calendars
◈

From	a	chronological	point	of	view	the	substitution	for	the	mean	calendric	system	of	one	based
on	the	true	movements	of	the	sun	and	moon,	was	anything	but	an	improvement,	as	it	destabilized
the	foundations	of	the	time	reckoning.	Indeed,	the	system	may	have	had	the	charm	of	adapting
daily	life	as	nearly	as	the	astronomical	knowledge	permitted	to	the	movement	of	the	heavenly
bodies,	but	on	the	other	hand	it	broke	ties	with	history,	as	there	was	no	unity	of	elements	or
systems.	The	very	complexity	of	the	system	is	proof	of	its	primitiveness.

W.	E.	van	Wijk:	Decimal	Tables	for	the	Reduction	of	Hindu
Dates	from	the	Data	of	the	Sūrya-Siddhānta	(1938)1

Numerous	 calendars	 are	 used	 in	 India	 for	 different	 purposes.	 The	 Gregorian
calendar	is	used	by	the	government	for	civil	matters;	the	Islamic	calendar	is	used
by	Muslims;	the	Hindus	employ	both	solar	and	lunisolar	calendars.	Indeed,	there
are	over	30	variations	of	 the	Hindu	 calendar	 in	 active	use.	 In	March	1957,	 an
attempt	was	made	to	revise	 the	 traditional	calendar	 to	follow	the	pattern	of	 the
Gregorian	leap-year	structure	 [1].	The	proposed	reform	has	not,	however,	been
widely	 accepted,	 though	 the	 new	National	Calendar	 dates	 appear	 in	 published
calendars.	 An	 excellent	 description	 of	 many	 Indian	 calendars,	 together	 with
extensive	tables,	is	given	in	[6].

The	best	known	of	several	related	systems	used	on	the	Indian	subcontinent
is	 the	 classical	 Hindu	 calendar	 of	 the	 (present)	 Sūrya-Siddhānta	 (circa	 1000),
said	 to	 have	 been	 revealed	 to	Asura	Maya	 the	Assyrian	 at	 the	 end	 of	 the	 last
“Golden	Age,”	in	the	year	2163154	B.C.E.2	al-Bīrūnī	attributes	the	book	to	Lata.



This	work	 introduced	 a	 calendar	 based	on	 approximations	 to	 the	 true	 times	of
astronomical	 events	 rather	 than	 the	 mean	 values	 used	 in	 the	 earlier,	 simpler,
calendar	 described	 in	 Chapter	 	 10.	 This	 calendar	 is	 somewhat	 similar	 to	 the
Chinese,	 beginning	 its	 months	 according	 to	 the	 actual	 time	 of	 new	 moon;
however,	 the	 Chinese	 calendar	 today	 uses	 modern	 astronomical	 methods	 to
determine	 these	 times	 whereas	 the	 Hindu	 calendar	 applies	 fixed,	 ancient
methods	to	approximate	the	true	positions	of	the	sun	and	moon.

In	the	mean	Hindu	calendar,	(Chapter		10)	the	calculations	are	simple.	The
necessary	computational	mechanisms	 for	 the	 true	system	are,	by	contrast,	very
complex;	experts	have	attempted	over	the	centuries	to	reduce	hand	calculations
to	table	lookup	and	the	very	simplest	arithmetical	operations,	avoiding	nuisances
like	 large	 numbers	 or	 even	 signed	 numbers	 but	 requiring	 logarithms	 and	 a
multiplicity	 of	 tables	 covering	various	periods	of	 time.	However,	 shortcuts	 for
humans	are	unnecessary	complications	for	computers,	and	so	we	will	avoid	all
of	them.	Unlike	table-based	methods,	 the	use	of	rational	numbers	gives	perfect
fidelity	to	the	sources.	We	believe	that	an	algorithmic	description	is	the	simplest
and	most	 concise	way	 of	 expressing	 the	 rules;	 it	 allows	 us	 to	 condense	many
pages	of	words	and	tables	into	a	few	hundred	lines	of	computer	code.

The	modern	Hindu	calendar	depends	on	computed	positions	of	the	sun	and
moon,	taking	into	account	that	the	solar	and	lunar	motions	vary	in	speed	across
the	celestial	sphere.	We	refer	to	these	computed	positions	as	“true,”	though	they
are	 not	 true	 in	 the	 astronomical	 sense	 but	 rather	 approximate	 the	 irregular
apparent	motions	 of	 the	 sun	 and	moon.	The	Hindu	 sidereal	year	 is	 the	 time	 it
takes	 for	 the	position	of	 the	 sun	 to	 return	 to	 the	 constellation	Aries;	 its	 length
averages	 	days.	The	length	of	a	solar	month	varies	from	29.318
days	to	31.644;	that	of	a	Hindu	lunar	month	varies	from	29.305	to	29.812	days.
The	sidereal	month	is	the	mean	time	it	takes	for	the	moon	to	return	to	the	same
(longitudinal)	 point	 vis-à-vis	 the	 stars	 and	 is	 given	 as	 	 days.	 The



(20.1)

(20.2)

(20.3)

synodic	month	 takes	 the	 motion	 of	 the	 sun	 into	 account;	 it	 is	 the	 mean	 time
between	new	moons	(lunar	conjunctions)	and	is	taken	to	be	 	days.
(See	 Section	 	 14.6.)	 The	 mean	 values	 for	 years	 and	 months	 are	 given	 in	 the
Sūrya-Siddhānta	as	rational	numbers:

The	modern	 and	 old	Hindu	 solar	 calendars	 have	 the	 same	basic	 structure
and	are	based	on	the	sidereal	year	rather	than	the	more	commonly	used	tropical
year.	 Each	 solar	month	 begins	when	 the	 sun	 enters	 a	 new	 sign	 of	 the	 zodiac.
Hindu	 longitudes	 are	 sidereal	 (they	 are	 relative	 to	 the	 fixed	 stars,	 not	 to	 the
precessing	 equinoctial	 point)	 and	 have	 as	 their	 origin	 a	 point	 near	 ζ	 Piscium
(Revatī,	 the	 sixth	 brightest	 star—actually	 a	 binary	 star—in	 the	 constellation
Pisces,	 near	 the	 ecliptic),	 or,	 according	 to	 other	 opinions,	 180°	 from	 the	 star
Spica	 (=	 α	 Virginis),	 rather	 than	 from	 the	 equinoctial	 point—but	 this	 has	 no
impact	on	the	calculations.	(See	Section		14.1.)	If	the	sign	is	entered	before	some
critical	 time	(see	page	348	for	details),	 then	 that	day	 is	day	1	of	a	new	month;
otherwise,	 it	 is	 the	 last	day	of	 the	previous	month.	However,	because	 the	solar
months	vary	in	length,	we	cannot	know	when	successive	months	begin	without
calculating	the	position	of	the	sun.	The	result	is	that	a	solar	month	can	have	29,
30,	31,	or	32	days.	The	(solar)	day	begins	at	sunrise.	Because,	in	the	variant	we
implement,	 it	 is	 the	 zodiacal	 position	of	 the	 sun	 at	 sunrise	 that	determines	 the
month	name,	we	will	have	to	compute	sunrise	as	well.

As	 with	 the	 old	 Hindu	 calendar	 (Chapter	 	 10),	 lunar	 month	 names	 are
determined	 by	 the	 (first)	 zodiacal	 sign	 entered	 by	 the	 sun	 during	 the	 month.
When	 no	 sign	 is	 entered,	 the	month	 is	 considered	 leap;	 leap	months	 take	 the



same	 name	 as	 the	 following	 month.	 This	 method	 of	 reckoning	 also	 leads
occasionally	 to	 lost	months.	When,	 very	 rarely,	 a	 solar	month	 elapses	with	 no
new	moon,	a	lunar	month	is	skipped	(called	kshaya).	There	is	a	19-	to	141-year
gap	 between	 occurrences	 of	 skipped	 months;	 they	 occur	 in	 the	 winter,	 near
perihelion,	when	the	apparent	motion	of	the	sun	is	fastest.	See	Figure	20.1.

Figure	20.1	
The	modern	Hindu	lunisolar	calendar.	Solar	events	(entry	into	zodiac
constellations)	are	shown	above	the	time	line;	lunar	events	(lunar	conjunctions)
are	shown	below;	the	longitudes	are	sidereal.	The	solar	months	are	shown	in
boldface	numbers;	the	lunar	months,	in	italic	numbers.	Note	the	expunged
eleventh	lunar	month.

As	 in	 the	 Chinese	 calendar	 with	 its	 similar	 leap-month	 scheme	 (see
page	310),	a	lunisolar	year	must	have	either	12	or	13	months.	Thus,	a	year	with	a
skipped	month	perforce	contains	either	1	leap	month	or	(extremely	rarely)	2	leap
months.	An	example	of	 a	nonleap	year	with	a	 leap	month	was	 the	Hindu	year
beginning	 in	 1963,	 with	 leap	 Āśvina	 and	 expunged	 Pauṣa,	 for	 a	 total	 of	 12
months.3	Examples	of	 leap	years	with	2	 leap	months	 include	4576	K.Y.	 (1475–
1476	Gregorian)	and	5083	K.Y.	(1982–1983	Gregorian).4

The	 Hindu	 lunar	 month	 is	 either	 29	 or	 30	 civil	 days	 long,	 but	 always
comprises	30	“lunar”	days.	As	explained	 in	Section	 	10.3,	each	 lunar	month	 is
split	into	a	bright,	waxing	(suddha),	half	and	a	dark,	waning	(bahula),	half.	We



follow	the	amānta	scheme	in	which	months	begin	and	end	with	new	moons;	in
the	alternative	pūrṇimānta	 scheme	 (used	primarily	 in	 the	 states	of	Bihar,	Uttar
Pradesh,	Madhya	Pradesh,	Rajasthan,	Haryana,	and	Kashmir),	months	go	 from
full	moon	to	full	moon.	In	the	latter	scheme,	the	dark	half	of	each	month	is	given
the	name	of	the	following	bright	fortnight.	When	a	leap	month	is	inserted,	it	runs
from	new	moon	to	new	moon,	and	is	thus	sandwiched	between	the	dark	and	light
halves	of	the	similarly	named	nonleap	month.	(In	an	alternative	scheme,	the	first
dark	and	light	halves	constitute	the	leap	month.)	The	difference	between	the	two
schemes	 is	only	one	of	naming,	 since	 the	 rules	governing	 the	determination	of
months	and	leap	months	are	unchanged	[12,	art.	51].	A	peculiarity	of	the	second
method	is	that	the	New	Year	begins	with	the	new	moon	in	the	middle	of	the	first
month,	the	same	day	as	with	the	first	method	[3],	[14].

The	usual	month	names	 for	both	 the	 solar	 and	 lunisolar	 calendars	 are	 the
same	as	those	given	on	page	160,	namely:

(1)	Caitra

(2)	Vaiśākha

(3)	Jyeṣṭha

(4)	Āṣāḍha

(5)	Śrāvaṇa

(6)	Bhādrapada

(7)	Āśvina

(8)	Kārtika

(9)	Mārgaśīrṣa



(10)	Pauṣa

(11)	Māgha

(12)	Phālguna

but	 the	 solar	 year	 typically	begins	with	Vaiśākha,	 corresponding	 to	 the	 second
month	 of	 the	 lunar	 year.	 The	 names	 are	 derived	 from	 asterisms	 (star	 groups)
along	 the	 ecliptic.	 They	 are	 a	 subset	 of	 the	 original	 names	 for	 the	 (unequal)
division	of	the	ecliptic	into	27	or	28	lunar	stations	or	“mansions,”	one	for	each
day	of	the	sidereal	month.	The	lunar	month	name	is	that	of	the	asterism	in	which
the	full	moon	occurs.	The	exact	star	groups	were	already	uncertain	in	the	time	of
al-Bīrūnī;	one	suggestion	is	given	in	Table		20.1.

Table	20.1	Suggested	correspondence	of	the	lunar	stations	and	asterisms.
Boldface	indicates	the	stations	after	which	the	lunar	months	are	named.	The
Greek	letters	(and	the	number	35)	in	the	middle	column	indicate	the	relative
brightness	of	the	star	in	its	constellation.	(Popular	names	are	given	in
parentheses.)	Thus,	α	Tauri	is	the	brightest	star	in	Taurus,	called	Aldebaran	(“the
follower”	in	Arabic,	a	red	star	of	first	magnitude	in	the	eye	of	the	bull	and	part	of
the	Hyades).	A	28th	station,	omitted	from	some	lists,	is	unnumbered.



Day	numbers	are	determined	by	the	lunar	phase,	or	tithi,	current	at	sunrise
(see	Chapter		10).	The	days	of	the	two	halves	of	a	month,	each	consisting	of	15
lunar	days,	are	usually	numbered	separately	from	1	to	15,	except	that	new-moon
day	(tithi	30)	is	numbered	30	in	both	the	new-moon	and	full-moon	schemes.	The
varying	motion	of	the	moon—a	“lunar	day”	ranges	in	length	from	21.5	to	26.2
hours—can	cause	two	sunrises	to	fall	within	1	lunar	day,	or	(every	2	months,	or
so)	 for	 a	 lunar	 day	 to	 begin	 and	 end	 between	 one	 sunrise	 and	 the	 next.	 This
situation	 leads	 to	 a	 unique	 aspect	 of	 the	Hindu	 scheme:	 consecutive	 days	 can



bear	 the	same	 ordinal	number	 (an	 “intercalated”	day),	 and	 any	 number	 can	 be
skipped	(an	“extracalated”	day).	In	the	case	of	days,	 the	second	of	2	days	with
the	 same	number	 is	 considered	extra	 (adhika).	A	day	may	 therefore	 be	 named
“Second	7	in	the	dark	half	of	the	first	Mārgaśīrṣa.”

Suppose	that	we	can	determine	the	sidereal	longitudes	of	the	sun	and	moon
at	 any	 given	 time.	 To	 determine	 the	 Hindu	 lunar	 date	 of	 any	 given	 day,	 we
perform	the	following	sequence	of	operations:
1.			The	phase	of	the	moon	at	sunrise	of	the	given	day	is	determined	by	taking

the	 difference	 in	 longitudes	 between	 the	 positions	 of	 the	 sun	 and	 moon.
Dividing	this	difference	in	degrees	by	12	gives	an	 integer	 in	 the	range	0	 .	 .
29,	 corresponding	 to	 (one	 less	 than)	 the	 ordinal	 number	 of	 the	 lunar	 day
current	at	sunrise.

2.			The	current	day	number	is	compared	with	that	of	the	previous	day.	If	they	are
the	same	then	it	is	a	leap	day	(and	“adhika”	is	appended	to	the	number).

3.	 	 	The	 time	when	 the	 last	 new	moon	 at	 or	 before	 sunrise	 of	 the	 current	 day
occurred	is	determined.

4.			The	position	of	the	sun	(which	is	the	same	as	that	of	the	moon)	at	that	new
moon	 is	 determined.	 The	 zodiacal	 sign	 in	 which	 it	 occurs	 establishes	 the
name	(that	of	the	next	sign)	of	the	current	month.

5.			The	current	month	name	is	compared	with	that	of	the	next	new	moon.	If	they
are	 the	 same,	 then	 it	 is	 a	 leap	 month	 (and	 “adhika”	 is	 appended	 to	 the
month’s	name).
Consider	 the	 unusual	 lunar	 year	 that	 began	 on	 March	 26,	 1982.	 The

sequence	 of	 solar	 entries	 into	 zodiacal	 signs	 and	 new	moons	 in	 that	 year	 are
shown	in	Table	 	20.2.	There	were	 two	new	moons	between	 the	 sun’s	 reaching
150°	 and	 180°,	 and	 between	 300°	 and	 330°,	 so	 both	 the	 seventh	 and	 twelfth
months	 are	 leap.	 Because	 there	 was	 no	 new	 moon	 between	 270°	 and	 300°,
month	11	is	expunged.	See	Figure	20.1.



Table	20.2	The	sequence	of	solar	entries	into	zodiacal	signs	(bold)	and	new
moons	(italics)	in	1982.

Date Moment Event

March	14,	1982 17:39:48 330°

March	25,	1982 15:21:52 month	1

April	14,	1982 2:08:34 0°

April	24,	1982 1:55:58 month	2

May	15,	1982 0:33:27 30°

May	23,	1982 10:18:42 month	3

June	15,	1982 10:38:20 60°

June	21,	1982 17:20:29 month	4

July	17,	1982 2:06:17 90°

July	21,	1982 0:01:51 month	5

August	17,	1982 13:30:07 120°

August	19,	1982 7:31:17 month	6

September	17,	1982 13:58:01 150°

September	17,	1982 16:46:25 leap	month	7

October	17,	1982 4:35:29 month	7

October	18,	1982 0:34:25 180°

November	15,	1982 19:28:07 month	8



November	16,	1982 22:01:12 210°

December	15,	1982 13:18:01 month	9

December	16,	1982 9:48:12 240°

January	14,	1983 9:03:50 month	10

January	14,	1983 17:26:14 270°

February	13,	1983 4:10:17 300°

February	13,	1983 4:45:34 leap	month	12

March	14,	1983 22:26:19 month	12

March	14,	1983 23:52:24 330°

April	13,	1983 13:06:31 month	1

In	contrast,	the	calculations	of	the	old	(mean)	Hindu	lunisolar	calendar	can
result	in	added	months	and	lost	days	but	not	lost	months	or	added	days.	Because
the	mean	 lunar	 month	 is	 shorter	 than	 the	 mean	 solar	 month,	 there	 is	 never	 a
situation	on	the	mean	calendar	in	which	an	expunged	lunar	month	is	called	for.
Similarly,	 because	 a	 civil	 day	 is	 longer	 than	 a	 30th	of	 a	mean	 synodic	month,
leap	days	were	never	needed.

20.1 Hindu	Astronomy
I	dare	not	hope	that	I	have	made	myself	quite	clear,	simply	because	[my	explanation]	involves	too
many	fractions	and	details.	To	tell	the	truth	it	took	me	several	days	to	get	familiar	with	the
[calendar	]	system…	Several	of	my	Brahmin	friends	themselves	were	unable	to	explain	the
intricacies	of	the	Hindu	calendar	…	But	let	me	not	leave	the	impression	that	these	attempts	on	the
part	of	the	Brahmins	of	old	to	reconcile	the	seemingly	irreconcilable	have	been	futile	…	There



can	be	no	doubt	that,	from	the	point	of	view	of	correctness	and	exactitude,	the	Hindu	calendars
are	by	far	the	nearest	approaches	to	the	actual	machinery	of	astronomical	phenomena	governing
life	on	our	planet.	The	only	fault	of	the	Hindu	calendars	is	that	they	are	unintelligible	to	the
common	man.

Hashim	Amir	Ali:	Facts	and	Fancies	(1946)

From	the	time	of	Ptolemy’s	Almagest	 in	 the	second	century	until	 the	Keplerian
revolution	of	the	seventeenth	century,	it	was	well	known	that	the	motions	of	the
seven	 heavenly	 bodies	 visible	 to	 the	 naked	 eye	 (the	 sun,	 the	moon,	Mercury,
Venus,	 Mars,	 Jupiter,	 and	 Saturn)	 can	 best	 be	 described	 by	 combinations	 of
circular	 motions,	 that	 is,	 cycles	 and	 epicycles.5	 The	 Hindu	 calendar
approximations	are	based	on	such	epicycles.

To	find	the	true	positions	of	the	sun	and	moon	we	need	to	adjust	their	mean
(sidereal)	 longitudes	by	 the	contribution	of	 the	epicycle.	The	heavenly	body	 is
assumed	 to	 remain	 on	 the	deferent	 (the	main	 circle)	 but	 to	 be	 “pulled”	 in	 one
direction	or	the	other	by	“winds”	and	“cords	of	air”	originating	on	the	epicycle.
If	we	assume	the	center	of	 the	epicycle	 is	at	 longitude	β	and	 the	anomaly	 (the
angle	of	the	heavenly	body	around	the	epicycle,	measured	from	the	point	farthest
from	Earth	along	the	epicycle)	is	α,	the	angular	position	is	approximately

where	 r	 is	 the	 ratio	 of	 the	 radii	 of	 the	 epicycle	 and	 the	 deferent.	 Figure	 20.2
illustrates	this	arrangement.



Figure	20.2	
The	motion	of	the	moon	viewed	from	above	the	North	Pole.	The	mean	position	
	of	the	moon	revolves	in	a	circle,	called	the	deferent,	of	radius	 ,	at	a	steady

rate	(once	every	mean	sidereal	month).	At	the	same	time,	a	hypothetical	being	
	rotates	around	an	epicycle	of	unit	radius	centered	at	 	in	the	opposite

direction	to	the	motion	of	 	in	such	a	way	that	it	returns	to	the	apogee	(the	point
at	which	it	is	farthest	from	Earth)	in	a	period	called	the	anomalistic	month.	Let	β
be	the	longitude	of	 ,	α	be	the	angle	of	M′	from	the	apogee,	called	the	anomaly,
and	f	be	sin	α,	which	we	call	the	offset.	The	true	longitude	of	the	moon,	M,	on
the	deferent	along	a	radius	from	Earth	to	 ,	is	 ,	where	 .



(20.4)

(20.5)

Thus	we	have	for	the	equation	of	center	 .
In	addition,	the	ratio	r	changes	as	 	revolves	around	Earth	(see	the	text).	The
figure	is	not	drawn	to	scale.

The	Sūrya-Siddhānta	and	earlier	Hindu	astronomical	 tracts	give	a	 table	of
sines	 for	 angles	 of	 0°	 to	 90°,	 in	 increments	 of	 225	 minutes	 of	 arc,	 and
interpolation	is	used	for	intermediate	values.	The	sines,	shown	in	Table		20.3,	are
given	 as	 integers	 in	 the	 range	0	 .	 .	3438	 (that	 is,	 in	 terms	of	 a	 radius	 of	 3438
units)	 and	 serve	 as	 close	 approximations	 to	 the	 true	 sine.6	We	 implement	 the
table	by	means	of	the	following	ad	hoc	function,	which	returns	an	amplitude	in
the	range	[0	.	.	1]	for	angles	given	in	units	of	225′:

where

Linear	interpolation	is	used	for	in-between	values:7

where

To	invert	hindu-sine	we	use



(20.6)
where

Again,	interpolation	is	used	for	intermediate	values	not	appearing	in	the	table.

Table	20.3	Hindu	sine	table,	0°–90°	(with	radius	3438).

To	determine	 the	position	of	 the	mean	 sun	or	moon,	we	have	 the	generic
function



(20.7)

(20.8)

(20.9)

(20.10)

which	calculates	the	longitude	(in	degrees)	at	a	given	moment	t	when	the	period
of	rotation	is	period	days.	The	visible	planets,	according	to	the	Sūrya-Siddhānta,
were	 in	 mean	 conjunction	 at	 the	 epoch	 but	 in	 true	 conjunction	 at	 the	 end	 of
creation,	1955880000	years	 (sidereal,	not	 tropical—the	difference	 is	 slight;	 see
Section		14.4)	prior	to	the	onset	of	the	Kali	Yuga:

Thus,	the	anomaly	is	taken	to	be	0°	at	(the	end	of)	creation.	The	size	of	the	sun’s
epicycle	is	14/360	of	 its	deferent;	 for	 the	moon	the	ratio	 is	 larger:	32/360.	The
period	of	revolution	of	the	(cords	of	air	around	the)	epicycles	are

for	the	sun	and	moon,	respectively.	These	values,	of	approximately	365.258789
and	27.554598,	respectively,	are	derived	from	the	stated	speed	of	rotation	of	the
apsides	 (the	 extreme	points	 of	 the	 orbit),	 387/1000	 times	 in	 4320000	years	 (=
1577917828	 days)	 for	 the	 sun	 and	 488199	 times	 in	 the	 same	 period	 for	 the
moon.8	 The	 anomalistic	 month	 is	 the	 corrected	 (bija)	 value	 introduced	 in	 the
mid-sixteenth	 century	 by	 Gaṇesa	 Daivajna	 and	 still	 in	 use	 today,	 not	 that
originally	given	in	the	Sūrya-Siddhānta.



(20.11)

(20.12)

(20.13)

To	 complicate	 matters,	 in	 the	 scheme	 of	 Sūrya-Siddhānta	 the	 epicycle
actually	 shrinks	 as	 it	 revolves	 (almost	 as	 if	 there	 were	 an	 epicycle	 on	 the
epicycle).	For	both	the	sun	and	moon,	the	change	amounts	to	20′	and	reaches	its
minimum	value	when	 entering	 the	 even	 quadrants.	Changes	 in	 the	 size	 of	 the
epicycle	are	reflected	in	the	following	function:

where

which	adjusts	the	mean	longitudinal	position	(the	center	of	the	epicycle)	by	the
equation	of	motion	(the	longitudinal	displacement	caused	by	epicyclic	motion),
calculated	from	creation	and	normalizes	the	resultant	angle	by	using	the	modulus
function.9

Substituting	the	relevant	constants,	we	have

from	which	the	zodiacal	position	follows:



(20.16)

(20.17)

(20.14)

(20.15)

The	position	of	the	moon	is	calculated	in	a	similar	fashion:

Now	 we	 have	 all	 the	 information	 needed	 to	 determine	 the
phase	of	the	moon	at	any	given	time.	It	is	simply	the	difference	in	longitudes:

This	translates	into	the	number	of	the	lunar	day	if	the	difference	is
divided	by	one-thirtieth	of	a	full	circle	(that	is,	12°):

To	 find	 the	 zodiacal	 sign	 at	 the	 time	 of	 a	 new	 moon,	 we	 first	 use	 the
following	 function	 to	get	 a	 close	enough	approximation	 to	 the	 time	of	 the	 last
new	moon	preceding	moment	t:

where



(20.18)

Beginning	with	an	interval	of	(up	to)	one	day	before	and	after	the	time	τ	of	the
last	mean	new	moon,	we	perform	a	binary	search	(see	page	24)	for	the	moment
when	the	moon’s	phase	goes	from	360°	to	0°.	The	search	is	terminated	as	soon
as	 the	 search	 interval	 is	 narrow	 enough	 to	 determine	 the	 sign	 of	 the	 zodiac.
Additionally,	to	prevent	any	possibility	of	an	infinite	loop,	the	process	is	limited
here	to	1000	bisections.10

20.2 Calendars
Adhika	months	are	the	cream	of	the	Indian	Calendar,	while	kshaya	are	its	crème	de	la	crème.
Figures	of	speech	apart,	it	is	certainly	true	that	the	success	or	failure	of	any	computer	in
deducing	adhika	and	kshaya	months	is	the	measure	of	the	success	or	failure,	as	a	whole,	with	the
Indian	Calendar.	How	far	the	present	method	satisfies	this	ordeal,	will	be	for	competent	judges	to
decide.

Dewan	Bahadur	L.	D.	Swamikannu	Pillai:
Indian	Chronology	(1911)

To	determine	the	Hindu	year	for	a	given	R.D.	date	(or	time),	 it	 is	not	enough	to
take	the	quotient	of	the	number	of	days	elapsed	with	the	mean	length	of	a	year.	A
correction,	based	on	where	 the	 sun	actually	 is	vis-à-vis	 the	 start	of	 the	zodiac,
must	be	applied.



(20.19)

(20.20)

If	the	true	solar	longitude	at	the	given	time	is	a	bit	less	than	360°,	then	the	mean
value	of	the	quotient	is	decreased	by	1.

The	 Kali	 Yuga	 Era	 is	 used	 today	 only	 for	 calculations.	 Instead,	 one
commonly	used	starting	point	is	the	Śaka	Era	in	which	(elapsed)	year	0	began	in
the	spring	of	78	C.E.,	or	3179	K.Y.:

In	West	Bengal	an	era	that	began	in	593	C.E.	is	used	instead.	The	year	number	of
the	major	eras	can	be	calculated	using	Table	 	20.4	of	offsets	 from	the	Śaka.	A
detailed	discussion	of	Indian	dates	and	eras	may	be	found	in	[13,	chap.	VII].

Table	20.4	Śaka	offsets	for	various	eras.

Era Current	year Elapsed	year

Vikrama 		+136 		+135

Kali	Yuga +3180 +3179

Śaka 					+1 							0

Bengal 		−515

Kollam 		+901

Nepalese 		+955

The	solar	date	is	determined	by	approximation	followed	by	search:

where



To	 determine	 the	 day	 of	 the	 month,	 we	 underestimate	 the	 day	 when	 the	 sun
entered	the	current	zodiacal	sign	(approx)	and	search	forward	for	the	start	of	the
month,	begin.	The	calculation	of	hindu-sunrise	is	given	in	the	next	section.

For	example,	R.D.	0	is	Makara	20	of	year	–78	S.E.,11	 the	same	month	but	a
day	later	than	the	mean	solar	calendar	(page	158).

The	preceding	function	follows	the	Orissa	rule,	according	to	which	the	solar
month	of	a	given	day	is	determined	by	the	zodiacal	position	of	the	sun	at	sunrise
the	following	morning.	This	 is	 just	one	of	various	critical	 times	that	have	been
used	(see	[12,	pp.	12–13]	and	[3,	p.	282]):

Unlike	for	the	mean	calendar,	determining	the	R.D.	date	now	requires	a	search:

According	to	the	Orissa	rule,	sunrise	of	the	following	morning	is	used.

According	to	the	Tamil	rule,	sunset	of	the	current	day	is	used.

According	to	the	Malayali	rule,	1:12	p.m.	(seasonal	time)	on	the	current
day	is	used.

According	to	some	calendars	from	Madras,	apparent	midnight	of	the	next
night	is	used.

According	to	the	Bengal	rule,	midnight	at	the	start	of	the	day	is	normally
used	unless	the	zodiac	sign	changes	between	11:36	p.m.	and	12:24	a.m.,
in	which	case	various	special	rules	apply.
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(20.21)

(20.22)

where

This	function	begins	its	linear	search	for	the	fixed	date	corresponding	to	the	start
of	the	Hindu	solar	month	from	the	R.D.	date	begin	–	3,	where	the	estimate	begin
is	obtained	by	calculating	the	mean	time	of	entrance	into	the	month’s	(sidereal)
zodiacal	sign.

As	explained	earlier,	 there	are	both	leap	months	and	leap	days	on	 the	 true
Hindu	lunisolar	calendar;	hence,	we	use	quintuples

for	 lunisolar	 dates.	 For	 the	 lunisolar	 year,	 we	 use	 another	 common	 era,	 the
Vikrama,	which	began	in	58	B.C.E.	and	differs	from	the	Kali	Yuga	by	3044	years:

Thus	we	have

where



This	function	uses	the	Hindu	approximations	to	the	true	times	of	new	moons,	the
true	position	of	the	sun	at	new	moon,	and	the	true	phase	of	the	moon	at	sunrise
(critical)	 to	determine	 the	month	and	day.	The	 lunisolar	month	name	and	year
number	are	those	of	 the	solar	month	and	year,	 in	effect	1	solar	month	after	 the
beginning	 (last-new-moon)	 of	 the	 current	 lunar	 month.	 The	 function	 checks
whether	 it	 is	 a	 leap	month	(leap-month),	with	 the	 same	name	as	 the	 following
month	(next-new-moon),	or	a	leap	day	(leap-day)	with	the	same	ordinal	number
as	the	previous	day.	Our	fixed	date	R.D.	0	is	the	fourth	day	of	the	dark	half	(that
is,	lunar	day	19)	of	Māgha	(the	eleventh	month)	in	year	57	V.E.;12	neither	the	day
nor	month	 is	 leap.	 This	 date	 is	 1	month	 later	 than	 on	 the	mean	 calendar	 (see
page	162).

To	invert	the	process	and	derive	the	R.D.	date	from	a	lunar	date,	we	first	find
a	 lower	bound	on	 the	possible	R.D.	 date	 and	 then	 search	 forward	 for	 the	 exact
correspondence.	As	 Jacobi	 [5,	 p.	 409]	 explains:	 “The	 problem	must	 be	 solved
indirectly,	i.e.,we	must	ascertain	approximately	the	day	on	which	the	given	tithi
was	likely	to	end,	and	then	calculate	…	the	tithi	that	really	ends	on	that	day.”
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We	can	convert	to	a	fixed	date	by	means	of	a	search:

where



So	as	not	 to	 take	an	 inordinate	amount	of	 time,	 this	 function	performs	a	 three-
stage	estimate	before	searching.	First	it	uses	mean	solar	months	to	estimate	the
fixed	date	s	of	the	start	of	the	lunar	month.	That	estimate	may	be	a	month	off	in
either	direction	because	a	true	new	moon	might	occur	near	the	start	of	the	true
solar	month.	So	we	first	check	whether	s	is	within	3	(lunar)	days	of	the	start	of
the	 lunar	 month.	 If	 it	 is,	 we	 look	 back	 15	 days	 and	 see	 whether	month	 had
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already	begun,	in	which	case	we	need	to	go	back	a	month	for	large	k	and	forward
a	month	for	small	k,	giving	an	estimate	est	within	 the	correct	month.	After	 the
correct	 month	 is	 determined,	 a	 small	 search	 is	 still	 necessary	 because	 of	 the
variability	in	month	length.	The	search	begins	at	τ	–	1,	where	τ	is	est,	adjusted
for	the	desired	lunar	day	and	taking	the	actual	lunar	day	of	est	into	account.	All
three	estimates	use	an	interval	modulus	(1.24).	Since	the	given	lunar	date	might
have	 been	 expunged,	 the	 search	 ends	 when	 either	 the	 desired	 day	 or	 the
following	one	is	encountered.	An	adjustment	of	one	day	is	made	when	a	second
leap	day	is	sought.

The	Nepalese	calendar	has	the	same	structure	as	the	Hindu	solar	calendar,
each	month	 beginning	 on	 the	 day	when	 the	 sun’s	 sidereal	 longitude	 reaches	 a
multiple	of	30°.	The	determining	location	is	Kathmundu,	and	the	critical	time	of
day	is	midnight	for	most	months	but	is	sunrise	or	sunset	for	two	of	the	months	to
accommodate	traditional	holidays.	The	month	names	are	similar	to	those	of	the
Indian	calendar.

20.3 Sunrise
It	should,	however,	be	remarked	that	if	the	interval	between	true	sunrise	and	the	end	of	a	tithi,	 c.
is	very	small…	the	case	must	be	regarded	as	doubtful;	though	our	calculations	materially	agree
with	those	of	the	Hindus,	still	an	almanac-maker	avails	himself	of	abbreviations	which	in	the	end
may	slightly	influence	the	result.

Hermann	Jacobi:	“The	Computation	of	Hindu	Dates	in
Inscriptions,	&c.,”Epigraphia	Indica	(1892)

It	remains	to	compute	the	actual	 time	of	sunrise	for	any	particular	day.	We	use
the	 standard	 location,	Ujjain,	 a	 city	holy	 to	 the	Hindus	 situated	at	23°9′	north,
75°46′6″	east:
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with

Other	 locales	 employ	 local	 variants	 of	 the	 calendar	 that	 depend	 on	 the
zodiacal	constellation	and	the	lunar	phase	that	are	in	effect	at	true	local	sunrise.
Despite	the	comment	of	van	Wijk	[16,	p.	24],	that	“the	rules	the	Sūrya-Siddhānta
gives	 for	calculating	 the	 time	of	 true	 sunrise	are	exceedingly	complicated,	and
inapplicable	in	practice,”	so	that	no	one	seems	to	bother	with	all	the	corrections
mandated	for	the	calculation	of	local	sunrise,	and	the	inaccuracy	of	the	methods,
we	include	them	here	exactly	as	ordained	by	the	Sūrya-Siddhānta	(see	[18]).

Four	corrections	to	mean	sunrise	(6	a.m.)	are	necessary:
1.			The	latitude	of	the	location	affects	the	time	of	sunrise	by	an	amount	that	also

depends	on	the	season.	This	is	called	the	“ascensional	difference”:

where

This	computation	requires	tropical	longitude,	which	is	affected	by	precession
of	the	equinoxes.	The	value	given	in	the	Sūrya-Siddhānta	for	the	maximum
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precession	is	27°,	and	it	is	said	to	cycle	once	every	7200	years:13

where

2.	 	 	 There	 is	 a	 small	 difference	 between	 the	 length	 of	 the	 sidereal	 day	 (one
rotation	of	the	Earth)	and	the	solar	day	(from	midnight	 to	midnight),	which
amounts	to	almost	a	minute	in	a	quarter	of	a	day	(see	page	218).	The	function

comprises	a	factor	that	depends	on	the	solar	anomaly	for	the	varying	speed	of
the	sun	along	the	ecliptic:

where



(20.31)

as	well	as	a	tabulated	factor	that	depends	on	the	distance	of	the	sun	from	the
celestial	equator:

where

3.	 	 	 The	 equation	 of	 time	 gives	 the	 difference	 between	 local	 and	 apparent
midnight	 caused	 by	 the	 uneven	 (apparent)	 motion	 of	 the	 sun	 through	 the
seasons	(see	page	215).	The	Sūrya-Siddhānta	uses	the	following	very	rough
approximation:
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(20.32)
where

4.			For	locations	other	than	Ujjain,	the	difference	in	longitude	affects	the	local
time	 of	 astronomical	 events	 by	 4	 minutes	 for	 every	 degree	 of	 longitude.
Compare	our	zone-from-longitude	(page	208).

Putting	the	preceding	corrections	together,	we	have

The	 factor	 	 converts	 a	 sidereal	 hour
angle	to	solar	time.	The	definition	of	hindu-location	must	be	changed	to	obtain
the	time	of	sunrise	at	other	locations.



(20.34)
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20.4 Alternatives
The	months	of	the	Hindus	are	lunar,	their	years	are	solar;	therefore	their	new	year’s	day	must	in
each	solar	year	fall	by	so	much	earlier	as	the	lunar	year	is	shorter	than	the	solar	…	If	this
precession	makes	up	one	complete	month,	they	act	in	the	same	way	as	the	Jews,	who	make	the
year	a	leap	year	of	thirteen	months…	and	in	a	similar	way	to	the	heathen	Arabs.

Abū-Raiḥān	Muḥammad	ibn	’Aḥmad	al-Bīrūnī:	India	(circa	1030)

As	 mentioned	 above,	 the	 formulas	 we	 gave	 in	 Section	 	 20.2	 for	 the	 solar
calendar	are	predicated	on	the	Orissa	rule.	For	the	Tamil	rule,	we	would	need	to
use	the	function

defined	analogously	 to	hindu-sunrise,	 in	 the	definition	critical	 in	 (20.20).	 For
the	Malayali	rule,	we	first	define

where
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which	 is	 analogous	 to	 standard-from-sundial	 (14.91),	 to	 determine	 the
temporal	time,	and	then	use

For	Madras,	the	rule	would	be

The	Bengal	rule	is	more	complicated.
To	implement	the	full-moon-to-full-moon	version	of	the	lunisolar	calendar,

we	need	only	change	the	month	number	during	the	second	half	of	each	nonleap
month	to	that	of	the	following	month	in	the	new-moon-to-new-moon	scheme:

where
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In	the	other	direction,	we	have

where

This	uses	a	simple	test	for	expunged	months:

which	converts	the	date	back	and	forth.
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Though	 it	 is	generally	agreed	 that	one	should	follow	the	rules	dictated	by
the	Sūrya-Siddhānta	 for	 calculating	 lunar	 days,	 for	 sunrise	 it	 seems	 that	most
calendars	use	tabulated	times,	not	the	approximate	values	obtained	by	following
the	 strictures	 of	 the	 Sūrya-Siddhānta,	 which	 can	 be	 off	 by	 more	 than	 16
minutes.14	Thus,	one	would	get	better	agreement	with	published	Hindu	calendars
by	incorporating	modern	computations	of	local	sunrise	in	place	of	those	we	gave
in	 the	 previous	 section.	 To	 use	 astronomical	 sunrise	 at	 the	 Hindu	 “prime
meridian,”	or	elsewhere,	we	would	need	 to	substitute	 the	following	calculation
for	hindu-sunrise:

where

The	 depression	 angle	 is	 47′,	 as	 used	 by	 Lahiri;	 many	 other	 almanac	 makers
prefer	 to	 use	 0′,	 contending	 that	 “geometric”	 sunrise	 is	what	was	 intended	 by
traditional	reckoning.	The	calculated	moment	of	sunrise	is	rounded	to	the	nearest
minute	and	left	as	a	rational	number.

The	 main	 source	 of	 the	 discrepancy	 in	 sunrise	 time	 is	 the	 very	 rough
traditional	 approximation	 for	 the	 equation	 of	 time;	 see	 Figure	 20.3.	Using	 an
accurate	 equation	 of	 time,	 but	 otherwise	 following	 the	 siddhāntic	 method	 for
sunrise,	gives	close	agreement	with	geometric	sunrise.



Figure	20.3	
The	equation	of	time	in	1000	C.E.	The	astronomical	version	is	shown	as	the	solid
line;	the	traditional	Hindu	version	is	shown	as	the	dashed	line.	The	left-hand
vertical	axis	is	marked	in	minutes	and	the	right-hand	vertical	axis	is	marked	in
fractions	of	a	day.

We	should	also	point	out	that	 the	“infinite”	precision	of	our	algorithms	is,
from	 a	 mathematical	 point	 of	 view,	 specious,	 because	 the	 “true”	 motions	 are
only	 approximations,	 and	 the	 sine	 table	 used	 to	 calculate	 the	 epicyclic
adjustments	is	accurate	to	only	three	decimal	places.	There	is	therefore	nothing



gained	by	our	keeping	the	fractions	obtained	by	interpolation	and	calculation	to
greater	 accuracy	 than	 the	 table	 lookup	 methods	 other	 than	 fidelity	 to	 the
traditional	sources.	Our	formulas,	as	stated,	can	involve	numbers	with	hundreds
of	digits!	For	example,	sunrise	on	July	31,	2000	(Gregorian)	is	calculated	to	be
at	R.D.	moment

which	 is	 5:22:58.45	 a.m.	 (about	 7	 minutes	 before	 the	 actual	 sunrise).	 At	 that
time,	the	phase	of	the	moon	is

which	is	just	shy	of	359°	(whereas	it	is	actually	a	bit	past	new	moon).	Double-
precision	arithmetic	suffices	for	all	practical	purposes.

20.5 Astronomical	Versions
Every	year	a	great	number	of	pañcāṅgs	[almanacs]	is	still	printed	all	over	India,	and	some	are
calculated	entirely	after	the	prescriptions	of	the	Sūrya-Siddhānta	(or	of	another	Siddhānta	or
Karaṇa),	and	some	take	their	astronomical	data	from	the	Greenwich	Nautical	Almanac.	Now
there	is	something	in	favour	of	both	ways,	and	one	who	wishes	to	know	the	exact	moment	of
conjunctions,	 c.,	must	certainly	use	the	second	type.	But	that	which	is	won	on	the	one	side	is	lost
on	the	other:	the	Indians	are	possessors	of	an	old	tradition,	and	they	ought	to	preserve	that	and
glorify	it	…
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Walther	E.	van	Wijk:	“On	Hindu	Chronology	IV:	Decimal	Tables	for
Calculating	the	Exact	Moments	of	Beginning	of	Mean	and	True

Tithis,	Karaṇas,	Nakṣatras	and	Yogas,	According	to	the
Sūrya-Siddhānta;	Together	with	Some	Miscellaneous	Notes	on	the

Subject	of	Hindu	Chronology,”Acta	Orientalia,	vol.	IV	(1926)

Another	alternative	to	the	calculations	we	have	presented	would	be	to	utilize	the
same	 accurate	 astronomical	 functions	 as	 are	 used	 for	 the	 Chinese	 calendar.
Indeed,	some	Indian	calendar	makers	have	replaced	the	traditional	methods	with
such	ephemeris	data,	but	they	are	the	minority.

All	one	needs	to	do	to	obtain	astronomical	Hindu	calendars	is	to	substitute
the	 sidereal-solar-longitude	 (14.40)	 and	 lunar-phase	 (14.56)	 functions	 of
Chapter		14	for	those	based	on	the	Sūrya-Siddhānta.	Calendar	makers	(as	well	as
astrologers)	 typically	 apply	 a	 sidereal	 correction,	 called	 ayanāmsha,	 to	 the
tropical	values	of	modern	astronomical	tables	or	programs:

Different	values	for	this	correction	have	been	proposed;	they	amount	to	choosing
the	moment	at	which	tropical	and	sidereal	values	coincided,	such	as

The	 function	mesha-samkranti	 (page	 364)	 gives	 the	 time	 of	 the
Hindu	 sidereal	 spring	 equinox	 (see	 Section	 	 20.6),	 and	 hindu-location
(page	351)	is	the	city	of	Ujjain.

The	 difference	 between	 the	 equinoctial	 and	 sidereal	 longitudes	 (the
ayanamsha)	changes	with	time,	as	a	direct	consequence	of	the	precession	of	the
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equinoxes.	It	is	uncertain	what	the	zero	point	of	Indian	sidereal	longitude	is,	but
it	is	customary	to	say	that	the	two	measurements	coincided	circa	285	C.E.,	the	so-
called	 “Lahiri	 ayanamsha.”	 The	 average	 difference	 between	 this	 sidereal
longitude	 and	 the	 astronomical	 value	was	2°3′	 during	1000–1002	C.E.;	 see	 [4].
Others	(for	example	[15,	sec.	18])	suggest	that	the	two	measurements	coincided
around	560	C.E.		Either	way,	the	overestimate	of	the	length	of	the	mean	sidereal
year	 used	 by	 the	 siddhantas	 leads	 to	 a	 slowly	 growing	 discrepancy	 in	 the
calculation	of	solar	 longitude.	 (The	 length	of	 the	sidereal	year	 is	 increasing	by
about	10−4	seconds	per	year.)

The	 discrepancy	 in	 the	 solar	 calendar	 grows	 noticeably	 with	 time,	 on
account	of	the	inaccuracy	in	the	traditional	value	of	the	sidereal	year.	On	the	one
hand,	the	difference	in	the	lunisolar	calendar	can	be	on	the	order	of	a	month—
when	 a	 new	moon	 occurs	 close	 to	 the	 border	 between	 zodiacal	 signs.	 On	 the
other	hand,	neither	 the	interpolated	stepped	sine	function	used	traditionally	nor
the	 fluctuating	 epicycle	 of	 Indian	 theory	makes	 a	 noticeable	 difference	 for	 the
sun.	In	other	words,	the	tabular	sine	and	arcsine	functions	(see	Table		20.3)	are
precise	 enough	 for	 the	 purpose,	 while	 the	 theory	 of	 changing	 epicycles	 (see
Figure	20.2)	is	unnecessary	for	the	sun.	See	[4].

For	 the	solar	calendar,	suppose	 that	we	wish	 to	 implement	 the	Tamil	 rule,
for	which	the	critical	moment	for	measuring	the	sun’s	sidereal	longitude	is	local
sunset,	and	suppose	we	use	geometric	sunset,	as	is	often	done.	We	have

Then,	we	have	the	following	set	of	functions:
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where

where

For	the	lunar	calendar,	we	need
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(20.49)

The	conversions	are	analogous	to	the	nonastronomical	versions:

where

In	the	other	direction,	we	have

where



Though	 the	 mean	 time	 of	 the	 tithis	 differs	 only	 slightly	 between	 the
traditional	 and	 astronomical	 calculations,	 the	 margin	 of	 error	 can	 be	 several
hours;	see	Figure	20.4.	Hence,	the	astronomical	dates	often	differ	by	a	day	from
the	 traditionally	 calculated	 ones	 for	 dates	 near	 the	 present.	 See	 Appendix	 	 C
(page	451).	Like	for	the	solar	calendar,	varying	the	size	of	the	epicycle	does	not
have	a	noticeable	effect.	Similarly,	the	use	of	the	bija	correction	for	the	length	of
the	anomalistic	months	is	of	no	consequence.	See	[4]	for	more	details.



Figure	20.4	
Tithi	time	differences,	1000–1001	C.E.,	in	hours.

20.6 Holidays
In	what	manner	the	Hindus	contrive	so	far	to	reconcile	the	lunar	and	solar	years,	as	to	make	them
proceed	concurrently	in	their	ephemerides,	might	easily	have	been	shown	by	exhibiting	a	version
of	their	Nadíyu	or	Varánes	almanack;	but	their	modes	of	intercalation	form	no	part	of	my	present
subject,	and	would	injure	the	simplicity	of	my	work,	without	throwing	any	light	on	the	religion	of
the	Hindus.

Sir	William	Jones:	“Asiatick	Researches,”Transactions	of	the
Bengal	Society	(1801)

As	with	 the	 Hindu	 calendars,	 so	 too	 with	 the	 holidays:	 there	 is	 a	 plethora	 of
regional	holidays	and	local	variants	of	widespread	holidays.	The	most	complete
reference	 in	 English	 is	 [14],	 but	 sufficient	 details	 to	 handle	 exceptional
circumstances	 (leap	 months,	 skipped	 months,	 leap	 days,	 omitted	 days,	 and
borderline	cases)	are	lacking.
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Certain	 hours,	 days,	 and	 months	 are	 more	 auspicious	 than	 others.	 For
example,	Wednesday	 and	 Saturday	 are	 “unlucky”	 days,	 as	 is	 the	 dark	 half	 of
each	 month.	 Leap	 months	 and	 civil	 days	 containing	 lost	 lunar	 days	 are
considered	inauspicious.	Astronomical	events,	such	as	actual	or	computed	solar
and	lunar	eclipses	and	planetary	conjunctions,	are	usually	auspicious.

The	chief	solar	festivals	are	solar	New	Year	(Sowramana	Ugadi),	which	is
the	 day	 following	 the	 Hindu	 vernal	 equinox,	 and	 Ayyappa	 Jyothi	 Darshanam
(Pongal)	on	Makara	1	and	on	the	preceding	day,	celebrating	the	winter	solstice.
Solar	New	Year	 in	Gregorian	year	y	 is	always	(for	many	millennia,	at	 least)	 in
year	y	−	78	S.E.,	and	the	winter	solstice	of	Gregorian	year	yoccurs	in	year	y	−	79
S.E.;	thus,	the	computation	of	the	corresponding	R.D.	dates	is	straightforward.

The	 precise	 times	 of	 solar	 and	 lunar	 events	 are	 usually	 included	 in
published	Indian	calendars.	The	fixed	moment	of	entry	of	the	sun	into	a	Hindu
zodiacal	sign,	called	the	saṃkrānti,	can	be	computed	as

where

This	 is	 simply	 a	 binary	 search,	 using	 (1.36),	 for	 the	 moment	 when	 the	 true
(sidereal)	solar	longitude	is	φ.	Mesha	saṃkrĀnti,	in	Gregorian	year	g-year,	when
the	longitude	of	the	sun	is	0	by	Hindu	reckoning,	is	then
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where

This	function	gives	the	R.D.	moment

as	 the	 time	 of	Mesha	 saṃkrānti	 in	 the	Gregorian	 year	 2000,	which	 is	 5:55:58
p.m.	on	April	13.

Most	 Indian	 holidays,	 however,	 depend	 on	 the	 lunar	 date.	 Festivals	 are
usually	celebrated	on	 the	day	when	a	 specified	 lunar	day	 is	 current	 at	 sunrise;
other	events	may	depend	on	the	phase	of	the	moon	at	noon,	sunset,	or	midnight.
Some	lunar	holidays	require	that	the	specified	lunar	day	be	current	at	noon	rather
than	at	sunrise.	Sometimes,	if	the	lunar	day	in	question	begins	at	least	1/15	of	a
day	 before	 sunset	 of	 one	 day	 and	 ends	 before	 sunset	 of	 the	 next,	 the
corresponding	holiday	is	celebrated	on	the	first	day	[8,	sec.	113].	For	example,
Nāga	Panchamī	(a	day	of	snake	worship)	 is	normally	celebrated	on	Śrāvaṇa,	5
but	is	advanced	by	1	day	if	lunar	day	5	begins	in	the	first	1.2	temporal	hours	of
day	4	and	ends	within	the	first	tenth	of	day	5.	Technically,	such	determinations
require	 the	computation	of	 the	 time	of	sunset	 in	a	manner	analogous	 to	 that	of
sunrise.

The	 search	 for	 the	 new	moon,	 given	 as	hindu-new-moon	 (page	 346),	 is
halted	once	 the	position	of	 the	moon	 (and	 sun)	 at	 the	 time	of	 conjunction	has
been	narrowed	to	a	particular	constellation	on	the	zodiac.	When	greater	accuracy
is	needed,	and	 for	 the	arbitrary	phases	needed	for	holiday	calculations,	we	use
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the	 following	 function—the	 inverse	 of	 equation	 (20.15)—which	 gives	 the
moment	at	which	the	kth	lunar	day	occurred	after	moment	t:

where

The	value	of	τ	is	the	most	recent	mean	moment	when	k	–	1	thirtieths	of	a	lunar
month	have	elapsed.	For	the	time	of	new	moon,	k	should	be	1;	k	–	1	should	be	16
for	the	time	of	full	moon.

The	 beginning	 of	 the	 lunisolar	 New	 Year	 (Chandramana	 Ugadi),	 usually
Caitra	 1,	 is	 the	 day	 of	 the	 first	 sunrise	 after	 the	 new	moon	 preceding	Mesha
saṃkrānti,	or	the	prior	new	moon	in	the	case	when	the	first	month	of	the	lunar
year	is	leap:

where



If	the	first	lunar	day	of	the	New	Year	is	wholly	contained	in	the	interval	between
one	sunrise	and	the	next,	 then	this	function	returns	the	fixed	date	on	which	the
new	 moon	 occurs,	 which	 is	 also	 the	 last	 day	 of	 the	 previous	 lunisolar	 year,
Phālguna	30.15

The	 major	 Hindu	 lunar	 holidays	 include	 the	 Birthday	 of	 Rāma	 (Rāma
Navamī),	 celebrated	 on	 Caitra	 9;	 Varalakshmi	 Vratam	 on	 the	 Friday	 prior	 to
Śrāvaṇa	 15;	 the	 Birthday	 of	 Krishna	 (Janmāshṭamī)	 on	 Śrāvaṇa	 23;	 Ganēśa
Chaturthī,	held	on	Bhādrapada	4;16	Durgā	Ashtami	on	Āśvina	8;	Sarasvatī	Puja
on	Āśvina	9,	when	books	are	worshipped	in	honor	of	the	goddess	of	eloquence
and	 arts,	 Sarasvatī;	 Dasra	 on	 Āśvina	 10;	 Diwali,	 a	 major	 autumn	 festival
celebrated	 over	 the	 period	Āśvina	 29–Kārtika	 1	 (Kārtika	 1	 is	 the	main	 day	 of
festivity	 and	 marks	 the	 beginning	 of	 the	 year	 in	 some	 regions);	 the	 festival
Karthikai	 Deepam	 on	 Kārtika	 15;	 the	 main	 festival	 of	 the	 year,	 Vaikunta
Ekadashi	on	Mārgaśīrṣa	11,	honoring	Vishnu;	Maha	Shivaratri,	 the	Great	Night
of	Shiva,	celebrated	on	the	day	that	lunar	day	Māgha	29	is	current	at	midnight,
and	preceded	by	a	day	of	fasting	by	devotees	of	Shiva;	and	the	spring	festival,
Holi,	 which	 takes	 place	 in	 the	 evening	 of	 lunar	 day	 Phālguna	 15.	 Buddha’s
Birthday	is	celebrated	on	the	fifteenth	of	Vaiśākha,	but	the	exact	date	depends	on
which	lunar	calendar	is	followed.

In	general,	holidays	are	not	held	in	leap	months.	When	a	month	is	skipped,
its	holidays	are	usually	celebrated	in	the	following	month.	Festivals	are	generally
celebrated	on	the	first	of	two	days	with	the	same	lunar	day	number;	if	a	day	is
expunged,	the	festival	takes	place	on	the	civil	day	containing	that	lunar	day.



(20.55)

(20.54)

We	 will	 need	 to	 compare	 the	 five	 components	 of	 lunar	 dates
lexicographically:

Taking	 into	 account	 the	 fact	 that	 fixed-from-hindu-lunar
returns	the	day	following	an	expunged	day	and	a	date	in	the	month	following	an
expunged	month,	we	can	compute	the	day	on	which	an	event	is	celebrated	in	this
way:

where



(20.56)

(20.57)

We	use	this	to	write

where

Now,	 to	 compute	 the	main	 day	 of	Diwali,	 normally	Kārtika	 1	 in	 a	 given
Gregorian	year,	we	have

As	mentioned	above,	many	holidays	depend	on	the	precise	time	of	a	lunar
event.	For	 such	 events	we	 first	 approximate	 the	 date,	 using	hindu-date-occur
below,	and	then	search	for	when	the	event	occurs	at	the	proper	time	of	day:



(20.58)

(20.59)

(20.60)

(20.61)

where

To	search	for	the	time	of	occurrence	of	the	event,	we	use

where

If	the	event	occurs	after	the	specified	time	but	the	relevant	lunar	day	is	no	longer
current	at	the	critical	time	the	following	day,	then	the	former	day	is	chosen.	With
hindu-lunar-event,	we	can	determine	the	dates	of	the	Great	Night	of	Shiva	and
the	Birthday	of	Rāma,	as	follows:



(20.62)

(20.63)

For	some	holidays	(and	in	some	regions),	the	location	of	the	moon	may	be
more	important	than	the	lunar	date.	A	lunar	station,	called	nakṣatra,	is	associated
with	each	civil	day	and	is	determined	by	the	(sidereal)	longitude	of	the	moon	at
sunrise:

where

The	names	of	the	27	stations	are	given	in	Table		20.1.
The	 function	hindu-lunar-day-at-or-after	 can	 also	 be	 used	 to	 determine

the	 time	 of	 onset	 of	 karaṇas,	 which	 are	 each	 a	 lunar	 half-day	 in	 duration,	 by
using	fractions	for	k.	The	most	recent	occurrence	of	the	nth	karaṇa	( ),
prior	to	day	d,	begins	(very	close	to)	hindu-lunar-day-at-or-after	( ).
The	names	of	the	karaṇas	and	their	repeating	pattern	are	shown	in	Table		20.5;
the	following	function	gives	the	column	number	of	the	nth	karaṇa:

Table	20.5	The	cycle	of	60	karaṇas	(lunar	half-days).	The	number	and	name	for
each	half-day	are	given	to	the	left	of	each	row.	Four	special	names	apply	at	the
beginning	and	end	of	a	month;	the	other	seven	names	repeat	regularly	during
mid-month.	The	function	karana	returns	the	number	in	the	leftmost	column.





A	yoga	(meaning	“addition”)	is	the	varying	period	of	time	during	which	the
solar	and	lunar	longitudes	increase	by	a	total	of	800	arc	minutes	(13°20′).	A	full
circle	 contains	 27	 segments	 of	 800′,	 corresponding	 to	 the	 27	 yogas	 given	 in
Table		20.6.	Because	a	full	revolution	of	the	sun	or	moon	has	no	net	effect	on	the
yogas,	 we	 need	 only	 consider	 their	 longitudes,	 counted	 in	 increments	 of	 800′
modulo	27:

Table	20.6	The	cycle	of	27	yogas	corresponding	to	segments	of	800′	of	arc.

(1)	Viṣkambha

(2)	Prīti

(3)	Ayuṣmān

(4)	Saubhāgya

(5)	Śobhana

(6)	Atigaṇḍa

(7)	Sukarman

(8)	Dhṛti

(9)	Śūla

(10)	Gaṇḍa

(11)	Vṛddhi

(12)	Dhruva

(13)	Vyāghāta

(14)	Harṣaṇa
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(15)	Vajra

(16)	Siddhi

(17)	Vyatīpāta

(18)	Varīyas

(19)	Parigha

(20)	Śiva

(21)	Siddha

(22)	Sādhya

(23)Śubha

(24)Śukla

(25)	Brahman

(26)	Indra

(27)	Vaidhṛti

Inverting	 this	 function	 to	 determine	 the	 time	 of	 the	 last	 occurrence	 of	 a
given	yoga	is	similar	to	hindu-lunar-day-at-or-after.
Certain	 other	 conjunctions	 of	 calendrical	 and	 astronomical	 events	 are	 also
termed	yogas.



(20.65)

(20.66)

There	are	numerous	days	of	lesser	importance	that	depend	on	the	lunisolar
calendar.	 Certain	 combinations	 of	 events	 are	 also	 significant.	 As	 a	 relatively
insignificant	 example,	 whenever	 lunar	 day	 8	 falls	 on	 Wednesday,	 the	 day	 is
sacred:

This	 uses	 the	 following	 function,	 parallel	 to	 (2.44),	 to	 collect	 all	 such
Wednesdays	within	a	range	of	fixed	dates:

where

There	 are	 various	 auspicious	 and	 inauspicious	 days	 that	 depend	 on	 the
positions	of	the	planets.	All	of	these	can	be	calculated	in	much	the	same	way	as
that	of	the	moon	but	with	an	additional	epicyclic	motion;	see	[9].

The	panchang	 is	 the	 traditional	 five-part	 Hindu	 calendar	 comprising	 for
each	civil	day	its	lunar	day	(tithi),	day	of	the	week,	nakṣatra	(stellar	position	of
the	 moon),	 yoga,	 and	 karaṇa	 (based	 on	 the	 lunar	 phase).	 We	 have	 provided
functions	above	for	each	component.
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1			 	 	 	 	 	 	 	 	 	 	 	 	
2			Not	2163102	B.C.E.,	as	stated	in	[2,	p.	ix],	on	account	of	the	discrepancy	between	the	Julian	and

Hindu	average	year	lengths.
3			In	1897,	Sewell	and	Dîkshit	[12]	wrote,	“We	are	led	by	these	peculiarities	to	suppose	that	there	will

be	no	suppressed	month	till	at	earliest	A.D.	1944,	and	possibly	not	till	A.D.	1963.”	Pillai’s	[8]	reaction	was
that	“there	is	no	reason	why	this	matter	should	be	treated	as	one	for	conjecture,	since	anybody	familiar	with
the	present	method	can	calculate	that	the	next	Kshaya	month	will	be	in	A.D.	1963.”

4			From	1300	until	1980	(Gregorian),	only	Mārgaśīrṣa	(in	the	years	beginning	in	1315,	1380,	1521),
Pauṣa	(1334,	1399,	1540,	1681,	1822,	1963),	and	Māgha	(1418,	1475)	have	been	skipped.	The	omission	of
Māgha	(and	the	concomitant	intercalation	of	Phālguna)	in	1418	is	not	listed	in	[12]	(only	4	minutes	separate
the	start	of	the	solar	and	lunar	months).	Also,	according	to	our	calculations	Māgha	should	have	been
omitted	in	5083	K.Y.	This	is	a	close	call,	for	the	sun	entered	Māgha	on	February	13,	1983	(Gregorian)	at
4:10:18	a.m.,	and	the	new	moon	occurred	half	an	hour	later	at	4:43:56.	The	prior	new	moon	was	on	January
14	at	9:03:53	a.m.,	which	was	before	the	sun	entered	Makara	at	5:26:14	p.m.;	Āśvina	and	Phālguna	were
leap.

5			Elliptical	motion	is	indeed	exactly	characterized	by	one	retrograde	epicycle,	on	which	the	motion	is
in	the	opposite	direction	to	the	motion	along	the	deferent	and	the	period	is	double	(see	Figure		20.2);	the
distinction	between	elliptical	motion	and	epicyclical	motion	is	conceptual.	Kepler’s	second	law	of	1609



explains	that	the	motion	is	not	uniform.	Ptolemaic	astronomy	also	included	eccentric	orbits	to	account	for
the	off-center	position	of	Earth	and	equants	to	model	the	uneven	speeds.

6			A	radius	of	3438	and	a	quadrant	comprising	5400	minutes	imply	a	value	of	 	for	π.
A	recurrence	is	given	in	the	Sūrya-Siddhānta	for	producing	the	data	in	this	table	of	sines,	namely

where	 .	The	table	given	in	Sūrya-Siddhānta,	however,	is	more	accurate	than	this	formula	and,	as
seen	in	Table		20.3,	 is	 correct	 except	 for	 erratic	 rounding.	The	 recurrence	would	 be	 quite	 accurate	with	

	instead	of	1/225.	See	Burgess’s	comments	in	[2,	p.	335].
7			The	stepped	sign	function	is	not	detrimental	to	the	overall	accuracy	of	the	Hindu	calendar.	See	[4].
8			Whereas	we	compute	the	anomaly	from	creation,	traditionally	one	precomputes	the	position	of

perihelion	at	some	base	date,	and	the	time	between	true	and	mean	New	Year	for	that	base,	called	sodhya,
because	the	solar	anomaly	changes	very	slowly.	“The	difference	in	the	sun’s	equation	of	the	centre	and	true
longitude,	caused	by	the	shift	of	the	apsin,	is	exceedingly	small	and	may	well	be	ignored”	[11,	p.	55].

9			The	fluctuating	epicycle	does	not	improve	the	accuracy	of	the	Hindu	calendar.	See	[4].
10			The	value	 	should	be	replaced	by	a	very	small,	but	representable,	positive	real	number

when	used	in	a	programming	environment	that	does	not	support	arbitrary-precision	rational	arithmetic.
11			Śaka	(Scythian)	Era	(expired).
12			Vikrama	Era	(expired).
13			The	correct	value	is	about	26000	years	with	no	maximum;	see	page	219.	It	was	a	common	pre-

Newtonian	misconception,	called	“trepidation,”	that	the	precession	cycles	in	this	way.
14			P.	S.	Purewal	[10]:	“Most	Indian	almanac	editors	give	and	advocate	the	use	of	[the]	centre	of	[the]

solar	disk	for	sunrise	without	refraction.”
15			The	results	obtained	with	our	functions	are	in	complete	agreement	with	Sewell’s	and	Dîkshit’s

tables	[12]	for	the	added	and	expunged	months	from	1500	to	1900.	Furthermore,	our	functions	are	in
agreement	with	the	calculations	in	[8,	pp.	97–101]	for	the	earlier	disputed	years	considered	there.	They	also
agree	on	the	date	of	the	lunisolar	New	Years	in	the	period	1500–1900,	except	for	spring	1600,	when	the	first
new	moon	of	1657	V.E.	occurred	on	March	5,	1600	C.E.	(Julian)	after	sunrise	but	the	second	lunar	day
began	at	6:07	a.m.	on	March	6.	Reckoning	with	mean	sunrise,	as	in	[12,	p.	lxxxii],	March	6	is	the	first	day
of	the	New	Year	because	at	6	a.m.	that	day	the	new	moon	was	still	in	its	first	tithi.	However,	at	the	true	time
of	sunrise,	6:13	according	to	the	Sūrya-Siddhānta,	or	6:08	using	our	astronomical	code,	lunar	day	1	had
already	ended	and,	therefore,	the	New	Year	is	considered	to	have	started	on	the	previous	day.

16			According	to	[7],	the	precise	rule	is	that	Ganēśa	Chaturthī	is	celebrated	on	the	day	in	which	lunar
day	4	is	current	in	whole	or	in	part	during	the	midday	period	that	extends	from	1.2	temporal	hours	before
noon	until	1.2	temporal	hours	after	noon.	If,	however,	that	lunar	day	is	current	during	midday	on	2



consecutive	days,	or	if	it	extends	from	after	midday	on	one	day	until	before	midday	of	the	next,	then	it	is
celebrated	on	the	former	day.

	



Hand-carved	wall	hanging	from	Nepal	with	a	“Blessing	Buddha”	central	image
surrounded	by	the	twelve	animal	totems	of	the	Tibetan	calendar.	(Collection	of
E.M.R.)
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The	Tibetan	Calendar1

◈

The	Tibetan	system	of	astronomy	and	astrology	is	extremely	complex.	It	takes	five	years	to	study
and	master	it	at	the	Astro	Division	of	the	Tibetan	Medical	and	Astro	Institute	in	Dharamsala,
India.	Students	learn	to	calculate	everything	by	hand	in	the	traditional	manner,	on	a	wooden
board	covered	with	soot	upon	which	one	writes	with	a	stylus.	There	is	no	complete	ephemeris
compiled	in	which	to	look	up	figures.	One	of	the	main	aspects	of	the	training	is	the	mathematics
involved	in	all	the	calculations.

Alexander	Berzin	(1986)2

21.1 Calendar
Brown’s	tables	fill	650	quarto	pages,	and	even	with	the	tables	a	man	working	full	time	could
extract	the	data	just	fast	enough	to	keep	up	with	the	moon.	The	advent	of	the	electronic	calculator
made	feasible	the	direct	evaluation	of	the	formulas	and…	improved	accuracy.

Wallace	J.	Eckert:	Encyclopædia	Britannica	(1964)

Several	 calendars	 are	 in	 use	 in	 Tibet.	 In	 this	 chapter	 we	 discuss	 the	 official
Phuglugs	(or	Phug-pa	or	Phukluk)	version	of	the	Kālacakra	(“Wheel	of	Time”)
calendar,	 derived	 from	 the	Kālacakra	 Tantra,	 translated	 into	 Tibetan	 from	 the
Sanskrit	 in	 the	 eleventh	 century,	 used	 by	 the	 majority	 of	 Tibetans	 today,	 and
sanctioned	by	the	Dalai	Lama.	 (The	other	widely	used	version	 is	 the	Tsurphu.)
The	calendar	is	similar	to	the	Hindu	lunisolar	calendars,	somewhere	between	the
arithmetic	simplicity	of	the	old	Hindu	version,	and	the	astronomical	complexity



of	 the	modern	Hindu.	 There	 are	 also	 regional	 variants,	 because	 the	 calculated

astronomical	 events	 are	 in	 terms	 of	 local	 time.	 The	 Bhutan,	 Mongolian,	 and
Sherpa	calendars	are	very	similar.

Months	are	lunar;	their	length	is	based	on	an	approximation	to	the	varying
length	of	 the	 true	synodic	month,	and	can	be	29	or	30	civil	days	 long.	Months
are	 numbered	 consecutively,	 except	 for	 leap	 months,	 which	 precede	 their
ordinary	 counterparts,	 as	 on	 the	 Hindu	 lunisolar	 calendar,	 and	 are	 named	 and
numbered	the	same.	The	month	names	in	Tibetan	are:

(1)	dbo (7)	khrums

(2)	nag	pa (8)	tha	skar

(3)	sa	ga (9)	smin	drug

(4)	snron (10)	mgo

(5)	chu	stod (11)	rgyal

(6)	gro	bzhin (12)	mchu

Weekdays	are	named	in	Tibetan	as	follows:

Sunday gza’	nyi	ma

Monday gza’	zla	ba

Tuesday gza’	mig	dmar

Wednesday gza’	lhag	pa

Thursday gza’	phur	bu

Friday gza’	pa	sangs



(21.1)

Saturday gza’	spen	pa

There	 are	 several	 conventions	 for	 naming	 years.	 The	most	 common	 is	 to
use	 a	 60-year	 cycle,	 naming	 them	 either	 like	 the	 Hindu	 Jovian	 years
(Section	 	 10.1),	 or	 using	 simultaneous	 12-totem	 and	 5-element	 cycles,	 in	 the
fashion	 of	 the	 Chinese	 calendar	 (Section	 	 19.4).	 The	 5	 elements,	 and	 their
associated	colors,	are:

The	12	animal	totems	are:

The	two	cycles	run	in	parallel,	except	that	each	element	applies	twice	in	a	row,
once	“male”	and	once	“female.”

The	 sexagesimal	 cycles	 are	 counted	 starting	 from	 1027	 C.E.,	 but	 the
sexagesimal	names	 are	often	 coordinated	with	 the	Chinese.3	However,	we	 just
number	years,	as	 in	some	variants,	and	choose	as	epoch	 the	 traditional	year	of
ascension	of	the	first	Yarlung	King,	Nyatri	Tsenpo:



(21.2)

Historically,	many	other	variants	have	been	used,	posing	similar	problems	to	the
historian	as	do	Hindu	dates.

Years	follow	a	regular	mean	pattern,	with	24	out	of	65	years	having	a	leap
month.	The	year	begins	in	late	winter	or	early	spring.	Any	month	of	the	year	can
be	 leap,	with	 leap	months	occurring	at	alternating	 fixed	 intervals	of	33	and	34
months.	 Like	 the	 modern	 Hindu	 lunisolar	 calendar,	 there	 are	 also	 leap	 and
expunged	 “lunar”	 days;	 unlike	 the	 modern	 Hindu	 calendar,	 but	 like	 most
lunisolar	calendars,	there	are	no	expunged	months.	So	a	date	is	a	quintuple

The	“true”	time	of	solar	and	lunar	events	is	obtained	from	their	mean	values
by	 adding	 or	 subtracting	 an	 amount	 proportional	 to	 the	 sine	 of	 their	 anomaly.
The	sun’s	anomaly	increases	by	about	0.97°	per	day,	and	the	moon’s	by	12.86°.
(The	moon’s	anomaly	is	measured	from	apogee,	the	point	at	which	it	is	farthest
from	Earth.	In	our	lunar-anomaly	function	(14.52),	it	is	measured	from	perigee;
see	page	234.)	The	mean	year	 length	 is	 	 days;	 the	mean
month	 is	 	 days.	 Though	 traditional	 calendarists	 use	 mixed
radix	 fractions	 in	 their	 calculations,	we	convert	 everything	 to	ordinary	 rational
numbers,	as	we	have	done	for	other	calendars	in	this	book.

The	solar	and	lunar	adjustments	are	computed	by	interpolating	in	tables	for
each	heavenly	body.	The	solar	adjustment	is
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(21.4)

and	for	the	lunar	adjustment	we	have

For	the	solar	equation,	explicit	values	are	given	for	12	points	 in	the	full	circle;
for	the	lunar	equation,	for	28	points.

To	 convert	 from	 a	 Tibetan	 date	 to	 an	 R.D.	 date,	 we	 first	 use	 our	 cycle
formulas	 (1.85)	 to	 determine	 how	 many	 (ordinary	 and	 leap)	 months	 have
elapsed,	 then	use	 that	 information	 to	calculate	how	many	mean	 lunar	days	and
mean	civil	days	have	elapsed,	and,	lastly,	make	the	solar	and	lunar	adjustments:4

where
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For	the	other	direction,	we	simply	estimate	when	the	year	begins,	then	search	for
the	year,	month,	 and	day	 in	 turn,	 adjusting	 them	as	 necessary	 in	 the	 case	 of	 a
leap-month:

where



This	algorithm	relies	on	the	fact	that	fixed-from-tibetan	gives	the	fixed	date	of
the	following	day	when	a	day	is	expunged.	The	efficiency	of	the	search	for	the
month	could	be	improved	by	starting	from	an	underestimate.

21.2 Holidays
What	the	Yoga	or	27	constellations	of	the	zodiac	are	to	the	Indians	also	does	not	seem	obscure	to
me.

Leonhard	Euler:	“On	the	Solar	Astronomical	Year	of	the
Indians,”	from	an	appendix	by	Euler	(translated	by	Kim

Plofker)	to	two	appendices	[by	C.	T.	Walther,	Hebrew	scholar



and	Danish	missionary	in	Tranquebar,	and	T.	S.	Bayer,	Euler’s
friend	and	Imperial	Academy	colleague]	to	a	book	by	T.	S.

Bayer,	Historia	regni	Graecorum	Bactriani	(1738)5

Yogas	 (combined	 motions	 of	 sun	 and	 moon),	 nakṣatras	 (lunar	 stations),	 and
karaṇas	 (lunar	 half-days)	 follow	 the	 same	 patterns	 as	 on	 the	 Hindu	 calendar.
One	version	of	the	27	yoga	names	is	as	follows:

(1) sel	ba (15) rdo	rje

(2) mdza’	ba (16) grub	pa

(3) tshe	dang	ldan	pa (17) shin	tu	lhung

(4) skal	bzang (18) mchog	can

(5) bzang	po (19) yongs	’joms

(6) shin	tu	skrang (20) zhi	ba

(7) las	bzang (21) grub	pa

(8) ’dzin	pa (22) bsgrub	bya

(9) zug	rngu (23) dge	ba

(10) skrang (24) dkar	po

(11) ’phel	ba (25) tshangs	pa

(12) nges	pa (26) dbang	po

(13) kun	’joms (27) khon	’dzin

(14) dga’	ba 	 	

The	28	nakṣatras	are:



(1) tha	skar (15) sa	ri

(2) bra	nye (16) sa	ga

(3) smin	drug (17) lha	mtshams

(4) snar	ma (18) snron

(5) mgo (19) snrubs

(6) lag (20) chu	stod

(7) nabs	so (21) chu	smad

(8) rgyal (22) gro	bzhin

(9) skag (23) byi	bzhin

(10) mchu (24) mon	gre

(11) gre (25) mon	gru

(12) dbo (26) khrums	stod

(13) me	bzhi (27) khrums	smad

(14) nag	pa (28) nam	gru

The	 karaṇa	 names	 follow	 the	 same	 pattern	 as	 those	 of	 the	 Hindu	 calendar
(Table		20.5):

(0) mi	sdug	pa (6) tshong	ba

(1) gdab	pa (7) vishti

(2) byis	pa (8) bkra	shis
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(21.7)

(3) rigs	can (9) rkang	bzhi

(4) til	rdung (10) klu

(5) khyim	skyes 	 	

To	determine	whether	a	month	is	leap,	we	can	check	that	inverting	a	leap-
month	date	gives	the	same	month:

It	is	also	a	simple	matter	to	check	whether	a	given	Tibetan	historical	date	might
actually	be	a	leap	day	with	the	following:

The	 rules	 for	holidays	are	 similar	 to	 those	of	 the	Hindu	calendar.	The	new
year	is	called	Losar;	it	is	the	first	day	of	the	year,	even	when	the	first	month	of
the	year	is	a	leap	month—other	holidays	are	celebrated	only	in	nonleap	months.
The	 leap	 day	 is	 preferred	 for	 day-specific	 Buddhist	 religious	 practices;	 in	 the
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(21.9)

event	 of	 an	 expunged	 day,	 the	 practice	 is	 performed	on	 the	 prior	 day.	Various
days	 of	 the	 month	 may	 be	 auspicious	 or	 inauspicious	 for	 specific	 activities:
especially	inauspicious	is	the	period	from	noon	on	the	sixth	day	of	the	eleventh
month	until	noon	on	the	seventh	day;	the	immediately	following	24-hour	period
is	particularly	auspicious.

We	can	determine	the	fixed	date	of	Losar,	as	follows:

where

Celebration	of	the	new	year	lasts	three	days.	Since	in	the	distant	past	and	future
there	are	Gregorian	years	with	no	occurrence	of	Losar(the	last	was	in	719	C.E.,
long	 before	 this	 calendar	 was	 instituted,	 and	 next	 is	 in	 12698),	 or	 with	 two
occurrences	(as	 in	718	C.E.	 and	12699),	we	need	 to	check	 for	 the	onset	of	 two
Tibetan	years	in	each	Gregorian	year:

where

For	 example,	 according	 to	 this	 function,	 Losar	 was	 on	 March	 3,	 2003
(Gregorian).	In	the	Tsurphu	version,	however,	it	was	on	February	2.

Vesak	or	Vaisakha,	Gautama	Buddha’s	Birthday,	 is	 celebrated	on	different
dates	 on	different	 calendars,	 including:	 the	 seventh,	 eighth,	 or	 fifteenth	 day	of



the	fourth	month	on	the	Tibetan	calendar,	the	fifteenth	of	Vaiśākha	on	the	Hindu
calendar,	the	eighth	day	of	the	fourth	month	on	the	Chinese	calendar,	April	8	on
the	Gregorian	calendar,	or	on	the	full	moon	day	of	May.

The	 whole	 first	 half	 of	 the	 first	 month	 of	 the	 year	 is	 significant,
commemorating	 miracles	 performed	 by	 the	 Buddha.	 Buddha’s	 Enlightenment
(nirvāṇa)	 is	 celebrated	 on	 the	 fifteenth	 day	 of	 the	 fourth	 lunar	 month.	 The
Turning	 of	 the	Wheel	 of	 Dharma	 is	 celebrated	 on	 the	 fourth	 day	 of	 the	 sixth
month;	Buddha’s	Descent	 is	 celebrated	 on	 the	 twenty-second	 day	 of	 the	 ninth
month.
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Chinese	New	Year	greeting	card	by	D.	Bowyer	from	Lawrence	Cheung	Ltd.
Inspired	by	M.	C.	Escher,	the	scroll	shows	rabbits	morphing	into	a	dragon	as	the
year	of	the	rabbit	gives	way	to	the	year	of	the	dragon	on	February	5,	2000.
(Courtesy	of	the	Victoria	&	Albert	Museum,	London.)



Coda

I	hate	quotations.	Tell	me	what	you	know.

Ralph	Waldo	Emerson:	Journal	(May,	1849)

The	following	description	of	the	presentation	of	the	annual	calendar	in	China	is
taken	 from	 Peter	 (Pierre)	 Hoang	 (A	 Notice	 of	 the	 Chinese	 Calendar	 and	 a
Concordance	 with	 the	 European	 Calendar,	 2nd	 edn.,	 Catholic	Mission	 Press,
Shanghai,	1904):

Every	year,	on	the	1st	of	the	2nd	month,	the	Board	of	Mathematics	presents
to	the	Emperor	three	copies	of	the	Annual	Calendar	for	the	following	year,
namely	 in	 Chinese,	 in	 Manchou	 and	 in	 Mongolian.	 Approbation	 being
given,	 it	 is	 engraved	 and	 printed.	 Then	 on	 the	 1st	 of	 the	 4th	month,	 two
printed	 copies	 in	 Chinese	 are	 sent	 to	 the	 Fan-t‘ai	 (Treasurer)	 of	 each
province,	 that	of	Chih	li	excepted;	one	of	which,	stamped	with	the	seal	of
the	 Board	 of	 Mathematics,	 is	 to	 be	 preserved	 in	 the	 archives	 of	 the
Treasury,	while	the	other	is	used	for	engraving	and	printing	for	public	use	in
the	province.

On	 the	 1st	 day	 of	 the	 10th	 month,	 early	 in	 the	 morning,	 the	 Board	 of
Mathematics	 goes	 to	 offer	 Calendars	 to	 the	 Imperial	 court.	 The	 copies
destined	to	the	Emperor	and	Empresses	are	borne	upon	a	sedan-like	stand
painted	 with	 figures	 of	 dragons	 (Lung	 t‘ing),	 those	 for	 the	 Princes,	 the
Ministers	 and	 officers	 of	 the	 court	 being	 carried	 on	 eight	 similar	 stands



decorated	with	 silk	ornaments	 (Ts‘ai-t‘ing).	They	 are	 accompanied	 by	 the

officers	 of	 the	Board	with	 numerous	 attendants	 and	 the	 Imperial	 band	 of
music.	On	arriving	at	the	first	entrance	of	the	palace,	the	Calendars	for	the
Emperor	 are	 placed	 upon	 an	 ornamented	 stand,	 those	 for	 other	 persons
being	put	upon	two	other	stands	on	each	side.	The	copies	for	the	Emperor
and	his	family	are	not	stamped	with	the	seal	of	the	Board	of	Mathematics,
while	 the	others	are.	The	middle	stand	 is	 taken	 into	 the	palace,	where	 the
officers	 of	 the	 Board	 make	 three	 genuflections,	 each	 followed	 by	 three
prostrations,	 after	 which	 the	 Calendars	 are	 handed	 to	 the	 eunuchs	 who
present	 them	 to	 the	Emperor,	 the	Empress-mother,	 the	Empress	 and	other
persons	of	the	seraglio,	two	copies	being	given	to	each,	viz.	one	in	Chinese
and	 one	 in	 Manchou.	 The	 master	 of	 ceremonies	 then	 proceeds	 to	 the
entrance	of	the	palace	where	the	two	other	stands	were	left,	and	where	the
Princes,	the	Ministers	with	the	civil	and	military	mandarins,	both	Manchous
and	 Mongols	 all	 in	 robes	 of	 state	 are	 in	 attendance.	 The	 master	 of
ceremonies	 reads	 the	 Imperial	 decree	 of	 publication	 of	 the	 Calendars,
namely:	 “The	 Emperor	 presents	 you	 all	with	 the	Annual	 Calendar	 of	 the
year,	 and	 promulgates	 it	 throughout	 the	 Empire,”	 which	 proclamation	 is
heard	kneeling.	Then	follow	three	genuflections	and	nine	prostrations,	after
which	all	receive	the	Calendar	on	their	knees,	the	Princes	two	copies,	one	in
Chinese	 and	 one	 in	Manchou,	 the	 ministers	 and	 other	 officers	 only	 one,
each	in	his	own	language.	Lastly	the	Corean	envoy,	who	must	attend	every
year	on	that	day,	is	presented	kneeling	with	one	hundred	Chinese	copies,	to
take	home	with	him.

In	the	provinces,	the	Fan-t‘ai	(Treasurer),	after	getting	some	printed	copies
of	 the	 Calendar	 stamped	 with	 a	 special	 seal,	 also	 on	 the	 1st	 of	 the	 10th
month,	 sends	 them	 on	 a	 sedan-like	 stand	 to	 the	 Viceroy	 or	 Governor,



accompanied	 by	 the	mandarin	 called	Li-wen-t‘ing,	who	 is	 instructed	with
the	printing	of	the	Calendar.	The	Viceroy	or	Governor	receives	them	to	the
sound	of	music	and	of	three	cannon	shots.	The	Calendars	being	set	upon	a
stand	between	two	tapers	in	the	tribunal,	the	Viceroy	or	Governor,	in	robes
of	 state,	 approaches	 the	 stand,	 and	 turning	 towards	 that	 quarter	 where
Peking	 is	 situated,	 makes	 three	 genuflections	 and	 nine	 prostrations,	 after
which	ceremony	he	reverently	receives	the	Calendars.	The	Treasurer	sends
the	Calendar	 to	 all	 the	 civil	 and	military	Mandarins,	 all	 of	whom,	 except
those	of	inferior	degree,	receive	it	with	the	same	forms.	Any	copies	left	are
sold	 to	 the	 people.	 The	 reprinting	 of	 the	 Calendar	 is	 forbidden	 under	 a
penalty	 (except	 in	 Fu-chien	 and	 Kuang-tong	 where	 it	 is	 tolerated).	 If
therefore	any	copy	 is	 found	without	 seal	or	with	a	 false	one,	 its	 author	 is
sought	 after	 and	 punished.	 Falsification	 of	 the	Calendar	 is	 punished	with
death;	whoever	reprints	the	Annual	Calendar	is	liable	to	100	blows	and	two
months	cangue.

Now	that’s	a	society	that	took	calendars	(and	copyrights)	seriously!



Part	III
◈

Appendices

	



Page	from	a	1911	Turkish	calendar.	The	uppermost	portion	gives	the	Islamic
date,	followed	by	dates	in	Arabic	and	Turkish;	below	that	is	the	Gregorian	date
in	Russian;	below	that	on	the	left	is	the	Julian	date	in	Greek	and	the	Gregorian
date	in	French–the	time	of	midday	in	Turkey	is	given	at	the	left-	and	right-hand
edges	and	the	date	of	the	full	moon	is	given	at	the	middle	edges;	below	that	are
entries	giving	the	time	of	sunset	in	Armenian	on	the	left	and	French	on	the	right;
below	that	is	the	Hebrew	date,	with	the	day	of	the	week	given	in	Ladino.



(Courtesy	of	Nicholas	Stavroulakis	and	the	Etz	Hayyim	Synagogue,	Hania,
Crete.)



Appendix	A

Function,	Parameter,	and
Constant	Types

◈

You	must	never	forget	that	programs	will	be	read	by	people	as	well	as	machines.	Write	them
carefully.

George	E.	Forsythe:	Remark	to	Alan	George	(1967)

In	this	appendix	we	list	all	the	types	of	objects	used	in	our	calendar	functions.
The	major	categories	of	objects	are	numbers	and	lists.	The	real	numbers
serve	to	indicate	moments	of	time,	as	well	as	durations	of	time.	Similarly,	an
angle	is	a	subtype	of	real.	Conversely,	real	is	a	supertype	of	angle.	The
integers	are	used	for	fixed	dates,	among	other	purposes.	Dates	on	most
calendars	are	lists	of	numbers;	in	particular,	standard-date	has	three
components:	standard-year,	standard-month,	and	standard-day.	Lists	are
also	used	for	intervals.	One	type	is	often	a	subtype	of	another;	for	example,
the	type	rational	is	a	subtype	of	real,	integer	is	a	subtype	of	rational,
nonnegative-integer	is	a	subtype	of	integer,	and	positive-integer	is	a	subtype
of	nonnegative-integer.
After	 giving	 a	 list	 of	 the	 types	 themselves,	we	 list,	 for	 each	 function,	 the

types	 of	 its	 parameters	 and	 of	 its	 result.	 Then,	 we	 give	 a	 similar	 list	 for	 all
constants.	In	these	latter	two	tables	we	include	the	page	on	which	the	definition
is	 given,	 using	 italic	 page	 numbers	 for	 functions	 needed	 for	 typesetting



purposes,	mostly	constructors	and	selectors,	which	appear	only	in	the	Lisp	code
of	 Appendix	 D.	 (This	 follows	 the	 convention	 used	 for	 page	 numbers	 in	 the
index.)

A.1 Types

Type	name Type	or	range Supertype

akan-name 〈akan-prefix,	akan-stem〉 list-of-nonnegative-integers

akan-prefix 1	.	.	6 positive-integer

akan-stem 1	.	.	7 positive-integer

amplitude [–1	.	.	1] real

angle [0	.	.	360) real

armenian-date 〈armenian-year,	armenian-
month,	armenian-day〉

standard-date

armenian-day 1	.	.	30 positive-integer

armenian-month 1	.	.	13 positive-integer

armenian-year integer 	

auc-year nonzero-integer 	

augury 0	.	.	3 nonnegative-integer

aztec-tonalpohualli-date 〈aztec-tonalpohualli-number,
aztec-tonalpohualli-name〉

list-of-nonnegative-integers

aztec-tonalpohualli-name 1	.	.	20 nonnegative-integer



aztec-tonalpohualli-number 1	.	.	13 nonnegative-integer

aztec-xihuitl-date 〈aztec-xihuitl-month,	aztec-
xihuitl-day〉

list-of-nonnegative-integers

aztec-xihuitl-day 1	.	.	20 nonnegative-integer

aztec-xihuitl-month 1	.	.	19 positive-integer

aztec-xiuhmolpilli-designation 〈aztec-xiuhmolpilli-number,
aztec-xiuhmolpilli-name〉

list-of-nonnegative-integers

aztec-xiuhmolpilli-name {1,	8,	13,	18} positive-integer

aztec-xiuhmolpilli-number 1	.	.	13 positive-integer

babylonian-date 〈babylonian-year,	babylonian-

month,	babylonian-leap,
babylonian-day〉

list

babylonian-day 1	.	.	30 positive-integer

babylonian-leap boolean 	

babylonian-month 1	.	.	12 positive-integer

babylonian-year integer 	

bahai-cycle 1	.	.	19 positive-integer

bahai-date 〈bahai-major,	bahai-cycle,

bahai-year,	bahai-month,
bahai-day〉

list-of-integers

bahai-day 1	.	.	19 positive-integer

bahai-major integer 	



bahai-month 0	.	.	19 nonnegative-integer

bahai-year 1	.	.	19 positive-integer

boolean true,	false 	

century real 	

chinese-branch 1	.	.	12 positive-integer

chinese-cycle integer 	

chinese-date 〈chinese-cycle,	chinese-year,
chinese-month,	chinese-

leap-month,	chinese-day〉

list

chinese-day 1	.	.	31 positive-integer

chinese-leap boolean 	

chinese-month 1	.	.	12 positive-integer

chinese-name 〈chinese-stem,	chinese-branch〉 list-of-nonnegative-integers

chinese-stem 1	.	.	10 positive-integer

chinese-year 1	.	.	60 positive-integer

circle [–180	.	.	180] angle

clock-time 〈hour,	minute,	second〉 list-of-reals

coptic-date 〈coptic-year,	coptic-month,
coptic-day〉

standard-date

coptic-day 1	.	.	31 positive-integer

coptic-month 1	.	.	13 positive-integer



coptic-year integer

day-of-week 0	.	.	6 nonnegative-integer

distance real

duration real

egyptian-date 〈egyptian-year,	egyptian-month,
egyptian-day〉

standard-date

egyptian-day 1	.	.	30 positive-integer

egyptian-month 1	.	.	13 positive-integer

egyptian-year integer 	

ethiopic-date 〈ethiopic-year,	ethiopic-month,
ethiopic-day〉

standard-date

ethiopic-day 1	.	.	31 positive-integer

ethiopic-month 1	.	.	13 positive-integer

ethiopic-year integer 	

fixed-date integer 	

fraction-of-day [–0.5	.	.	0.5] real

french-date 〈french-year,	french-month,
french-day〉

standard-date

french-day 1	.	.	30 positive-integer

french-month 1	.	.	13 positive-integer

french-year integer 	



gregorian-date 〈gregorian-year,	gregorian-

month,	gregorian-day〉
standard-date

gregorian-day 1	.	.	31 positive-integer

gregorian-month 1	.	.	12 positive-integer

gregorian-year integer 	

half-circle [–90	.	.	90] circle

hebrew-date 〈hebrew-year,	hebrew-month,
hebrew-day〉

standard-date

hebrew-day 1	.	.	30 positive-integer

hebrew-month 1	.	.	13 positive-integer

hebrew-year integer 	

hindu-lunar-date 〈hindu-lunar-year,	hindu-lunar-

month,	hindu-lunar-leap-
month,	hindu-lunar-day,
hindu-lunar-leap-day〉

list

hindu-lunar-day 1	.	.	30 positive-integer

hindu-lunar-leap-day boolean 	

hindu-lunar-leap-month boolean 	

hindu-lunar-month 1	.	.	12 positive-integer

hindu-lunar-year integer 	

hindu-solar-date 〈hindu-solar-year,	hindu-solar-

month,	hindu-solar-day〉
standard-date



hindu-solar-day 1	.	.	32 positive-integer

hindu-solar-month 1	.	.	12 positive-integer

hindu-solar-year integer 	

hindu-year integer 	

hour 0	.	.	23 nonnegative-integer

icelandic-date 〈icelandic-year,	icelandic-

season,	icelandic-week,
icelandic-weekday〉

list

icelandic-month 0	.	.	6 nonnegative-integer

icelandic-season season angle

icelandic-week 1	.	.	27 positive-integer

icelandic-weekday day-of-week nonnegative-integer

icelandic-year integer 	

ides 13,15 roman-count

integer 	 rational

interval 〈moment,	moment〉 list-of-moments

islamic-date 〈islamic-year,	islamic-month,
islamic-day〉

standard-date

islamic-day 1	.	.	30 positive-integer

islamic-month 1	.	.	12 positive-integer

islamic-year integer 	



iso-date 〈iso-year,	iso-week,	iso-day〉 list-of-integers

iso-day 1	.	.	7 positive-integer

iso-week 1	.	.	53 positive-integer

iso-year integer 	

julian-date 〈julian-year,	julian-month,
julian-day〉

standard-date

julian-day 1	.	.	31 positive-integer

julian-day-number real 	

julian-month 1	.	.	12 positive-integer

julian-year nonzero-integer 	

list 	 	

list-of-angles 	 list-of-reals

list-of-fixed-dates list-of-integers 	

list-of-integers 	 list

list-of-moments list-of-reals 	

list-of-nonnegative-integers 	 list-of-integers

list-of-pairs 	 list

list-of-reals 	 list

list-of-weekdays 	 list-of-nonnegative-integers

location list



〈angle,	angle,	distance,	fraction-
of-day〉

mayan-baktun integer 	

mayan-haab-date
〈mayan-haab-month,	mayan-

haab-day〉 list-of-nonnegative-integers

mayan-haab-day 0	.	.	19 nonnegative-integer

mayan-haab-month 1	.	.	19 positive-integer

mayan-katun 0	.	.	19 nonnegative-integer

mayan-kin 0	.	.	19 nonnegative-integer

mayan-long-count-date 〈mayan-baktun,	mayan-katun,
mayan-tun,	mayan-uinal,
mayan-kin〉

list-of-integers

mayan-tun 0	.	.	17 nonnegative-integer

mayan-tzolkin-date 〈mayan-tzolkin-number,	mayan-
tzolkin-name〉

list-of-nonnegative-integers

mayan-tzolkin-name 1	.	.	20 nonnegative-integer

mayan-tzolkin-number 1	.	.	13 nonnegative-integer

mayan-uinal 0	.	.	19 nonnegative-integer

minute 0	.	.	59 nonnegative-integer

moment real 	

nakshatra 1	.	.	27 positive-integer



nones 5,	7 roman-count

nonnegative-integer 0,	1,	.	.	. integer

nonzero-integer .	.	.,	–2,	–1,	1,	2,	.	.	. integer

nonzero-real (–∞	.	.	0)	∪	(0	.	.	∞) real

old-hindu-lunar-date 〈old-hindu-lunar-year,	old-
hindu-lunar-month,	old-
hindu-lunar-leap,	old-
hindu-lunar-day〉

list

old-hindu-lunar-day 1	.	.	30 positive-integer

old-hindu-lunar-leap boolean 	

old-hindu-lunar-month 1	.	.	12 positive-integer

old-hindu-lunar-year integer 	

old-hindu-month 1	.	.	12 positive-integer

old-hindu-year integer 	

olympiad 〈olympiad-cycle,	olympiad-year〉 list-of-nonnegative-integers

olympiad-cycle integer 	

olympiad-year 1	.	.	4 positive-integer

omer-count 〈0	.	.	7,	0	.	.	6〉 list-of-nonnegative-integers

part 0	.	.	1079 nonnegative-integer

persian-date 〈persian-year,	persian-month,
persian-day〉

standard-date



persian-day 1	.	.	31 positive-integer

persian-month 1	.	.	12 positive-integer

persian-year nonzero-integer 	

phase [0	.	.	360) angle

positive-integer 1,	2,	.	.	. nonnegative-integer

radian [0	.	.	2π) real

range 〈fixed-date,	fixed-date〉 interval

rational 	 real

rational-amplitude [–1	.	.	1] rational

rational-angle [0	.	.	360) rational

rational-moment rational moment

real (–∞	.	.	∞) 	

roman-count 1	.	.	19 positive-integer

roman-date 〈roman-year,	roman-month,
roman-event,	roman-count,

roman-leap〉

list

roman-event 1	.	.	3 positive-integer

roman-leap boolean 	

roman-month 1	.	.	12 positive-integer

roman-year nonzero-integer 	



season [0	.	.	360) angle

second [0	.	.	60) duration

standard-date 〈standard-year,	standard-month,
standard-day〉

list-of-integers

standard-day 1	.	.	31 positive-integer

standard-month 1	.	.	13 positive-integer

standard-year integer 	

string 	 	

tibetan-date 〈tibetan-year,	tibetan-month,
tibetan-leap-month,	tibetan-

day,	tibetan-leap-day〉

list

tibetan-day 1	.	.	30 positive-integer

tibetan-leap-day boolean 	

tibetan-leap-month boolean 	

tibetan-month 1	.	.	12 positive-integer

tibetan-year integer 	

time [0	.	.	1) duration

A.2 Function	Types

Function Parameter	type(s) Result	type

aberration	(p.	223) moment circle



adda-season-in-
gregorian	(p.	133)

〈season,	gregorian-year,	positive-real〉 list-of-moments

advent	(p.	70) gregorian-year fixed-date

akan-day-name	(p.	38) integer akan-name

akan-day-name-on-or-
before	(p.	38)

〈akan-name,	fixed-date〉 fixed-date

akan-name	(p.	478) 〈akan-prefix,	akan-stem〉 akan-name

akan-name-
difference	(p.	38)

〈akan-name,	akan-name〉 nonnegative-integer

akan-name-from-
fixed	(p.	38)

fixed-date akan-name

akan-prefix	(p.	478) akan-name akan-prefix

akan-stem	(p.	478) akan-name akan-stem

alt-asr	(p.	249) 〈fixed-date,	location〉 moment

alt-birkath-ha-
hama	(p.	132)

gregorian-year list-of-fixed-dates

alt-fixed-from-
egyptian	(p.	31)

egyptian-date fixed-date

alt-fixed-from-
gregorian	(p.	65)

gregorian-date fixed-date

alt-fixed-from-
observational-
hebrew	(p.	299)

hebrew-date fixed-date



alt-fixed-from-
observational-
islamic	(p.	295)

islamic-date fixed-date

alt-gregorian-from-
fixed	(p.	66)

fixed-date gregorian-date

alt-gregorian-year-from-
fixed	(p.	67)

fixed-date gregorian-year

alt-hindu-sunrise	(p.	357) fixed-date rational-moment

alt-observational-hebrew-
from-fixed	(p.	299)

fixed-date hebrew-date

alt-observational-islamic-
from-fixed	(p.	295)

fixed-date islamic-date

alt-orthodox-
easter	(p.	147)

gregorian-year fixed-date

amod	(p.	22) 〈integer,	nonzero-integer〉 integer

angle	(p.	514) 〈nonnegative-integer,	nonnegative-integer,
real〉

angle

angle-from-
degrees	(p.	29)

angle list-of-reals

apparent-from-
local	(p.	217)

〈moment,	location〉 moment

apparent-from-
universal	(p.	218)

〈moment,	location〉 moment

approx-moment-of-
depression	(p.	240)

〈moment,	location,	half-circle,	boolean〉 moment	(or	bogus)



arccos-degrees	(p.	514) amplitude angle

arc-of-light	(p.	250) moment half-circle

arc-of-vision	(p.	251) 〈moment,	location〉 half-circle

arcsin-degrees	(p.	513) amplitude angle

arctan	(p.	205) 〈real,	real〉 angle	(or	bogus)

arctan-degrees	(p.	205) 〈real,	real〉 angle	(or	bogus)

arithmetic-french-from-
fixed	(p.	285)

fixed-date french-date

arithmetic-french-leap-
year?	(p.	285)

french-year boolean

arithmetic-persian-from-
fixed	(p.	263)

fixed-date persian-date

arithmetic-persian-leap-
year?	(p.	262)

persian-year boolean

arithmetic-persian-year-
from-fixed	(p.	263)

fixed-date persian-year

armenian-date	(p.	477) 〈armenian-year,	armenian-month,	armenian-
day〉

armenian-date

armenian-from-
fixed	(p.	31)

fixed-date armenian-date

asr	(p.	249) 〈fixed-date,	location〉 moment

astro-bahai-from-
fixed	(p.	275)

fixed-date bahai-date



astro-bahai-new-year-on-
or-before	(p.	274)

fixed-date fixed-date

astro-hindu-calendar-
year	(p.	360)

moment hindu-solar-year

astro-hindu-lunar-from-
fixed	(p.	361)

fixed-date hindu-lunar-date

astro-hindu-solar-from-
fixed	(p.	360)

fixed-date hindu-solar-date

astro-hindu-
sunset	(p.	360)

fixed-date moment

astro-lunar-day-from-
moment	(p.	361)

moment hindu-lunar-day

astronomical-
easter	(p.	292)

gregorian-year fixed-date

auc-year-from-
julian	(p.	81)

julian-year auc-year

ayanamsha	(p.	359) moment angle

aztec-tonalpohualli-
date	(p.	509)

〈aztec-tonalpohualli-number,	aztec-
tonalpohualli-name〉

aztec-tonalpohualli-
date

aztec-tonalpohualli-from-
fixed	(p.	179)

fixed-date aztec-tonalpohualli-
date

aztec-tonalpohualli-
name	(p.	509)

aztec-tonalpohualli-date aztec-tonalpohualli-
name

aztec-tonalpohualli-
number	(p.	509)

aztec-tonalpohualli-date aztec-tonalpohualli-
number



aztec-tonalpohualli-on-or-
before	(p.	180)

〈aztec-tonalpohualli-date,	fixed-date〉 fixed-date

aztec-tonalpohualli-
ordinal	(p.	179)

aztec-tonalpohualli-date nonnegative-integer

aztec-xihuitl-date	(p.	508) 〈aztec-xihuitl-month,	aztec-xihuitl-day〉 aztec-xihuitl-date

aztec-xihuitl-day	(p.	508) aztec-xihuitl-date aztec-xihuitl-day

aztec-xihuitl-from-
fixed	(p.	178)

fixed-date aztec-xihuitl-date

aztec-xihuitl-
month	(p.	508)

aztec-xihuitl-date aztec-xihuitl-month

aztec-xihuitl-on-or-
before	(p.	179)

〈aztec-xihuitl-date,	fixed-date〉 fixed-date

aztec-xihuitl-
ordinal	(p.	178)

aztec-xihuitl-date nonnegative-integer

aztec-xihuitl-
tonalpohualli-on-or-
before	180

〈aztec-xihuitl-date,	aztec-tonalpohualli-date,
fixed-date〉

fixed-date	(or	bogus)

aztec-xiuhmolpilli-
designation	(p.	509)

〈aztec-tonalpohualli-number,	aztec-
tonalpohualli-name〉

aztec-xiuhmolpilli-
designation

aztec-xiuhmolpilli-from-
fixed	(p.	180)

fixed-date aztec-xiuhmolpilli-

designation	(or
bogus)

aztec-xiuhmolpilli-
name	(p.	509)

aztec-xiuhmolpilli-designation aztec-xiuhmolpilli-name



aztec-xiuhmolpilli-
number	(p.	509)

aztec-xiuhmolpilli-designation
aztec-xiuhmolpilli-

number

babylonian-
criterion	(p.	290)

fixed-date boolean

babylonian-date	(p.	543) 〈babylonian-year,	babylonian-month,
babylonian-leap,	babylonian-day〉

babylonian-date

babylonian-day	(p.	543) babylonian-date babylonian-day

babylonian-leap	(p.	543) babylonian-date babylonian-leap

babylonian-
month	(p.	543)

babylonian-date babylonian-month

babylonian-year	(p.	543) babylonian-date babylonian-year

babylonian-from-
fixed	(p.	291)

fixed-date babylonian-date

babylonian-leap-
year?	(p.	291)

babylonian-year boolean

babylonian-new-month-
on-or-before	(p.	290)

fixed-date fixed-date

bahai-cycle	(p.	538) bahai-date bahai-cycle

bahai-date	(p.	538) 〈bahai-major,	bahai-cycle,	bahai-year,
bahai-month,	bahai-day〉

bahai-date

bahai-day	(p.	538) bahai-date bahai-day

bahai-from-fixed	(p.	272) fixed-date bahai-date

bahai-major	(p.	538) bahai-date bahai-major



bahai-month	(p.	538) bahai-date bahai-month

bahai-new-year	(p.	277) gregorian-year fixed-date

bahai-sunset	(p.	274) fixed-date moment

bahai-year	(p.	538) bahai-date bahai-year

bali-asatawara	(p.	511) balinese-date 1	.	.	8

bali-asatawara-from-
fixed	(p.	188)

fixed-date 1	.	.	8

bali-caturwara	(p.	510) balinese-date 1	.	.	4

bali-caturwara-from-
fixed	(p.	189)

fixed-date 1	.	.	4

bali-dasawara	(p.	511) balinese-date 0	.	.	9

bali-dasawara-from-
fixed	(p.	188)

fixed-date 0	.	.	9

bali-day-from-
fixed	(p.	187)

fixed-date 0	.	.	209

bali-dwiwara	(p.	510) balinese-date 1	.	.	2

bali-dwiwara-from-
fixed	(p.	188)

fixed-date 1	.	.	2

bali-luang	(p.	510) balinese-date boolean

bali-luang-from-
fixed	(p.	188)

fixed-date boolean

balinese-date	(p.	510) 〈boolean,	1	.	.	2,	1	.	.	3,	1	.	.	4,	1	.	.	5,	1	.	.	6,
1	.	.	7,	1	.	.	8,	1	.	.	9,	0	.	.	9〉

balinese-date



bali-on-or-before	(p.	189) 〈balinese-date,	fixed-date〉 fixed-date

bali-pancawara	(p.	510) balinese-date 1	.	.	5

bali-pancawara-from-
fixed	(p.	187)

fixed-date 1	.	.	5

bali-pawukon-from-
fixed	(p.	185)

fixed-date balinese-date

bali-sadwara	(p.	510) balinese-date 1	.	.	6

bali-sadwara-from-
fixed	(p.	187)

fixed-date 1	.	.	6

bali-sangawara	(p.	511) balinese-date 1	.	.	9

bali-sangawara-from-
fixed	(p.	188)

fixed-date 1	.	.	9

bali-saptawara	(p.	510) balinese-date 1	.	.	7

bali-saptawara-from-
fixed	(p.	187)

fixed-date 1	.	.	7

bali-triwara	(p.	510) balinese-date 1	.	.	3

bali-triwara-from-
fixed	(p.	187)

fixed-date 1	.	.	3

bali-week-from-
fixed	(p.	187)

fixed-date 1	.	.	30

bce	(p.	484) standard-year julian-year

begin	(p.	475) interval moment

binary-search	(p.	24) 〈–,	real,	–,	real,	–,	real〉 real



birkath-ha-hama	(p.	131) gregorian-year list-of-fixed-dates

birth-of-the-bab	(p.	278) gregorian-year fixed-date

bruin-best-view	(p.	251) 〈fixed-date,	location〉 moment

ce	(p.	484) standard-year julian-year

chinese-age	(p.	325) 〈chinese-date,	fixed-date〉 nonnegative-integer	(or
bogus)

chinese-branch	(p.	554) chinese-name chinese-branch

chinese-cycle	(p.	549) chinese-date chinese-cycle

chinese-date	(p.	549) 〈chinese-cycle,	chinese-year,	chinese-month,
chinese-leap,	chinese-day〉

chinese-date

chinese-day	(p.	550) chinese-date chinese-day

chinese-day-name	(p.	320) fixed-date chinese-name

chinese-day-name-on-or-
before	(p.	320)

〈chinese-name,	fixed-date〉 fixed-date

chinese-from-
fixed	(p.	317)

fixed-date chinese-date

chinese-leap	(p.	550) chinese-date chinese-leap

chinese-location	(p.	306) moment location

chinese-month	(p.	550) chinese-date chinese-month

chinese-month-
name	(p.	320)

〈chinese-month,	chinese-year〉 chinese-name

chinese-name	(p.	553)



〈chinese-stem,	chinese-branch〉 chinese-name	(or
bogus)

chinese-name-
difference	(p.	319)

〈chinese-name,	chinese-name〉
nonnegative-integer

chinese-new-moon-
before	(p.	310)

fixed-date fixed-date

chinese-new-moon-on-or-
after	(p.	309)

fixed-date fixed-date

chinese-new-year	(p.	322) gregorian-year fixed-date

chinese-new-year-in-
sui	(p.	315)

fixed-date fixed-date

chinese-new-year-on-or-
before	(p.	316)

fixed-date fixed-date

chinese-no-major-solar-
term?	(p.	313)

fixed-date boolean

chinese-prior-leap-
month?	(p.	313)

〈fixed-date,	fixed-date〉 boolean

chinese-sexagesimal-
name	(p.	319)

integer chinese-name

chinese-solar-longitude-
on-or-after	(p.	308)

〈season,	moment〉 moment

chinese-stem	(p.	553) chinese-name chinese-stem

chinese-winter-solstice-
on-or-before	(p.	309)

fixed-date fixed-date



chinese-year	(p.	550) chinese-date chinese-year

chinese-year-marriage-
augury	(p.	325)

〈chinese-cycle,	chinese-year〉 augury

chinese-year-
name	(p.	320) chinese-year chinese-name

christmas	(p.	70) gregorian-year fixed-date

classical-passover-
eve	(p.	298)

gregorian-year fixed-date

clock-from-
moment	(p.	28)

moment clock-time

coptic-christmas	(p.	93) gregorian-year list-of-fixed-dates

coptic-date	(p.	489) 〈coptic-year,	coptic-month,	coptic-day〉 coptic-date

coptic-from-fixed	(p.	91) fixed-date coptic-date

coptic-in-gregorian	(p.	92) 〈coptic-month,	coptic-day,	gregorian-year〉 list-of-fixed-dates

coptic-leap-year?	(p.	90) coptic-year boolean

cos-degrees	(p.	513) angle amplitude

current-major-solar-
term	(p.	306)

fixed-date integer

current-minor-solar-
term	(p.	308)

fixed-date integer

cycle-in-gregorian	(p.	83) 〈season,	gregorian-year,	moment〉 list-of-moments

dawn	(p.	241) 〈fixed-date,	location,	angle〉 moment	(or	bogus)



daylight-saving-
end	(p.	70)

gregorian-year fixed-date

daylight-saving-
start	(p.	70)

gregorian-year fixed-date

day-number	(p.	62) gregorian-date positive-integer

day-of-week-from-
fixed	(p.	33)

fixed-date day-of-week

days-in-hebrew-
year	(p.	123)

hebrew-year 353,354,355,383,384,38
5

days-remaining	(p.	62) gregorian-date nonnegative-integer

daytime-temporal-
hour	(p.	247)

〈fixed-date,	location〉 real	(or	bogus)

declination	(p.	220) 〈moment,	angle,	angle〉 angle

deg	(p.	514) real angle

	 list-of-reals list-of-angles

degrees-from-
radians	(p.	513)

radian angle

degrees-minutes-
seconds	(p.	514)

〈degree,	minute,	real〉 angle

direction	(p.	205) 〈location,	location〉 angle



diwali	(p.	368) gregorian-year list-of-fixed-dates

dragon-festival	(p.	324) gregorian-year fixed-date

dusk	(p.	242) 〈fixed-date,	location,	angle〉 moment	(or	bogus)

dynamical-from-universal	(p.	212) moment moment

early-month?	(p.	294) 〈fixed-date,	location〉 boolean

easter	(p.	148) gregorian-year fixed-date

eastern-orthodox-christmas	(p.	85) gregorian-year list-of-fixed-dates

egyptian-date	(p.	476) 〈egyptian-year,	egyptian-month,
egyptian-day〉

egyptian-date

egyptian-from-fixed	(p.	31) fixed-date egyptian-date

election-day	(p.	70) gregorian-year fixed-date

elevation	(p.	515) location distance

end	(p.	475) interval moment

ephemeris-correction	(p.	210) moment fraction-of-day

epiphany	(p.	71) gregorian-year fixed-date

equation-of-time	(p.	215) moment fraction-of-day

estimate-prior-solar-
longitude	(p.	226)

〈season,	moment〉 moment

ethiopic-date	(p.	490) 〈ethiopic-year,	ethiopic-month,
ethiopic-day〉

ethiopic-date



ethiopic-from-fixed	(p.	92) fixed-date ethiopic-date

feast-of-ridvan	(p.	277) gregorian-year fixed-date

final	(p.	24) 〈—,	integer,

integer→boolean〉
integer

first-kday	(p.	69) 〈day-of-week,	gregorian-date〉 fixed-date

fixed-from-arithmetic-french	(p.	285) french-date fixed-date

fixed-from-arithmetic-
persian	(p.	262)

persian-date fixed-date

fixed-from-armenian	(p.	31) armenian-date fixed-date

fixed-from-astro-bahai	(p.	275) bahai-date fixed-date

fixed-from-astro-hindu-lunar	(p.	361) hindu-lunar-date fixed-date

fixed-from-astro-hindu-solar	(p.	360) hindu-solar-date fixed-date

fixed-from-babylonian	(p.	291) babylonian-date fixed-date

fixed-from-bahai	(p.	271) bahai-date fixed-date

fixed-from-chinese	(p.	318) chinese-date fixed-date

fixed-from-coptic	(p.	90) coptic-date fixed-date

fixed-from-egyptian	(p.	30) egyptian-date fixed-date

fixed-from-ethiopic	(p.	92) ethiopic-date fixed-date

fixed-from-french	(p.	284) french-date fixed-date

fixed-from-gregorian	(p.	60) gregorian-date fixed-date



fixed-from-hebrew	(p.	123) hebrew-date fixed-date

fixed-from-hindu-fullmoon	(p.	356) hindu-lunar-date fixed-date

fixed-from-hindu-lunar	(p.	350) hindu-lunar-date fixed-date

fixed-from-hindu-solar	(p.	348) hindu-solar-date fixed-date

fixed-from-icelandic	(p.	100) icelandic-date fixed-date

fixed-from-islamic	(p.	107) islamic-date fixed-date

fixed-from-iso	(p.	95) iso-date fixed-date

fixed-from-jd	(p.	20) julian-day-number fixed-date

fixed-from-julian	(p.	76) julian-date fixed-date

fixed-from-mayan-long-count	(p.	171) mayan-long-count-date fixed-date

fixed-from-mjd	(p.	19) julian-day-number fixed-date

fixed-from-molad	(p.	126) duration fixed-date

fixed-from-moment	(p.	20) moment fixed-date

fixed-from-observational-
hebrew	(p.	298)

hebrew-date fixed-date

fixed-from-observational-
islamic	(p.	293)

islamic-date fixed-date

fixed-from-old-hindu-lunar	(p.	165) old-hindu-lunar-date fixed-date

fixed-from-old-hindu-solar	(p.	158) hindu-solar-date fixed-date

fixed-from-persian	(p.	260) persian-date fixed-date

fixed-from-roman	(p.	80) roman-date fixed-date



fixed-from-samaritan	(p.	301) hebrew-date fixed-date

fixed-from-saudi-islamic	(p.	296) islamic-date fixed-date

fixed-from-tibetan	(p.	378) tibetan-date fixed-date

french-date	(p.	541) 〈french-year,	french-month,
french-day〉

french-date

french-from-fixed	(p.	284) fixed-date french-date

french-leap-year?	(p.	284) french-year boolean

french-new-year-on-or-before	(p.	283) fixed-date fixed-date

from-radix	(p.	27) 〈list-of-reals,	list-of-rationals,
list-of-rationals〉

real

gregorian-date	(p.	479) 〈gregorian-year,	gregorian-
month,	gregorian-day〉

gregorian-date

gregorian-date-difference	(p.	62) 〈gregorian-date,	gregorian-date〉 integer

gregorian-from-fixed	(p.	62) fixed-date gregorian-date

gregorian-leap-year?	(p.	59) gregorian-year boolean

gregorian-new-year	(p.	60) gregorian-year fixed-date

gregorian-year-end	(p.	60) gregorian-year fixed-date

gregorian-year-from-fixed	(p.	61) fixed-date gregorian-year

gregorian-year-range	(p.	60) gregorian-year range

hanukkah	(p.	134) gregorian-year list-of-fixed-dates

hebrew-birthday	(p.	135) fixed-date



〈hebrew-date,	hebrew-year〉

hebrew-birthday-in-
gregorian	(p.	135)

〈hebrew-date,	gregorian-year〉 list-of-fixed-dates

hebrew-calendar-elapsed-
days	(p.	121)

hebrew-year integer

hebrew-date	(p.	494) 〈hebrew-year,	hebrew-month,
hebrew-day〉

hebrew-date

hebrew-from-fixed	(p.	123) fixed-date hebrew-date

hebrew-in-gregorian	(p.	133) 〈hebrew-month,	hebrew-day,
gregorian-year〉

list-of-fixed-dates

hebrew-leap-year?	(p.	115) hebrew-year boolean

hebrew-new-year	(p.	122) hebrew-year fixed-date

hebrew-sabbatical-year?	(p.	115) hebrew-year boolean

hebrew-year-length-
correction	(p.	122)

hebrew-year 0	.	.	2

hindu-arcsin	(p.	343) rational-amplitude rational-angle

hindu-ascensional-difference	(p.	352) 〈fixed-date,	location〉 rational-angle

hindu-calendar-year	(p.	347) rational-moment hindu-solar-year

hindu-daily-motion	(p.	353) fixed-date rational-angle

hindu-date-occur	(p.	367) 〈hindu-lunar-year,	hindu-lunar-
month,	hindu-lunar-day〉

fixed-date



hindu-day-count	(p.	156) fixed-date integer

hindu-equation-of-time	(p.	353) fixed-date rational-moment

hindu-expunged?	(p.	356) 〈hindu-lunar-year,	hindu-lunar-
month〉

boolean

hindu-fullmoon-from-fixed	(p.	356) fixed-date hindu-lunar-date

hindu-lunar-date	(p.	560) 〈hindu-lunar-year,	hindu-lunar-
month,	hindu-lunar-leap-
month,	hindu-lunar-day,
hindu-lunar-leap-day〉

hindu-lunar-date

hindu-lunar-day	(p.	560) hindu-lunar-date hindu-lunar-day

hindu-lunar-day-at-or-after	(p.	365) 〈rational,	rational-moment〉 rational-moment

hindu-lunar-day-from-
moment	(p.	346)

rational-moment hindu-lunar-day

hindu-lunar-event	(p.	368) 〈hindu-lunar-month,	rational,
rational,	gregorian-year〉

list-of-fixed-dates

hindu-lunar-from-fixed	(p.	349) fixed-date hindu-lunar-date

hindu-lunar-holiday	(p.	367) 〈hindu-lunar-month,	hindu-lunar-
day,	gregorian-year〉

list-of-fixed-dates

hindu-lunar-leap-day	(p.	560) hindu-lunar-date hindu-lunar-leap-day

hindu-lunar-leap-month	(p.	560) hindu-lunar-date

hindu-lunar-leap-
month



hindu-lunar-longitude	(p.	346) rational-moment rational-angle

hindu-lunar-month	(p.	560) hindu-lunar-date hindu-lunar-month

hindu-lunar-new-year	(p.	365) gregorian-year fixed-date

hindu-lunar-on-or-before?	(p.	367) 〈hindu-lunar-date,	hindu-lunar-
date〉

boolean

hindu-lunar-phase	(p.	346) rational-moment rational-angle

hindu-lunar-station	(p.	369) fixed-date nakshatra

hindu-lunar-year	(p.	560) hindu-lunar-date hindu-lunar-year

hindu-mean-position	(p.	344) 〈rational-moment,	rational〉 rational-angle

hindu-new-moon-before	(p.	346) rational-moment rational-moment

hindu-rising-sign	(p.	353) fixed-date rational-amplitude

hindu-sine	(p.	342) angle rational-amplitude

hindu-sine-table	(p.	342) integer rational-amplitude

hindu-solar-date	(p.	559) 〈hindu-solar-year,	hindu-solar-
month,	hindu-solar-day〉

hindu-solar-date

hindu-solar-from-fixed	(p.	347) fixed-date hindu-solar-date

hindu-solar-longitude	(p.	345) rational-moment rational-angle

hindu-solar-longitude-at-or-
after	(p.	364)

〈season,	moment〉 moment

hindu-solar-sidereal-
difference	(p.	352)

fixed-date rational-angle



hindu-standard-from-sundial	(p.	355) rational-moment rational-moment

hindu-sunrise	(p.	354) fixed-date rational-moment

hindu-sunset	(p.	354) fixed-date rational-moment

hindu-tithi-occur	(p.	368) 〈hindu-lunar-month,	rational,
rational,	hindu-lunar-year〉

fixed-date

hindu-tropical-longitude	(p.	352) fixed-date rational-angle

hindu-true-position	(p.	345) 〈rational-moment,	rational,
rational,	rational,	rational〉

rational-angle

hindu-zodiac	(p.	345) rational-moment hindu-solar-month

hour	(p.	474) clock-time hour

hr	(p.	514) real duration

icelandic-date	(p.	491) 〈icelandic-year,	icelandic-season,
icelandic-week,	icelandic-
weekday〉

icelandic-date

icelandic-from-fixed	(p.	101) fixed-date icelandic-date

icelandic-leap-year?	(p.	101) icelandic-year boolean

icelandic-month	(p.	101) icelandic-date icelandic-month

icelandic-season	(p.	491) icelandic-date icelandic-season

icelandic-summer	(p.	100) gregorian-year fixed-date

icelandic-week	(p.	491) icelandic-date icelandic-week

icelandic-weekday	(p.	491) icelandic-date icelandic-weekday



icelandic-winter	(p.	100) gregorian-year fixed-date

icelandic-year	(p.	491) icelandic-date icelandic-year

ides-of-month	(p.	77) roman-month ides

independence-day	(p.	69) gregorian-year fixed-date

in-range?	(p.	26) 〈moment,	interval〉 boolean

interval	(p.	475) 〈moment,	moment〉 interval

interval-closed	(p.	475) 〈moment,	moment〉 interval

invert-angular	(p.	25) 〈real→	angle,	real,	interval〉 real

islamic-date	(p.	493) 〈islamic-year,	islamic-month,
islamic-day〉

islamic-date

islamic-from-fixed	(p.	108) fixed-date islamic-date

islamic-in-gregorian	(p.	108) 〈islamic-month,	islamic-day,
gregorian-year〉

list-of-fixed-dates

islamic-leap-year?	(p.	107) islamic-year boolean

iso-date	(p.	490) 〈iso-year,	iso-week,	iso-day〉 iso-date

iso-day	(p.	490) iso-date day-of-week

iso-from-fixed	(p.	96) fixed-date iso-date

iso-long-year?	(p.	97) iso-year boolean

iso-week	(p.	490) iso-date iso-week

iso-year	(p.	491) iso-date iso-year



italian-from-local	(p.	247) moment moment

japanese-location	(p.	326) moment location

jd-from-fixed	(p.	20) fixed-date julian-day-number

jd-from-moment	(p.	18) moment julian-day-number

jewish-dusk	(p.	243) 〈fixed-date,	location〉 moment

jewish-morning-end	(p.	248) 〈fixed-date,	location〉 moment

jewish-sabbath-ends	(p.	243) 〈fixed-date,	location〉 moment

jovian-year	(p.	157) fixed-date 1	.	.	60

julian-centuries	(p.	212) moment century

julian-date	(p.	484) 〈julian-year,	julian-month,	julian-
day〉

julian-date

julian-from-fixed	(p.	76) fixed-date julian-date

julian-in-gregorian	(p.	85) 〈julian-month,	julian-day,
gregorian-year〉

list-of-fixed-dates

julian-leap-year?	(p.	75) julian-year boolean

julian-season-in-gregorian	(p.	84) 〈season,	gregorian-year〉 list-of-moments

julian-year-from-auc	(p.	81) auc-year julian-year

julian-year-from-olympiad	(p.	82) olympiad julian-year

kajeng-keliwon	(p.	190) gregorian-year list-of-fixed-dates



karana	(p.	369) 1.	.	60 0	.	.	10

kday-after	(p.	34) 〈day-of-week,	fixed-date〉 fixed-date

kday-before	(p.	34) 〈day-of-week,	fixed-date〉 fixed-date

kday-nearest	(p.	34) 〈day-of-week,	fixed-date〉 fixed-date

kday-on-or-after	(p.	34) 〈day-of-week,	fixed-date〉 fixed-date

kday-on-or-before	(p.	34) 〈day-of-week,	fixed-date〉 fixed-date

korean-location	(p.	328) moment location

korean-year	(p.	328) 〈chinese-cycle,	chinese-year〉 integer

labor-day	(p.	69) gregorian-year fixed-date

last-day-of-gregorian-month	(p.	63) 〈gregorian-year,	gregorian-
month〉

gregorian-day

last-day-of-hebrew-month	(p.	122) 〈hebrew-year,	hebrew-month〉 hebrew-day

last-kday	(p.	69) 〈day-of-week,	gregorian-date〉 fixed-date

last-month-of-hebrew-year	(p.	115) hebrew-year hebrew-month

latitude	(p.	514) location half-circle

list-of-fixed-from-moments	(p.	26) list-of-moments list-of-fixed-dates

list-range	(p.	26) 〈list-of-moments,	interval〉 list-of-moments

local-from-apparent	(p.	218) 〈moment,	location〉 moment



local-from-italian	(p.	247) moment moment

local-from-standard	(p.	208) 〈moment,	location〉

local-from-universal	(p.	208) 〈moment,	location〉 moment

local-zero-hour	(p.	246) moment moment

location	(p.	514) 〈half-circle,	circle,	distance,
fraction-of-day〉

location

longitude	(p.	515) location circle

long-marheshvan?	(p.	122) hebrew-year boolean

losar	(p.	381) tibetan-year fixed-date

lunar-altitude	(p.	237) 〈moment,	location〉 half-circle

lunar-anomaly	(p.	234) century angle

lunar-diameter	(p.	252) moment angle

lunar-distance	(p.	238) moment distance

lunar-elongation	(p.	234) century angle

lunar-latitude	(p.	236) moment angle

lunar-longitude	(p.	232) moment angle

lunar-node	(p.	234) fixed-date angle

lunar-parallax	(p.	238) 〈moment,	location〉 angle

lunar-phase	(p.	235) moment phase

lunar-phase-at-or-after	(p.	235) 〈phase,	moment〉 moment



lunar-phase-at-or-before	(p.	235) 〈phase,	moment〉 moment

lunar-semi-diameter	(p.	251) 〈moment,	location〉 half-circle

major-solar-term-on-or-

after	(p.	308)
fixed-date moment

mawlid	(p.	109) gregorian-year list-of-fixed-dates

mayan-baktun	(p.	505) mayan-long-count-date mayan-baktun

mayan-calendar-round-on-or-
before	(p.	176)

〈mayan-haab-date,	mayan-
tzolkin-date,	fixed-date〉

fixed-date	(or	bogus)

mayan-haab-date	(p.	506) 〈mayan-haab-month,	mayan-
haab-day〉

mayan-haab-date

mayan-haab-day	(p.	506) mayan-haab-date mayan-haab-day

mayan-haab-from-fixed	(p.	173) fixed-date mayan-haab-date

mayan-haab-month	(p.	506) mayan-haab-date mayan-haab-month

mayan-haab-on-or-before	(p.	173) 〈mayan-haab-date,	fixed-date〉 fixed-date

mayan-haab-ordinal	(p.	173) mayan-haab-date nonnegative-integer

mayan-katun	(p.	506) mayan-long-count-date mayan-katun

mayan-kin	(p.	506) mayan-long-count-date mayan-kin

mayan-long-count-date	(p.	505) 〈mayan-baktun,	mayan-katun,
mayan-tun,	mayan-uinal,

mayan-kin〉

mayan-long-count-date

mayan-long-count-from-fixed	(p.	171) fixed-date mayan-long-count-date



mayan-tun	(p.	506) mayan-long-count-date mayan-tun

mayan-tzolkin-date	(p.	507) 〈mayan-tzolkin-number,	mayan-
tzolkin-name〉

mayan-tzolkin-date

mayan-tzolkin-from-fixed	(p.	175) fixed-date mayan-tzolkin-date

mayan-tzolkin-name	(p.	507) mayan-tzolkin-date mayan-tzolkin-name

mayan-tzolkin-number	(p.	507) mayan-tzolkin-date mayan-tzolkin-number

mayan-tzolkin-on-or-before	(p.	175) 〈mayan-tzolkin-date,	fixed-date〉 fixed-date

mayan-tzolkin-ordinal	(p.	175) mayan-tzolkin-date nonnegative-integer

mayan-uinal	(p.	506) mayan-long-count-date mayan-uinal

mayan-year-bearer-from-
fixed	(p.	176)

fixed-date mayan-tzolkin-name
(or	bogus)

mean-lunar-longitude	(p.	233) century angle

memorial-day	(p.	70) gregorian-year fixed-date

mesha-samkranti	(p.	364) gregorian-year rational-moment

midday	(p.	218) 〈fixed-date,	location〉 moment

midday-in-tehran	(p.	259) fixed-date moment

midnight	(p.	218) 〈fixed-date,	location〉 moment

midnight-in-china	(p.	309) fixed-date moment

midnight-in-paris	(p.	283) fixed-date moment

fixed-date moment



minor-solar-term-on-or-

after	(p.	308)

mins	(p.	514) real angle

minute	(p.	474) clock-time minute

mjd-from-fixed	(p.	19) fixed-date julian-day-number

mn	(p.	514) real duration

mod3	(p.	22) 〈real,	real,	real〉 real

molad	(p.	119) 〈hebrew-year,	hebrew-month〉 rational-moment

moment-from-jd	(p.	18) julian-day-number moment

moment-from-unix	(p.	19) second moment

moment-of-depression	(p.	241) 〈moment,	location,	half-circle,
boolean〉

moment	(or	bogus)

month-length	(p.	294) 〈fixed-date,	location〉 1	.	.	31

moonlag	(p.	290) 〈fixed-date,	location〉 duration

moon-node	(p.	234) century angle

moonrise	(p.	244) 〈fixed-date,	location〉 moment	(or	bogus)

moonset	(p.	245) 〈fixed-date,	location〉 moment	(or	bogus)

mt	(p.	514) real distance

naw-ruz	(p.	277) gregorian-year fixed-date

new-moon-at-or-after	(p.	231) moment moment



new-moon-before	(p.	230) moment moment

next	(p.	23) 〈–,	integer,	integer→boolean〉 integer

nighttime-temporal-hour	(p.	248) 〈fixed-date,	location〉 real	(or	bogus)

nones-of-month	(p.	78) roman-month nones

nowruz	(p.	265) gregorian-year fixed-date

nth-kday	(p.	69) 〈integer,	day-of-week,	gregorian-
date〉

fixed-date

nth-new-moon	(p.	229) integer moment

nutation	(p.	223) moment angle

obliquity	(p.	220) moment angle

observational-hebrew-first-of-
nisan	(p.	297)

gregorian-year fixed-date

observational-hebrew-from-
fixed	(p.	298)

fixed-date hebrew-date

observational-islamic-from-
fixed	(p.	294)

fixed-date islamic-date

observed-lunar-altitude	(p.	243) 〈moment,	location〉 angle

old-hindu-lunar-date	(p.	504) 〈old-hindu-lunar-year,	old-hindu-
lunar-month,	old-hindu-
lunar-leap,	old-hindu-lunar-
day〉

old-hindu-lunar-date

old-hindu-lunar-day	(p.	504) old-hindu-lunar-date old-hindu-lunar-day



old-hindu-lunar-from-fixed	(p.	165) fixed-date old-hindu-lunar-date

old-hindu-lunar-leap	(p.	504) old-hindu-lunar-date old-hindu-lunar-leap

old-hindu-lunar-leap-year?	(p.	163) old-hindu-lunar-year boolean

old-hindu-lunar-month	(p.	504) old-hindu-lunar-date old-hindu-lunar-month

old-hindu-lunar-year	(p.	504) old-hindu-lunar-date old-hindu-lunar-year

old-hindu-solar-from-fixed	(p.	159) fixed-date hindu-solar-date

olympiad	(p.	487) 〈olympiad-cycle,	olympiad-year〉 olympiad

olympiad-cycle	(p.	487) olympiad olympiad-cycle

olympiad-from-julian-year	(p.	82) julian-year olympiad

olympiad-year	(p.	487) olympiad olympiad-year

omer	(p.	129) fixed-date omer-count	(or	bogus)

orthodox-easter	(p.	146) gregorian-year fixed-date

passover	(p.	129) gregorian-year fixed-date

pentecost	(p.	152) gregorian-year fixed-date

persian-date	(p.	535) 〈persian-year,	persian-month,
persian-day〉

persian-date

persian-from-fixed	(p.	260) fixed-date persian-date

persian-new-year-on-or-
before	(p.	259)

fixed-date fixed-date

phasis-on-or-after	(p.	252) 〈fixed-date,	location〉 fixed-date



phasis-on-or-before	(p.	252) 〈fixed-date,	location〉 fixed-date

poly	(p.	473) 〈real,	list-of-reals〉 real

positions-in-range	(p.	27) 〈nonnegative-real,	positive-real,
nonnegative-real,	interval〉

list-of-fixed-dates

possible-hebrew-days	(p.	139) 〈hebrew-month,	hebrew-day〉 list-of-weekdays

precession	(p.	225) moment angle

prod	(p.	23) 〈integer→real,
—,integer,integer→boolean〉

real

purim	(p.	129) gregorian-year fixed-date

qing-ming	(p.	324) gregorian-year fixed-date

quotient	(p.	472) 〈real,	nonzero-real〉 integer

radians-from-degrees	(p.	513) real radian

rama	(p.	369) gregorian-year list-of-fixed-dates

rd	(p.	12) moment moment

refraction	(p.	242) 〈moment,	location〉 angle

right-ascension	(p.	220) 〈moment,	angle,	angle〉 angle

roman-count	(p.	486) roman-date roman-count

roman-date	(p.	486) 〈roman-year,	roman-month,
roman-event,	roman-count,

roman-leap〉

roman-date



roman-event	(p.	486) roman-date roman-event

roman-from-fixed	(p.	80) fixed-date roman-date

roman-leap	(p.	486) roman-date roman-leap

roman-month	(p.	486) roman-date roman-month

roman-year	(p.	486) roman-date roman-year

sacred-wednesdays	(p.	370) gregorian-year list-of-fixed-dates

sacred-wednesdays-in-range	(p.	371) range list-of-fixed-dates



samaritan-from-
fixed	(p.	302)

fixed-date hebrew-
date

samaritan-new-moon-
after	(p.	300)

moment fixed-date

samaritan-new-moon-at-
or-before	(p.	300)

moment fixed-date

samaritan-new-year-on-or-
before	(p.	301)

fixed-date fixed-date

samaritan-noon	(p.	300) fixed-date moment

samuel-season-in-
gregorian	(p.	132)

〈season,	gregorian-year〉 list-of-
mome
nts

saudi-criterion	(p.	296) fixed-date boolean

saudi-islamic-from-
fixed	(p.	296)

fixed-date islamic-
date

saudi-new-month-on-or-
before	(p.	296)

fixed-date, fixed-date

season-in-
gregorian	(p.	224)

〈season,	gregorian-year〉 moment

sec	(p.	514) real duration

seconds	(p.	474) clock-time second

secs	(p.	514) real angle

shaukat-criterion	(p.	250) 〈fixed-date,	location〉 boolean



sh-ela	(p.	131) gregorian-year list-of-
fixed-
dates

shift-days	(p.	138) 〈list-of-weekdays,	integer〉 list-of-
weekd
ays

shiva	(p.	369) gregorian-year list-of-
fixed-
dates

short-kislev?	(p.	122) hebrew-year boolean

sidereal-from-
moment	(p.	219)

moment angle

sidereal-lunar-
longitude	(p.	234)

moment angle

sidereal-solar-
longitude	(p.	225)

moment angle

sidereal-zodiac	(p.	360) moment hindu-
solar-
month

sigma	(p.	473) 〈list-of-pairs,	list-of-reals→real〉 real

sign	(p.	20) real {–1,	0,
+1}

simple-best-view	(p.	250) 〈fixed-date,	location〉 moment

sin-degrees	(p.	513) angle amplitude

sine-offset	(p.	241) 〈moment,	location,	circle〉 real



solar-altitude	(p.	226) 〈moment,	location〉 half-circle

solar-anomaly	(p.	234) century angle

solar-longitude	(p.	223) moment season

solar-longitude-
after	(p.	224)

〈season,	moment〉 moment

standard-day	(p.	474) standard-date standard-
day

standard-from-
local	(p.	208)

〈moment,	location〉 moment

standard-from-
sundial	(p.	248)

〈moment,	location〉 moment	(or
bogus
)

standard-from-
universal	(p.	208)

〈moment,	location〉 moment

standard-month	(p.	474) standard-date standard-
month

standard-year	(p.	474) standard-date standard-
year

sum	(p.	23) 〈integer→real,	—,	integer,	integer→boolean〉 real

sunrise	(p.	242) 〈fixed-date,	location〉 moment

sunset	(p.	242) 〈fixed-date,	location〉 moment

ta-anit-esther	(p.	130) gregorian-year fixed-date



tan-degrees	(p.	513) angle real

tibetan-date	(p.	570) 〈tibetan-year,	tibetan-month,	tibetan-leap-month,
tibetan-day,	tibetan-leap-day〉

tibetan-
date

tibetan-day	(p.	570) tibetan-date tibetan-day

tibetan-from-fixed	(p.	378) fixed-date tibetan-
date

tibetan-leap-day	(p.	381) tibetan-date tibetan-
leap-
day

tibetan-leap-day?	(p.	381) 〈tibetan-year,	tibetan-month,	tibetan-day〉 boolean

tibetan-leap-month	(p.	380) tibetan-date tibetan-
leap-
month

tibetan-leap-
month?	(p.	380)

〈tibetan-year,	tibetan-month〉 boolean

tibetan-month	(p.	570) tibetan-date tibetan-
month

tibetan-moon-
equation	(p.	377)

rational-angle rational

tibetan-new-year	(p.	381) gregorian-year list-of-
fixed-
dates

tibetan-sun-
equation	(p.	377)

rational-angle rational

tibetan-year	(p.	570) tibetan-date tibetan-
year



time-from-clock	(p.	28) clock-time time

time-from-moment	(p.	21) moment time

time-of-day	(p.	474) 〈hour,	minute,	second〉 clock-time

tishah-be-av	(p.	130) gregorian-year fixed-date

topocentric-lunar-
altitude	(p.	239)

〈moment,	location〉 half-circle

to-radix	(p.	28) 〈real,	list-of-rationals,	list-of-rationals〉 list-of-reals

tumpek	(p.	190) gregorian-year list-of-
fixed-
dates

universal-from-
apparent	(p.	218)

〈moment,	location〉 moment

universal-from-
dynamical	(p.	212)

moment moment

universal-from-
local	(p.	208)

〈moment,	location〉 moment

universal-from-
standard	(p.	208)

〈moment,	location〉 moment

unix-from-moment	(p.	19) moment second

unlucky-fridays	(p.	71) gregorian-year list-of-
fixed-
dates

unlucky-fridays-in-
range	(p.	71)

range list-of-
fixed-



dates

vietnamese-

location	(p.	329)
moment location

visible-crescent	(p.	252) 〈fixed-date,	location〉 boolean

yahrzeit	(p.	136) 〈hebrew-date,	hebrew-year〉 fixed-date

yahrzeit-in-
gregorian	(p.	137)

〈hebrew-date,	gregorian-year〉 list-of-
fixed-
dates

yallop-criterion	(p.	251) 〈fixed-date,	location〉 boolean

yoga	(p.	369) fixed-date 1	.	.	27

yom-ha-zikkaron	(p.	131) gregorian-year fixed-date

yom-kippur	(p.	128) gregorian-year fixed-date

zone	(p.	515) location real

zone-from-
longitude	(p.	208)

angle duration

A.3 Constant	Types	and	Values

Constant Type Value

acre	(p.	204) location 〈32.94,	35.09,	22,	1/12〉

adar	(p.	115) hebrew-month 12

adarii	(p.	115) hebrew-month 13



akan-day-name-epoch	(p.	38) fixed-date 37

april	(p.	59) standard-
month

4

armenian-epoch	(p.	31) fixed-date 201443

arya-jovian-period	(p.	157) rational 131493125/30352

arya-lunar-day	(p.	160) rational 26298625/26716668

arya-lunar-month	(p.	160) rational 131493125/4452778

arya-solar-month	(p.	158) rational 210389/6912

arya-solar-year	(p.	157) rational 210389/576

august	(p.	59) standard-
month

8

autumn	(p.	83) season 180

av	(p.	114) hebrew-month 5

ayyam-i-ha	(p.	271) bahai-month 0

aztec-correlation	(p.	177) fixed-date 555403

aztec-tonalpohualli-
correlation	(p.	179)

fixed-date 555299

aztec-xihuitl-correlation	(p.	178) fixed-date 555202

babylon	(p.	290) location 〈32.4794,	44.4328,	26,	7/2〉

babylonian-epoch	(p.	291) fixed-date –113502

bahai-epoch	(p.	271) fixed-date 673222



bahai-location	(p.	274) location 〈35.696111,	51.423055999999974,	0,	7/48〉

bali-epoch	(p.	187) fixed-date –1721279

blind	(p.	325) augury 1

bogus	(p.	47) string “bogus”

bright	(p.	325) augury 2

chinese-day-name-epoch	(p.	320) integer 45

chinese-epoch	(p.	316) fixed-date –963099

chinese-month-name-

epoch	(p.	320)
integer 57

coptic-epoch	(p.	90) fixed-date 103605

december	(p.	59) standard-
month

12

double-bright	(p.	325) augury 3

egyptian-epoch	(p.	30) fixed-date –272787

elul	(p.	115) hebrew-month 6

ethiopic-epoch	(p.	92) fixed-date 2430

evening	(p.	241) boolean false

false	(p.	470) boolean false

february	(p.	59) standard-
month

2



first-quarter	(p.	236) phase 90

french-epoch	(p.	283) fixed-date 654415

friday	(p.	33) day-of-week 5

full	(p.	236) phase 180

gregorian-epoch	(p.	58) fixed-date 1

hebrew-epoch	(p.	119) fixed-date –1373427

hebrew-location	(p.	297) location 〈32.82,	35,	0,	1/12〉

hindu-anomalistic-month	(p.	345) rational 1577917828/57265137

hindu-anomalistic-year	(p.	344) rational 1577917828000/4319999613

hindu-creation	(p.	344) fixed-date –714403429586

hindu-epoch	(p.	156) fixed-date –1132959

hindu-location	(p.	351) location 〈463/20,	2273/30,	0,	383/75〉

hindu-lunar-era	(p.	349) standard-year 3044

hindu-sidereal-month	(p.	336) rational 394479457/14438334

hindu-sidereal-year	(p.	336) rational 394479457/1080000

hindu-solar-era	(p.	347) standard-year 3179

hindu-synodic-month	(p.	336) rational 394479457/13358334

icelandic-epoch	(p.	100) fixed-date 109

ides	(p.	77) roman-event 3

islamic-epoch	(p.	106) fixed-date 227015



islamic-location	(p.	293) location 〈30.1,	31.3,	200,	1/12〉

iyyar	(p.	114) hebrew-month 2

j2000	(p.	212) moment 730120.5

january	(p.	59) standard-
month

1

jd-epoch	(p.	18) moment –1721424.5

jerusalem	(p.	204) location 〈31.78,	35.24,	740,	1/12〉

julian-epoch	(p.	76) fixed-date –1

july	(p.	59) standard-
month

7

june	(p.	59) standard-
month

6

kalends	(p.	77) roman-event 1

kislev	(p.	115) hebrew-month 9

last-quarter	(p.	236) phase 270

march	(p.	59) standard-
month

3

marheshvan	(p.	115) hebrew-month 8

may	(p.	59) standard-
month

5

mayan-epoch	(p.	171) fixed-date –1137142



mayan-haab-epoch	(p.	173) fixed-date –1137490

mayan-tzolkin-epoch	(p.	175) fixed-date –1137302

mean-sidereal-year	(p.	221) duration 365.25636

mean-synodic-month	(p.	227) duration 29.530588853

mean-tropical-year	(p.	221) duration 365.242189

mecca	(p.	204) location 〈6427/300,	11947/300,	298,	1/8〉

mjd-epoch	(p.	19) fixed-date 678576

monday	(p.	33) day-of-week 1

morning	(p.	241) boolean true

new	(p.	236) phase 0

nisan	(p.	114) hebrew-month 1

nones	(p.	77) roman-event 2

november	(p.	59) standard-
month

11

october	(p.	59) standard-
month

10

olympiad-start	(p.	82) julian-year –776

padua	(p.	246) location 〈40867/900,	14263/1200,	18,	1/24〉

paris	(p.	283) location 〈175811/3600,	187/80,	27,	1/24〉

persian-epoch	(p.	258) fixed-date 226896



samaritan-epoch	(p.	301) fixed-date –598573

samaritan-location	(p.	300) location 〈32.1994,	35.2728,	881,	1/12〉

saturday	(p.	33) day-of-week 6

september	(p.	59) standard-
month

9

shevat	(p.	115) hebrew-month 11

sidereal-start	(p.	359) angle 156.13605090692624

sivan	(p.	114) hebrew-month 3

spring	(p.	83) season 0

summer	(p.	83) season 90

sunday	(p.	33) day-of-week 0

tammuz	(p.	114) hebrew-month 4

tehran	(p.	259) location 〈35.68,	51.42,	1100,	7/48〉

tevet	(p.	115) hebrew-month 10

thursday	(p.	33) day-of-week 4

tibetan-epoch	(p.	376) fixed-date 294075

tishri	(p.	115) hebrew-month 7

true	(p.	470) boolean true

tuesday	(p.	33) day-of-week 2

ujjain	(p.	351) location 〈463/20,	45461/600,	0,	45461/216000〉



unix-epoch	(p.	19) fixed-date 719163

wednesday	(p.	33) day-of-week 3

winter	(p.	83) season 270

year-rome-founded	(p.	81) julian-year –753

	



Sixteenth-century	astrolabe,	with	zodiac	and	star	names	inscribed	in	Hebrew.
(Courtesy	of	Adler	Planetarium	&	Astronomy	Museum,	Chicago.)



Appendix	B

Cross	References	for	Functions	and
Constants

◈

When	the	true	Number	of	Days	cannot	be	found	at	one	View	in	this	Table,	then	both	them	and
their	Decimals	must	be	taken	out	of	the	Table	at	twice	or	thrice,	as	their	Number	requires,	and
added	together.

Thomas	Dilworth:	The	Schoolmaster’s	Assistant,	Being	a
Compendium	of	Arithmetic	both	Practical	and	Theoretical	(1743)

In	this	appendix	we	list	all	dependencies	among	the	calendar	functions.

Function/constant Used	by

aberration	(p.	223) solar-longitude	(p.	223)

adar	(p.	115) adda-season-in-gregorian	(p.	133)

last-day-of-hebrew-month	(p.	122)

last-month-of-hebrew-year	(p.	115)

possible-hebrew-days	(p.	139)

samuel-season-in-gregorian	(p.	132)



yahrzeit	(p.	136)

adarii	(p.	115) last-day-of-hebrew-month	(p.	255)

last-month-of-hebrew-year	(p.	115)

yahrzeit	(p.	136)

akan-day-name	(p.	38) akan-name-from-fixed	(p.	38)

akan-day-name-epoch	(p.	38) akan-name-from-fixed	(p.	38)

akan-name-difference	(p.	38) akan-day-name-on-or-before	(p.	38)

akan-name-from-fixed	(p.	38) akan-day-name-on-or-before	(p.	38)

alt-hindu-sunrise	(p.	357) astro-hindu-lunar-from-fixed	(p.	361)

fixed-from-astro-hindu-lunar	(p.	362)

apparent-from-local	(p.	217) apparent-from-universal	(p.	218)

apparent-from-universal	(p.	218) astronomical-easter	(p.	292)

samaritan-new-moon-after	(p.	300)

samaritan-new-moon-at-or-before	(p.	300)

approx-moment-of-depression	(p.	240) moment-of-depression	(p.	241)

april	(p.	59) babylonian-epoch	(p.	291)

easter	(p.	148)



icelandic-epoch	(p.	100)

korean-location	(p.	328)

orthodox-easter	(p.	146)

arc-of-light	(p.	250) shaukat-criterion	(p.	250)

yallop-criterion	(p.	251)

arc-of-vision	(p.	250) yallop-criterion	(p.	251)

arithmetic-persian-year-from-fixed	(p.	263) arithmetic-persian-from-fixed	(p.	263)

armenian-epoch	(p.	31) armenian-from-fixed	(p.	31)

fixed-from-armenian	(p.	31)

arya-jovian-period	(p.	158) jovian-year	(p.	158)

arya-lunar-day	(p.	160) fixed-from-old-hindu-lunar	(p.	165)

old-hindu-lunar-from-fixed	(p.	165)

arya-lunar-month	(p.	160) arya-lunar-day	(p.	160)

fixed-from-old-hindu-lunar	(p.	166)

old-hindu-lunar-from-fixed	(p.	165)

old-hindu-lunar-leap-year?	(p.	163)

arya-solar-month	(p.	158) fixed-from-old-hindu-lunar	(p.	166)



fixed-from-old-hindu-solar	(p.	158)

old-hindu-lunar-from-fixed	(p.	165)

old-hindu-lunar-leap-year?	(p.	163)

old-hindu-solar-from-fixed	(p.	159)

arya-solar-year	(p.	157) arya-solar-month	(p.	157)

fixed-from-old-hindu-solar	(p.	158)

old-hindu-lunar-from-fixed	(p.	165)

old-hindu-lunar-leap-year?	(p.	163)

old-hindu-solar-from-fixed	(p.	159)

astro-bahai-new-year-on-or-before	(p.	274) astro-bahai-from-fixed	(p.	275)

fixed-from-astro-bahai	(p.	275)

naw-ruz	(p.	277)

astro-hindu-calendar-year	(p.	360) astro-hindu-lunar-from-fixed	(p.	361)

astro-hindu-solar-from-fixed	(p.	360)

astro-hindu-lunar-from-fixed	(p.	361) fixed-from-astro-hindu-lunar	(p.	362)

astro-hindu-sunset	(p.	360) astro-hindu-solar-from-fixed	(p.	360)

fixed-from-astro-hindu-solar	(p.	360)



astro-lunar-day-from-moment	(p.	361) astro-hindu-lunar-from-fixed	(p.	361)

fixed-from-astro-hindu-lunar	(p.	362)

august	(p.	59) aztec-correlation	(p.	177)

coptic-epoch	(p.	90)

ethiopic-epoch	(p.	92)

korean-location	(p.	328)

autumn	(p.	83) french-new-year-on-or-before	(p.	283)

av	(p.	114) tishah-be-av	(p.	130)

ayyam-i-ha	(p.	271) astro-bahai-from-fixed	(p.	276)

bahai-from-fixed	(p.	272)

fixed-from-astro-bahai	(p.	275)

fixed-from-bahai	(p.	271)

aztec-correlation	(p.	179) aztec-tonalpohualli-correlation	(p.	179)

aztec-xihuitl-correlation	(p.	178)

aztec-tonalpohualli-correlation	(p.	177) aztec-tonalpohualli-from-fixed	(p.	180)

aztec-tonalpohualli-on-or-before	(p.	180)

aztec-xihuitl-tonalpohualli-on-or-before	(p.	181)



aztec-tonalpohualli-from-fixed	(p.	179) aztec-xiuhmolpilli-from-fixed	(p.	180)

aztec-tonalpohualli-ordinal	(p.	179) aztec-tonalpohualli-correlation	(p.	179)

aztec-tonalpohualli-on-or-before	(p.	180)

aztec-xihuitl-tonalpohualli-on-or-before	(p.	181)

aztec-xihuitl-correlation	(p.	178) aztec-xihuitl-from-fixed	(p.	178)

aztec-xihuitl-on-or-before	(p.	179)

aztec-xihuitl-tonalpohualli-on-or-before	(p.	181)

aztec-xihuitl-from-fixed	(p.	178) aztec-xiuhmolpilli-from-fixed	(p.	180)

aztec-xihuitl-on-or-before	(p.	179) aztec-xiuhmolpilli-from-fixed	(p.	180)

aztec-xihuitl-ordinal	(p.	178) aztec-xihuitl-correlation	(p.	178)

aztec-xihuitl-on-or-before	(p.	179)

aztec-xihuitl-tonalpohualli-on-or-before	(p.	181)

babylon	(p.	290) babylonian-criterion	(p.	290)

babylonian-criterion	(p.	290) babylonian-new-month-on-or-before	(p.	291)

babylonian-epoch	(p.	291) babylonian-from-fixed	(p.	292)

fixed-from-babylonian	(p.	291)

babylonian-new-month-on-or-before	(p.	290) babylonian-from-fixed	(p.	292)



fixed-from-babylonian	(p.	291)

bahai-epoch	(p.	271) astro-bahai-from-fixed	(p.	275)

bahai-from-fixed	(p.	272)

fixed-from-astro-bahai	(p.	275)

fixed-from-bahai	(p.	272)

bahai-location	(p.	274) bahai-sunset	(p.	274)

bahai-sunset	(p.	274) astro-bahai-new-year-on-or-before	(p.	274)

birth-of-the-bab	(p.	278)

bali-asatawara-from-fixed	(p.	188) bali-caturwara-from-fixed	(p.	189)

bali-pawukon-from-fixed	(p.	185)

bali-caturwara-from-fixed	(p.	189) bali-pawukon-from-fixed	(p.	185)

bali-dasawara-from-fixed	(p.	188) bali-dwiwara-from-fixed	(p.	188)

bali-luang-from-fixed	(p.	188)

bali-pawukon-from-fixed	(p.	185)

bali-day-from-fixed	(p.	187) bali-asatawara-from-fixed	(p.	189)

bali-on-or-before	(p.	189)

bali-pancawara-from-fixed	(p.	187)
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olympiad-start	(p.	82) julian-year-from-olympiad	(p.	82)

olympiad-from-julian-year	(p.	82)

padua	(p.	246) local-zero-hour	(p.	246)

paris	(p.	283) midnight-in-paris	(p.	283)

passover	(p.	129) omer	(p.	129)

persian-epoch	(p.	258) fixed-from-arithmetic-persian	(p.	262)

fixed-from-persian	(p.	260)

nowruz	(p.	265)

persian-from-fixed	(p.	260)

persian-new-year-on-or-before	(p.	259) fixed-from-persian	(p.	260)

persian-from-fixed	(p.	260)

phasis-on-or-after	(p.	252) month-length	(p.	294)



observational-hebrew-first-of-nisan	(p.	297)

phasis-on-or-before	(p.	252) alt-fixed-from-observational-hebrew	(p.	300)

alt-fixed-from-observational-islamic	(p.	295)

alt-observational-hebrew-from-fixed	(p.	299)

alt-observational-islamic-from-fixed	(p.	295)

early-month?	(p.	295)

fixed-from-observational-hebrew	(p.	298)

fixed-from-observational-islamic	(p.	295)

month-length	(p.	294)

observational-hebrew-from-fixed	(p.	298)

observational-islamic-from-fixed	(p.	294)

positions-in-range	(p.	27) cycle-in-gregorian	(p.	83)

kajeng-keliwon	(p.	190)

tumpek	(p.	190)

precession	(p.	225) sidereal-lunar-longitude	(p.	234)

sidereal-solar-longitude	(p.	225)

sidereal-start	(p.	359)



purim	(p.	129) ta-anit-esther	(p.	130)

refraction	(p.	242) observed-lunar-altitude	(p.	243)

sunrise	(p.	242)

sunset	(p.	243)

right-ascension	(p.	220f) lunar-altitude	(p.	238)

solar-altitude	(p.	226)

sacred-wednesdays-in-range	(p.	371) sacred-wednesdays	(p.	370)

samaritan-epoch	(p.	301) fixed-from-samaritan	(p.	301)

samaritan-from-fixed	(p.	302)

samaritan-location	(p.	300) samaritan-new-moon-after	(p.	300)

samaritan-new-moon-at-or-before	(p.	300)

samaritan-noon	(p.	300)

samaritan-new-moon-after	(p.	301) samaritan-new-year-on-or-before	(p.	301)

samaritan-new-moon-at-or-before	(p.	300) fixed-from-samaritan	(p.	301)

samaritan-from-fixed	(p.	302)

samaritan-new-year-on-or-before	(p.	301) fixed-from-samaritan	(p.	301)

samaritan-from-fixed	(p.	302)



samaritan-noon	(p.	300) samaritan-from-fixed	(p.	302)

samaritan-new-year-on-or-before	(p.	301)

samuel-season-in-gregorian	(p.	132) alt-birkath-ha-hama	(p.	132)

saturday	(p.	33) fixed-from-icelandic	(p.	101)

possible-hebrew-days	(p.	139)

tishah-be-av	(p.	130)

saudi-criterion	(p.	296) saudi-new-month-on-or-before	(p.	296)

saudi-new-month-on-or-before	(p.	296) fixed-from-saudi-islamic	(p.	296)

saudi-islamic-from-fixed	(p.	297)

season-in-gregorian	(p.	297) astronomical-easter	(p.	292)

observational-hebrew-first-of-nisan	(p.	297)

september	(p.	59) french-epoch	(p.	283)

labor-day	(p.	69)

shaukat-criterion	(p.	250) visible-crescent	(p.	252)

shevat	(p.	115) possible-hebrew-days	(p.	139)

yahrzeit	(p.	136)

shift-days	(p.	138) possible-hebrew-days	(p.	139)



short-kislev?	(p.	122) last-day-of-hebrew-month	(p.	122)

yahrzeit	(p.	136)

sidereal-from-moment	(p.	219) lunar-altitude	(p.	238)

solar-altitude	(p.	226)

sidereal-solar-longitude	(p.	225) astro-hindu-calendar-year	(p.	360)

astro-hindu-solar-from-fixed	(p.	360)

ayanamsha	(p.	359)

fixed-from-astro-hindu-lunar	(p.	362)

sidereal-zodiac	(p.	360)

sidereal-start	(p.	359) sidereal-lunar-longitude	(p.	234)

sidereal-solar-longitude	(p.	225)

sidereal-zodiac	(p.	360) astro-hindu-lunar-from-fixed	(p.	361)

astro-hindu-solar-from-fixed	(p.	360)

fixed-from-astro-hindu-solar	(p.	360)

simple-best-view	(p.	250) shaukat-criterion	(p.	250)

sine-offset	(p.	241) approx-moment-of-depression	(p.	240)

solar-altitude	(p.	246) arc-of-vision	(p.	251)



solar-anomaly	(p.	234) lunar-distance	(p.	238)

lunar-latitude	(p.	236)

lunar-longitude	(p.	232)

solar-longitude	(p.	223) alt-asr	(p.	249)

asr	(p.	249)

astro-bahai-new-year-on-or-before	(p.	274)

ayanamsha	(p.	359)

chinese-winter-solstice-on-or-before	(p.	309)

current-major-solar-term	(p.	306)

current-minor-solar-term	(p.	308)

estimate-prior-solar-longitude	(p.	226)

french-new-year-on-or-before	(p.	283)

lunar-phase	(p.	235)

major-solar-term-on-or-after	(p.	308)

minor-solar-term-on-or-after	(p.	309)

persian-new-year-on-or-before	(p.	259)

sidereal-solar-longitude	(p.	225)



sine-offset	(p.	241)

solar-altitude	(p.	226)

solar-longitude-after	(p.	224)

solar-longitude-after	(p.	224) chinese-solar-longitude-on-or-after	(p.	308)

season-in-gregorian	(p.	224)

spring	(p.	83) alt-birkath-ha-hama	(p.	132)

astro-bahai-new-year-on-or-before	(p.	274)

astronomical-easter	(p.	292)

observational-hebrew-first-of-nisan	(p.	297)

persian-new-year-on-or-before	(p.	259)

standard-from-local	(p.	208) dawn	(p.	241)

dusk	(p.	242)

standard-from-sundial	(p.	248) hindu-tithi-occur	(p.	368)



jewish-morning-end	(p.	248)

standard-from-universal	(p.	208) chinese-new-moon-before	(p.	310)

chinese-new-moon-on-or-after	(p.	309)

chinese-solar-longitude-on-or-after	(p.	308)

moonrise	(p.	244)

moonset	(p.	245)

standard-from-local	(p.	208)

summer	(p.	83) fixed-from-icelandic	(p.	101)

icelandic-from-fixed	(p.	101)

sunday	(p.	33) advent	(p.	70)

alt-orthodox-easter	(p.	147)

astronomical-easter	(p.	292)

day-of-week-from-fixed	(p.	33)

daylight-saving-end	(p.	70)

daylight-saving-start	(p.	70)

easter	(p.	148)

epiphany	(p.	71)



fixed-from-iso	(p.	96)

orthodox-easter	(p.	146)

possible-hebrew-days	(p.	139)

ta-anit-esther	(p.	130)

yom-ha-zikkaron	(p.	131)

sunrise	(p.	242) daytime-temporal-hour	(p.	247)

nighttime-temporal-hour	(p.	248)

standard-from-sundial	(p.	248)

sunset	(p.	242) babylonian-criterion	(p.	290)

bahai-sunset	(p.	274)

bruin-best-view	(p.	251)

daytime-temporal-hour	(p.	247)

moonlag	(p.	290)

nighttime-temporal-hour	(p.	248)

observational-hebrew-first-of-nisan	(p.	297)

saudi-criterion	(p.	296)

standard-from-sundial	(p.	248)



tammuz	(p.	114) last-day-of-hebrew-month	(p.	122)

tehran	(p.	259) midday-in-tehran	(p.	259)

tevet	(p.	115) last-day-of-hebrew-month	(p.	122)

possible-hebrew-days	(p.	139)

yahrzeit	(p.	136)

thursday	(p.	33) fixed-from-icelandic	(p.	101)

icelandic-summer	(p.	100)

iso-long-year?	(p.	97)

possible-hebrew-days	(p.	139)

yom-ha-zikkaron	(p.	131)

tibetan-epoch	(p.	376) fixed-from-tibetan	(p.	378)

tibetan-from-fixed	(p.	378)

tibetan-from-fixed	(p.	378) tibetan-leap-day?	(p.	381)

tibetan-leap-month?	(p.	380)

tibetan-new-year	(p.	381)

tibetan-leap-month?	(p.	380) losar	(p.	381)

tibetan-leap-day?	(p.	381)



tibetan-moon-equation	(p.	377) fixed-from-tibetan	(p.	378)

tibetan-sun-equation	(p.	377) fixed-from-tibetan	(p.	378)

time-from-moment	(p.	21) alt-birkath-ha-hama	(p.	132)

hindu-standard-from-sundial	(p.	355)

standard-from-sundial	(p.	248)

tishri	(p.	115) alt-fixed-from-observational-hebrew	(p.	299)

alt-observational-hebrew-from-fixed	(p.	299)

fixed-from-hebrew	(p.	123)

fixed-from-molad	(p.	126)

fixed-from-observational-hebrew	(p.	298)

hebrew-from-fixed	(p.	123)

molad	(p.	120)

observational-hebrew-from-fixed	(p.	298)

yom-kippur	(p.	128)

topocentric-lunar-altitude	(p.	239) observed-lunar-altitude	(p.	243)

tuesday	(p.	33) election-day	(p.	70)

possible-hebrew-days	(p.	139)



ujjain	(p.	351) hindu-location	(p.	351)

hindu-sunrise	(p.	354)

hindu-sunset	(p.	355)

hindu-tithi-occur	(p.	368)

universal-from-apparent	(p.	218) midday	(p.	218)

midnight	(p.	218)

universal-from-dynamical	(p.	212) nth-new-moon	(p.	229)

universal-from-local	(p.	208) apparent-from-local	(p.	217)

local-from-apparent	(p.	218)

sidereal-start	(p.	359)

sine-offset	(p.	241)

standard-from-local	(p.	208)

universal-from-apparent	(p.	218)

universal-from-standard	(p.	208) babylonian-criterion	(p.	290)

bahai-sunset	(p.	274)

bruin-best-view	(p.	251)

chinese-solar-longitude-on-or-after	(p.	308)



current-major-solar-term	(p.	306)

current-minor-solar-term	(p.	308)

local-from-standard	(p.	208)

midnight-in-china	(p.	309)

moonrise	(p.	244)

moonset	(p.	245)

observational-hebrew-first-of-nisan	(p.	297)

saudi-criterion	(p.	296)

simple-best-view	(p.	250)

unix-epoch	(p.	19) moment-from-unix	(p.	19)

unix-from-moment	(p.	19)

unlucky-fridays-in-range	(p.	71) unlucky-fridays	(p.	71)

visible-crescent	(p.	252) phasis-on-or-after	(p.	253)

phasis-on-or-before	(p.	252)

wednesday	(p.	33) alt-birkath-ha-hama	(p.	132)

possible-hebrew-days	(p.	139)

sacred-wednesdays-in-range	(p.	371)



yom-ha-zikkaron	(p.	131)

widow	(p.	325) chinese-year-marriage-augury	(p.	325)

winter	(p.	83) chinese-winter-solstice-on-or-before	(p.	309)

icelandic-from-fixed	(p.	101)

icelandic-month	(p.	102)

yahrzeit	(p.	136) yahrzeit-in-gregorian	(p.	137)

year-rome-founded	(p.	81) auc-year-from-julian	(p.	81)

julian-year-from-auc	(p.	81)

zone-from-longitude	(p.	208) local-from-universal	(p.	208)

universal-from-local	(p.	208)

	



Hand-printed	volvelles	(chart	dials)	for	the	Japanese	calendar	by	Hikotaro
Kaneko,	Ise,	Japan,	1886.	The	wheels	on	the	left	calculate	one’s	age;	those	on
the	right	show	lunar	and	solar	months,	tides,	and	so	on.	(Collection	of	E.M.R.)



Appendix	C

Sample	Data
◈

I	admit	that	it	is	not	farfetched	that	I	might	err,	that	some	analysis	or	source	elude	me—this	is	not
a	big	matter.	I	am	elated	that	I	am	being	scrutinized	so	carefully;	whosoever	does	so	merits
reward	and	gratitude.	For	either	he	is	correct	in	his	critique	and	I	benefit	thereby,	or,	if	he	is	in
error,	he	will	derive	benefit.

Maimonides:	Letter	to	Joseph	ben	Judah	Ibn	Simeon,	to	whom
The	Guide	to	the	Perplexed	was	addressed	(1191)

To	aid	the	reader	interested	in	implementing	our	functions,	we	give	two	sets	of
tables	in	this	appendix.	First,	we	give	tables	of	33	dates	from	the	years	 	to
2100	with	their	equivalents	on	all	the	calendars	discussed	in	the	book.	For	each
date	we	also	give	the	dates	of	Easter	that	same	year	(Orthodox,	Gregorian,	and
astronomical);	the	ephemeris	correction,	equation	of	time,	and	solar	longitude	at
12:00:00	U.T.;	 the	 moment	 of	 the	 next	 solstice	 or	 equinox	 (U.T.);	 the	 standard
times	 of	 astronomical	 dawn	 in	 Paris,	 astronomical	 midday	 in	 Tehran,	 and
astronomical	sunset	 for	Jerusalem;	 the	 lunar	 longitude,	 latitude,	 and	 altitude	 at
00:00:00	U.T.;	the	moment	of	the	next	new	moon	(U.T.),	and	the	standard	times	of
moonrise	and	moonset	in	Mecca.	At	the	bottom	of	each	column	in	the	tables	is
the	 equation	 number	 and	 corresponding	 page	 of	 the	 function	 used	 to	 compute
that	column.	Changes	in	the	hardware	and	software	since	the	preparation	of	the
third	edition	have	caused	minor	changes	in	some	sample	values	compared	with
that	edition;	the	revision	of	what	we	called	the	“future	Bahá’í	calendar”	(now	the



astronomical	calendar)	has	caused	significant	changes	 to	some	of	 those	sample
values.	The	second	set	of	tables	gives	the	Gregorian	dates	in	2000–2103	of	many
holidays	and	other	calendrical	events	as	calculated	by	the	functions	in	this	book.

All	 dates	 and	 values	 given	 in	 this	 appendix	 are	 as	 computed	 by	 our
functions	and	hence	may	not	represent	historical	reality;	furthermore,	some	dates
are	 not	 meaningful	 for	 all	 calendars.	 Though	 times	 are	 reported	 down	 to	 the
second,	the	astronomical	algorithms	that	we	use	do	not	promise	such	accuracy.

As	 pointed	 out	 in	 Section	 1.16,	 the	 precise	 values	 of	 floating-point
calculations	 may	 differ	 depending	 on	 the	 programming	 language,
implementation,	 and	 platform.	 For	 example,	 with	 64-bit	 (double	 precision)
calculations,	 the	 solar	 longitude	 at	 midnight	 for	 the	 first	 date,	 R.D.	 ,
computed	with	the	expression

differs	slightly	from	one	implementation	and	computer	to	another:

Such	small	differences,	in	this	case	about	 	of	arc	or	 	seconds	of
time,	 are	 highly	 unlikely	 to	 affect	 the	 computations	 of	 dates.	However,	 single
precision	yields	a	noticeably	different	value,	119.00391°.

All	 the	 values	 in	 this	 appendix	were	 computed	 in	 double	 precision	 on	 an
Intel®	 Xeon®	 E5-2680	 v2	 at	 2.80	 GHz	 and	 required	 about	 208	 seconds	 to
produce.

Allegro	Common	Lisp	on	a	Sun	Blade	gives	118.98911336371384°;

LispWorks	on	a	MacBook	Air	with	Intel	Core	i5	and	GNU	Common
Lisp	on	an	Intel	Xeon	E5410	and	on	an	Intel	Core	i3-530	give
118.98911336367019°;

CLisp	on	an	HP	Compaq	PC	gives	118.98911336376116°;	and

GNU	Common	Lisp	on	an	Intel	Xeon	E5-2680	v2	gives
118.9891133637611631°.



But	go	thou	thy	way	till	the	end	be;	and	thou	shalt	rest,	and	shalt	stand	up	to	thy	lot,	at	the	end	of
the	days.

Daniel	12:13

	



1The	negative	years	in	the	first	two	lines	of	the	columns	for	the	Julian	date	and	the	Roman	name	are
B.C.E.	years,	587	B.C.E.	and	169	B.C.E.,	respectively.	They	appear	as	negative	numbers	because	the	table
consists	of	raw	output	from	the	Lisp	functions.







































Abraham	ben	David	of	Posquieres:	Strictures	to
Maimonides’	Mishneh	Torah,	Gifts	to	the

Poor	(circa	1195)
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Astronomical	clock	(number	3)	designed	and	made	in	Norway	by	Rasmus
Sørnes.	Finished	in	1954,	it	computes	a	large	number	of	time/astronomical
values	including	sidereal	time,	sunsets	and	sunrises,	Gregorian	date,	solar	and



lunar	eclipses,	precession,	tides,	the	positions	of	the	planets,	and	many	other
things.	(Courtesy	of	the	Borgarsyssel	Museum,	Sarpsborg,	Norway.)



Appendix	D

Lisp	Implementation
◈

It	has	been	often	said	that	a	person	does	not	really	understand	something	until	he	teaches	it	to
someone	else.	Actually	a	person	does	not	really	understand	something	until	he	can	teach	it	to	a
computer,	i.e.,	express	it	as	an	algorithm.

Donald	E.	Knuth:	“Computer	Science	and	its	Relation	to	Mathematics,”
American	Mathematical	Monthly	(1974)

This	 appendix	 contains	 the	 complete	 Common	 Lisp	 implementation	 of	 the
calendar	functions	described	in	the	main	text;	 the	equation	numbers	given	here
are	those	of	the	corresponding	functions	in	the	text.	Some	Lisp	functions	have	no
corresponding	 equation	 in	 the	 text—these	 are	 constructors,	 selectors,	 and
standard	mathematical	 operations	 that	 are	 also	 used	 to	 control	 the	 typesetting:
the	functions	in	the	main	text	were	automatically	typeset	from	the	definitions	in
this	appendix.	The	Lisp	functions	are	available	over	the	World	Wide	Web	at

www.cambridge.org/calendricalcalculations

Please	bear	in	mind	the	limits	of	the	License	and	that	the	copyright	on	this	book
includes	the	code.	Also	please	keep	in	mind	that	if	the	result	of	any	calculation	is
critical,	it	should	be	verified	by	independent	means.

For	 licensing	 information	 about	 nonpersonal	 and	 other	 uses,	 contact	 the
authors.	The	code	is	distributed	in	the	hope	that	it	may	be	useful	but	without	any

http://www.cambridge.org/calendricalcalculations


warranty	as	to	the	accuracy	of	its	output	and	with	liability	limited	to	return	of	the
price	of	this	book,	which	restrictions	are	set	forth	on	page	xli.

D.1	 Basics

D.1.1	 Lisp	Preliminaries

For	 readers	 unfamiliar	with	 Lisp,	 this	 section	 provides	 the	 bare	 necessities.	A
complete	description	can	be	found	in	[2].

All	 functions	 in	 Lisp	 are	 written	 in	 prefix	 notation.	 If	 f	 is	 a	 defined
function,	then

		(f	e0	e1	e2	...	en)

applies	f	to	the	 	arguments	e0,	e1,	e2,	…,	en.	Thus,	for	example,	+	adds	up
a	list	of	numbers;	for	example,

		(+	1	-2	3)

adds	 the	 three	numbers	and	returns	 the	value	2.	The	Lisp	functions	-,	*,	and	/
work	similarly,	to	subtract,	multiply,	and	divide,	respectively,	a	list	of	numbers.
In	a	similar	fashion,	<=	( )	checks	 that	 the	numbers	are	 in	nondecreasing	order
and	yields	true	(t	in	Lisp)	if	the	relations	hold.	For	instance,

		(<=	1	2	3)

evaluates	to	t.	The	Lisp	functions	=,	/=	(not	equal),	<,	>,	and	>=	(greater	than	or
equal)	are	similar.	The	predicate	evenp	tests	whether	an	integer	is	even.

Lists	are	Lisp’s	main	data	structure.	To	construct	a	list	(e0	e1	e2	...	en)
the	expression

		(list	e0	e1	e2	...	en)



(1.53)

(1.54)

(1.55)

(1.56)

(1.57)

is	 used.	The	 function	nth,	 used	 as	(nth	i	l),	 extracts	 the	 ith	 element	 of	 the
list	 l,	 indexing	 from	 0;	 the	 predicate	 member,	 used	 as	 (member	 x	 l),	 tests
whether	x	 is	 an	 element	 of	l.	To	get	 the	 first	 (indexed	0),	 second,	 and	 so	 on,
through	 tenth	 elements	 of	 a	 list,	 we	 use	 the	 functions	 first,	 second,	 third,
fourth,	fifth,	sixth,	seventh,	eighth,	ninth,	and	tenth.	The	 tail	of	 the	 list,
consisting	of	all	the	elements	but	the	first,	is	obtained	using	rest.	The	empty	list
is	represented	by	nil.

Constants	 are	 defined	 with	 the	 defconstant	 command,	 which	 has	 the
syntax

		(defconstant	constant-name

					expression)

For	example,

1		(defconstant	sunday

2				;;	TYPE	day-of-week	

3				;;	Residue	class	for	Sunday.	

4				0)

1		(defconstant	monday	

2				;;	TYPE	day-of-week	

3				;;	Residue	class	for	Monday.	

4				1)

1		(defconstant	tuesday

2				;;	TYPE	day-of-week	

3				;;	Residue	class	for	Tuesday.	

4				2)

1		(defconstant	wednesday

2				;;	TYPE	day-of-week	

3				;;	Residue	class	for	Wednesday.	

4				3)

1		(defconstant	thursday

2				;;	TYPE	day-of-week	

3				;;	Residue	class	for	Thursday.	

4				4)
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1		(defconstant	friday

2				;;	TYPE	day-of-week	

3				;;	Residue	class	for	Friday.	

4				5)

1		(defconstant	saturday

2				;;	TYPE	day-of-week	

3				;;	Residue	class	for	Saturday.	

4				6)

Notice	that	semicolons	mark	the	start	of	comments.	“Type”	information	is
given	 in	 comments	 for	 each	 function.	 Although	 Common	 Lisp	 has	 its	 own
system	 of	 type	 declarations,	 we	 prefered	 the	 simpler,	 untyped,	 Lisp,	 but	 we
annotate	each	function	and	constant	to	aid	the	reader	in	translating	our	code	into
a	 typed	 language.	The	 base	 types	 are	 defined	 in	Table	A.1	 beginning	 on	 page
389.

To	 distinguish	 in	 the	 code	 between	 empty	 lists	 (nil)	 and	 the	 truth	 value
“false,”	we	define

1		(defconstant	false	

2				;;	TYPE	boolean	

3				;;	Constant	representing	false.	

4				nil)

For	“true,”	we	define

1		(defconstant	true	

2				;;	TYPE	boolean	

3				;;	Constant	representing	true.	

4				t)

We	also	use	a	string	constant	to	signify	an	error	value:

1		(defconstant	bogus	

2				;;	TYPE	string	

3				;;	Used	to	denote	nonexistent	dates.	

4				"bogus")

The	function	equal	can	be	used	to	check	lists	and	strings	for	equality.
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Functions	are	defined	using	the	defun	command,	which	has	 the	following
syntax:

		(defun	function-name	(param1	...	paramn)

					expression)

For	example,	we	compute	the	day	of	the	week	of	an	R.D.	date	(page	33)	with

1		(defun	day-of-week-from-fixed	(date)

2				;;	TYPE	fixed-date	->	day-of-week	

3				;;	The	residue	class	of	the	day	of	the	week	of	date.

4				(mod	(-	date	(rd	0)	sunday)	7))

and	we	implement	julian	day	calculations	by	writing

1		(defconstant	jd-epoch

2				;;	TYPE	moment	

3				;;	Fixed	time	of	start	of	the	julian	day	number.	

4				(rd	-1721424.5L0))

Common	Lisp	uses	L0	 after	 a	 number	 to	 specify	 unscaled	maximum-precision
(at	least	50-bit)	constants.

We	use	the	identity	function

1		(defun	rd	(tee)

2				;;	TYPE	moment	->	moment	

3				;;	Identity	function	for	fixed	dates/moments.		If	internal

4				;;	timekeeping	is	shifted,	change	epoch	to	be	RD	date	of

5				;;	origin	of	internal	count.		epoch	should	be	an	integer.

6				(let*	((epoch	0))	

7						(-	tee	epoch)))

to	make	it	easy	to	adapt	the	code	to	an	alternate	fixed-date	enumeration—all	that
is	 needed	 is	 to	 change	 the	 value	 of	epoch	 in	 line	 6	 of	rd.	The	Common	Lisp
construct	let*	defines	a	sequence	of	constants	(possibly	in	terms	of	previously
defined	constants)	and	ends	with	an	expression	whose	value	 is	 returned	by	 the
construct.
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1		(defun	moment-from-jd	(jd)

2				;;	TYPE	julian-day-number	->	moment	

3				;;	Moment	of	julian	day	number	jd.	

4				(+	jd	jd-epoch))

1		(defun	jd-from-moment	(tee)

2				;;	TYPE	moment	->	julian-day-number	

3				;;	Julian	day	number	of	moment	tee.	

4				(-	tee	jd-epoch))

1		(defconstant	mjd-epoch

2				;;	TYPE	fixed-date	

3				;;	Fixed	time	of	start	of	the	modified	julian	day	number.

4				(rd	678576))

1		(defun	fixed-from-mjd	(mjd)

2				;;	TYPE	julian-day-number	->	fixed-date	

3				;;	Fixed	date	of	modified	julian	day	number	mjd.	

4				(+	mjd	mjd-epoch))

1		(defun	mjd-from-fixed	(date)

2				;;	TYPE	fixed-date	->	julian-day-number	

3				;;	Modified	julian	day	number	of	fixed	date.	

4				(-	date	mjd-epoch))

1		(defconstant	unix-epoch

2				;;	TYPE	fixed-date	

3				;;	Fixed	date	of	the	start	of	the	Unix	second	count.

4				(rd	719163))

1		(defun	moment-from-unix	(s)

2				;;	TYPE	second	->	moment	

3				;;	Fixed	date	from	Unix	second	count	s	

4				(+	unix-epoch	(/	s	24	60	60)))

1		(defun	unix-from-moment	(tee)

2				;;	TYPE	moment	->	second	

3				;;	Unix	second	count	from	moment	tee	

4				(*	24	60	60	(-	tee	unix-epoch)))

1		(defun	fixed-from-jd	(jd)

2				;;	TYPE	julian-day-number	->	fixed-date	

3				;;	Fixed	date	of	julian	day	number	jd.	

4				(floor	(moment-from-jd	jd)))

1		(defun	jd-from-fixed	(date)
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2				;;	TYPE	fixed-date	->	julian-day-number	

3				;;	Julian	day	number	of	fixed	date.	

4				(jd-from-moment	date))

As	 another	 example	 of	 a	 function	 definition,	 we	 can	 define	 a	 function
(inconveniently	named	floor	in	Common	Lisp)	to	return	the	(truncated)	integer
quotient	of	two	integers,	 :

1		(defun	quotient	(m	n)	

2				;;	TYPE	(real	nonzero-real)	->	integer	

3				;;	Whole	part	of	m/n.	

4				(floor	m	n))

The	floor	function	can	also	be	called	with	one	argument.	Thus

		(floor	x)

is	 ,	the	greatest	integer	less	than	or	equal	to	x.
As	 a	 final	 example	 of	 function	 definitions,	 note	 that	 the	 Common	 Lisp

function	mod	always	returns	a	nonnegative	value	 for	a	positive	divisor;	we	use
this	property	occasionally,	but	we	also	need	a	 function	 like	mod	with	 its	values
adjusted	in	such	a	way	that	the	modulus	of	a	multiple	of	the	divisor	is	the	divisor
itself	rather	than	0.	To	define	this	function,	we	write

1		(defun	amod	(x	y)	

2				;;	TYPE	(integer	nonzero-integer)	->	integer	

3				;;	The	value	of	(x	mod	y)	with	y	instead	of	0.	

4				(+	y	(mod	x	(-	y))))

This	is	typeset	as	 	in	the	main	text.
More	generally,	we	use	a	 function	 that	shifts	 the	modulus	 into	a	specified

range	of	values	[1]:

1		(defun	mod3	(x	a	b)	

2				;;	TYPE	(real	real	real)	->	real	

3				;;	The	value	of	x	shifted	into	the	range	

4				;;	[a..b).	Returns	x	if	a=b.	

5				(if	(=	a	b)	
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6								x	

7						(+	a	(mod	(-	x	a)	(-	b	a)))))

This	is	typeset	as	 ;	see	page	22.
The	 function	 if	 has	 three	 arguments:	 a	 boolean	 condition,	 a	 then-

expression,	 and	 an	 else-expression.	 The	 cond	 statement,	 also	 used	 in	 what
follows,	 lists	 a	 sequence	 of	 tests	 and	 values	 and	 serves	 as	 a	 generalized	 case
statement.

For	convenience	in	expressing	our	calendar	functions	in	Lisp,	we	introduce
a	macro	to	compute	sums.	The	expression

		(sum	f	i	k	p)

computes

that	is,	the	expression	 	is	summed	for	all	i	=	k,	 ,	…,	continuing	only	as
long	as	the	condition	 	holds.	The	sum	is	0	if	 	is	false.	Our	Common	Lisp
definition	of	sum	uses	the	versatile	loop	construct	and	is	as	follows:

1		(defmacro	sum	(expression	index	initial	condition)	

2				;;	TYPE	((integer->real)	*	integer	(integer-

>boolean))	

3				;;	TYPE		->	real	

4				;;	Sum	expression	for	index	=	initial	and	successive

5				;;	integers,	as	long	as	condition	holds.	

6				‘(loop	for	,index	from	,initial	

7											while	,condition	

8											sum	,expression))

This	 is	 the	 first	 of	 the	 few	 instances	 in	 which	 we	 use	 macros	 and	 not
functions;	it	allows	us	to	avoid	the	issue	of	passing	functions	to	functions.

A	similar	macro,	prod,	is	used	for	products:

1		(defmacro	prod	(expression	index	initial	condition)	
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2				;;	TYPE	((integer->real)	*	integer	(integer-

>boolean))	

3				;;	TYPE		->	real	

4				;;	Product	of	expression	for	index	=	initial	and	successive

5				;;	integers,	as	long	as	condition	holds.	

6				‘(apply	’*	

7												(loop	for	,index	from	,initial	

8																		while	,condition	

9																		collect	,expression)))

The	collect	construct	gathers	a	list	of	factors	and	the	function	apply	applies	the
multiplication	operation	to	that	list.

A	summation	macro	sigma	and	a	summation	function	poly	for	polynomials
are	used	mainly	in	the	astronomical	code:

	1		(defmacro	sigma	(list	body)	

	2				;;	TYPE	(list-of-pairs	(list-of-reals->real))	

	3				;;	TYPE		->	real	

	4				;;	list	is	of	the	form	((i1	l1)...(in	ln)).	

	5				;;	Sum	of	body	for	indices	i1...in	

	6				;;	running	simultaneously	thru	lists	l1...ln.	

	7				‘(apply	’+	(mapcar	(function	(lambda	

	8																																			,(mapcar	’car	list)	

	9																																			,body))	

10																							,@(mapcar	’cadr	list))))

1		(defun	poly	(x	a)	

2				;;	TYPE	(real	list-of-reals)	->	real	

3				;;	Sum	powers	of	x	with	coefficients	(from	order	0	up)

4				;;	in	list	a.	

5				(if	(equal	a	nil)	

6								0	

7						(+	(first	a)	(*	x	(poly	x	(rest	a))))))

The	function	mapcar	 applies	a	 function	 (expressed	by	means	of	function
and	lambda)	to	each	element	of	a	list.

Two	 additional	 sum-like	 macros	 are	 used	 for	 searching;	 the	 first
implements	 the	 	 function,	 equation	 (1.32),	 and	 the	 second	 implements
MAX,	equation	(1.33):
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1		(defmacro	next	(index	initial	condition)	

2				;;	TYPE	(*	integer	(integer->boolean))	->	integer	

3				;;	First	integer	greater	or	equal	to	initial	such	that

4				;;	condition	holds.	

5				‘(loop	for	,index	from	,initial	

6											when	,condition	

7											return	,index))

1		(defmacro	final	(index	initial	condition)	

2				;;	TYPE	(*	integer	(integer->boolean))	->	integer	

3				;;	Last	integer	greater	or	equal	to	initial	such	that

4				;;	condition	holds.	

5				‘(loop	for	,index	from	,initial	

6											when	(not	,condition)	

7											return	(1-	,index)))

The	function	1-	decrements	a	number	by	one;	the	similar	function	1+	increments
by	one.

We	 also	 use	 binary	 search—see	 equation	 (1.35)—expressed	 as	 the	macro
binary-search:

1		(defmacro	binary-search	(l	lo	h	hi	x	test	end)	

2				;;	TYPE	(*	real	*	real	*	(real->boolean)	

3				;;	TYPE		((real	real)->boolean))	->	real	

4				;;	Bisection	search	for	x	in	[lo..hi]	such	that	

5				;;	end	holds.		test	determines	when	to	go	left.	

6				(let*	((left	(gensym)))	

7						‘(do*	((,x	false	(/	(+	,h	,l)	2))	

8													(,left	false	,test)	

9													(,l	,lo	(if	,left	,l	,x))	

10													(,h	,hi	(if	,left	,x	,h)))	

11												(,end	(/	(+	,h	,l)	2)))))

The	construct	do*	is	a	form	of	loop.
Binary	search	is	used	mainly	for	function	inversion:

1		(defmacro	invert-angular	(f	y	r)	

2				;;	TYPE	(real->angle	real	interval)	->	real	

3				;;	Use	bisection	to	find	inverse	of	angular	function

4				;;	f	at	y	within	interval	r.	

5				(let*	((varepsilon	1/100000));	Desired	accuracy	

6						‘(binary-search	l	(begin	,r)	u	(end	,r)	x	

7																						(<	(mod	(-	(,f	x)	,y)	360)	(deg	180))
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The	interval	selectors,	begin	and	end,	are	defined	below.

D.1.2	 Basic	Code

To	 extract	 a	 particular	 component	 from	 a	 date,	 we	 use,	 when	 necessary,	 the
functions	standard-month,	standard-day,	and	standard-year.	For	example:

1		(defun	standard-month	(date)	

2				;;	TYPE	standard-date	->	standard-month	

3				;;	Month	field	of	date	=	(year	month	day).	

4				(second	date))

1		(defun	standard-day	(date)	

2				;;	TYPE	standard-date	->	standard-day	

3				;;	Day	field	of	date	=	(year	month	day).	

4				(third	date))

1		(defun	standard-year	(date)	

2				;;	TYPE	standard-date	->	standard-year	

3				;;	Year	field	of	date	=	(year	month	day).	

4				(first	date))

Such	constructors	and	selectors	could	be	defined	as	macros	or	Lisp	structures.	In
languages	like	C	or	C ,	these	would	more	naturally	be	field	selection	in	fixed-
length	records	rather	than	lists.

We	also	have

1		(defun	hour	(clock)	

2				;;	TYPE	clock-time	->	hour	

3				(first	clock))

1		(defun	minute	(clock)	

2				;;	TYPE	clock-time	->	minute	

3				(second	clock))

1		(defun	seconds	(clock)	

2				;;	TYPE	clock-time	->	second	

3				(third	clock))
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1		(defun	time-of-day	(hour	minute	second)	

2				;;	TYPE	(hour	minute	second)	->	clock-time	

3				(list	hour	minute	second))

1		(defun	fixed-from-moment	(tee)	

2				;;	TYPE	moment	->	fixed-date	

3				;;	Fixed-date	from	moment	tee.	

4				(floor	tee))

1		(defun	sign	(y)

2				;;	TYPE	real	->	{-1,0,+1}	

3				;;	Sign	of	y.	

4				(cond	

5					((<	y	0)	-1)	

6					((>	y	0)	+1)	

7					(t	0)))

1		(defun	time-from-moment	(tee)

2				;;	TYPE	moment	->	time	

3				;;	Time	from	moment	tee.	

4				(mod	tee	1))

1		(defun	list-of-fixed-from-moments	(ell)

2				;;	TYPE	list-of-moments	->	list-of-fixed-dates	

3				;;	List	of	fixed	dates	corresponding	to	list	ell	

4				;;	of	moments.	

5				(if	(equal	ell	nil)	

6								nil	

7						(append	(list	(fixed-from-moment	(first	ell)))	

8														(list-of-fixed-from-moments	(rest	ell)))))

1		(defun	interval	(t0	t1)	

2				;;	TYPE	(moment	moment)	->	interval	

3				;;	Half-open	interval	[t0..t1).	

4				(list	t0	t1))

1		(defun	interval-closed	(t0	t1)	

2				;;	TYPE	(moment	moment)	->	interval	

3				;;	Closed	interval	[t0..t1].	

4				(list	t0	t1))

1		(defun	begin	(range)	

2				;;	TYPE	interval	->	moment	

3				;;	Start	t0	of	range	[t0..t1)	or	[t0..t1].	

4				(first	range))



(1.38)

(1.39)

(1.40)

1		(defun	end	(range)	

2				;;	TYPE	interval	->	moment	

3				;;	End	t1	of	range	[t0..t1)	or	[t0..t1].	

4				(second	range))

1		(defun	in-range?	(tee	range)	

2				;;	TYPE	(moment	interval)	->	boolean	

3				;;	True	if	tee	is	in	half-open	range.	

4				(and	(<=	(begin	range)	tee)	(<	tee	(end	range))))

1		(defun	list-range	(ell	range)	

2				;;	TYPE	(list-of-moments	interval)	->	list-of-

moments	

3				;;	Those	moments	in	list	ell	that	occur	in	range.	

4				(if	(equal	ell	nil)	

5								nil	

6						(let*	((r	(list-range	(rest	ell)	range)))	

7								(if	(in-range?	(first	ell)	range)	

8												(append	(list	(first	ell))	r)	

9										r))))

	1		(defun	positions-in-range	(p	c	cap-Delta	range)

	2				;;	TYPE	(nonegative-real	positive-real	

	3				;;	TYPE		nonegative-real	interval)	->	list-of-

moments	

	4				;;	List	of	occurrences	of	moment	p	of	c-day	cycle	

	5				;;	within	range.	

	6				;;	cap-Delta	is	position	in	cycle	of	RD	moment	0.	

	7				(let*	((a	(begin	range))	

	8											(b	(end	range))	

	9											(date	(mod3	(-	p	cap-Delta)	a	(+	a	c))))	

10						(if	(>=	date	b)	

11										nil	

12								(append	(list	date)	

13																(positions-in-range	p	c	cap-Delta	

14																																				(interval	(+	a	c)	b))))))

The	following	two	functions	for	mixed-radix	conversions	(see	Section	1.10)
take	an	optional	third	parameter	for	the	fractional	part	of	the	basis:

	1		(defun	from-radix	(a	b	&optional	c)	

	2				;;	TYPE	(list-of-reals	list-of-rationals	list-of-

rationals)	

	3				;;	TYPE		->	real	

	4				;;	The	number	corresponding	to	a	in	radix	notation	
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	5				;;	with	base	b	for	whole	part	and	c	for	fraction.	

	6				(/	(sum	(*	(nth	i	a)	

	7															(prod	(nth	j	(append	b	c))	

	8																					j	i	(<	j	(+	(length	b)	(length	c)))))

	9												i	0	(<	i	(length	a)))	

10							(apply	’*	c)))

where	length	measures	the	length	of	a	list;	and

	1		(defun	to-radix	(x	b	&optional	c)	

	2				;;	TYPE	(real	list-of-rationals	list-of-rationals)	

	3				;;	TYPE		->	list-of-reals	

	4				;;	The	radix	notation	corresponding	to	x	

	5				;;	with	base	b	for	whole	part	and	c	for	fraction.	

	6				(if	(null	c)	

	7								(if	(null	b)	

	8												(list	x)	

	9										(append	(to-

radix	(quotient	x	(nth	(1-	(length	b))	b))	

10																												(butlast	b)	nil)	

11																		(list	(mod	x	(nth	(1-	(length	b))	b)))))

12						(to-radix	(*	x	(apply	’*	c))	(append	b	c))))

which	is	implemented	recursively.

1		(defun	time-from-clock	(hms)

2				;;	TYPE	clock-time	->	time	

3				;;	Time	of	day	from	hms	=	hour:minute:second.	

4				(/	(from-radix	hms	nil	(list	24	60	60))	24))

1		(defun	clock-from-moment	(tee)

2				;;	TYPE	moment	->	clock-time	

3				;;	Clock	time	hour:minute:second	from	moment	tee.	

4				(rest	(to-radix	tee	nil	(list	24	60	60))))

1		(defun	angle-from-degrees	(alpha)

2				;;	TYPE	angle	->	list-of-reals	

3				;;	List	of	degrees-arcminutes-

arcseconds	from	angle	alpha	

4				;;	in	degrees.	

5				(let*	((dms	(to-

radix	(abs	alpha)	nil	(list	60	60))))	

6						(if	(>=	alpha	0)	

7										dms	

8								(list	;	degrees-minutes-seconds	



(1.46)

(1.47)

(1.48)

(1.45)

9									(-	(first	dms))	(-	(second	dms))	(-	(third	dms))))))

D.1.3	 The	Egyptian	and	Armenian	Calendars

1		(defun	egyptian-date	(year	month	day)	

2				;;	TYPE	(egyptian-year	egyptian-month	egyptian-day)	

3				;;	TYPE		->	egyptian-date	

4				(list	year	month	day))

1		(defconstant	egyptian-epoch

2				;;	TYPE	fixed-date	

3				;;	Fixed	date	of	start	of	the	Egyptian	(Nabonasser)	

4				;;	calendar.	

5				;;	JD	1448638	=	February	26,	747	BCE	(Julian).	

6				(fixed-from-jd	1448638))

	1		(defun	fixed-from-egyptian	(e-date)

	2				;;	TYPE	egyptian-date	->	fixed-date	

	3				;;	Fixed	date	of	Egyptian	date	e-date.	

	4				(let*	((month	(standard-month	e-date))	

	5											(day	(standard-day	e-date))	

	6											(year	(standard-year	e-date)))	

	7						(+	egyptian-

epoch			;	Days	before	start	of	calendar	

	8									(*	365	(1-	year));	Days	in	prior	years	

	9									(*	30	(1-	month));	Days	in	prior	months	this	year

10									day	-1)))								;	Days	so	far	this	month

1		(defun	alt-fixed-from-egyptian	(e-date)

2				;;	TYPE	egyptian-date	->	fixed-date	

3				;;	Fixed	date	of	Egyptian	date	e-date.	

4				(+	egyptian-epoch	

5							(sigma	((a	(list	365	30	1))	

6															(e-date	e-date))	

7														(*	a	(1-	e-date)))))

	1		(defun	egyptian-from-fixed	(date)

	2				;;	TYPE	fixed-date	->	egyptian-date	

	3				;;	Egyptian	equivalent	of	fixed	date.	

	4				(let*	((days	;	Elapsed	days	since	epoch.	

	5												(-	date	egyptian-epoch))	

	6											(year	;	Year	since	epoch.	

	7												(1+	(quotient	days	365)))	

	8											(month;	Calculate	the	month	by	division.	

	9												(1+	(quotient	(mod	days	365)	
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10																										30)))	

11											(day		;	Calculate	the	day	by	subtraction.	

12												(-	days	

13															(*	365	(1-	year))	

14															(*	30	(1-	month))	

15															-1)))	

16						(egyptian-date	year	month	day)))

1		(defun	armenian-date	(year	month	day)	

2				;;	TYPE	(armenian-year	armenian-month	armenian-day)	

3				;;	TYPE		->	armenian-date	

4				(list	year	month	day))

1		(defconstant	armenian-epoch

2				;;	TYPE	fixed-date	

3				;;	Fixed	date	of	start	of	the	Armenian	calendar.	

4				;;	=	July	11,	552	CE	(Julian).	

5				(rd	201443))

	1		(defun	fixed-from-armenian	(a-date)	

	2				;;	TYPE	armenian-date	->	fixed-date	

	3				;;	Fixed	date	of	Armenian	date	a-date.	

	4				(let*	((month	(standard-month	a-date))	

	5											(day	(standard-day	a-date))	

	6											(year	(standard-year	a-date)))	

	7						(+	armenian-epoch	

	8									(-	(fixed-from-egyptian	

	9													(egyptian-date	year	month	day))	

10												egyptian-epoch))))

1		(defun	armenian-from-fixed	(date)

2				;;	TYPE	fixed-date	->	armenian-date	

3				;;	Armenian	equivalent	of	fixed	date.	

4				(egyptian-from-fixed	

5					(+	date	(-	egyptian-epoch	armenian-epoch))))

D.1.4	 Cycles	of	Days

1		(defun	kday-on-or-before	(k	date)

2				;;	TYPE	(day-of-week	fixed-date)	->	fixed-date	

3				;;	Fixed	date	of	the	k-day	on	or	before	fixed	date.	

4				;;	k=0	means	Sunday,	k=1	means	Monday,	and	so	on.	

5				(-	date	(day-of-week-from-fixed	(-	date	k))))

1		(defun	kday-on-or-after	(k	date)
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2				;;	TYPE	(day-of-week	fixed-date)	->	fixed-date	

3				;;	Fixed	date	of	the	k-day	on	or	after	fixed	date.	

4				;;	k=0	means	Sunday,	k=1	means	Monday,	and	so	on.	

5				(kday-on-or-before	k	(+	date	6)))

1		(defun	kday-nearest	(k	date)

2				;;	TYPE	(day-of-week	fixed-date)	->	fixed-date	

3				;;	Fixed	date	of	the	k-day	nearest	fixed	date.	

4				;;	k=0	means	Sunday,	k=1	means	Monday,	and	so	on.	

5				(kday-on-or-before	k	(+	date	3)))

1		(defun	kday-before	(k	date)

2				;;	TYPE	(day-of-week	fixed-date)	->	fixed-date	

3				;;	Fixed	date	of	the	k-day	before	fixed	date.	

4				;;	k=0	means	Sunday,	k=1	means	Monday,	and	so	on.	

5				(kday-on-or-before	k	(-	date	1)))

1		(defun	kday-after	(k	date)

2				;;	TYPE	(day-of-week	fixed-date)	->	fixed-date	

3				;;	Fixed	date	of	the	k-day	after	fixed	date.	

4				;;	k=0	means	Sunday,	k=1	means	Monday,	and	so	on.	

5				(kday-on-or-before	k	(+	date	7)))

D.1.5	 Akan	Calendar

1		(defun	akan-day-name	(n)	

2				;;	TYPE	integer	->	akan-name	

3				;;	The	n-th	name	of	the	Akan	cycle.	

4				(akan-name	(amod	n	6)	

5															(amod	n	7)))

1		(defun	akan-name	(prefix	stem)	

2				;;	TYPE	(akan-prefix	akan-stem)	->	akan-name	

3				(list	prefix	stem))

1		(defun	akan-prefix	(name)	

2				;;	TYPE	akan-name	->	akan-prefix	

3				(first	name))

1		(defun	akan-stem	(name)	

2				;;	TYPE	akan-name	->	akan-stem	

3				(second	name))

	1		(defun	akan-name-difference	(a-name1	a-name2)

	2				;;	TYPE	(akan-name	akan-name)	->	nonnegative-
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integer	

	3				;;	Number	of	names	from	Akan	name	a-name1	to	the	

	4				;;	next	occurrence	of	Akan	name	a-name2.	

	5				(let*	((prefix1	(akan-prefix	a-name1))	

	6											(prefix2	(akan-prefix	a-name2))	

	7											(stem1	(akan-stem	a-name1))	

	8											(stem2	(akan-stem	a-name2))	

	9											(prefix-difference	(-	prefix2	prefix1))	

10											(stem-difference	(-	stem2	stem1)))	

11						(amod	(+	prefix-difference	

12															(*	36	(-	stem-difference	

13																								prefix-difference)))	

14												42)))

1		(defconstant	akan-day-name-epoch

2				;;	TYPE	fixed-date	

3				;;	RD	date	of	an	epoch	(day	0)		of	Akan	day	cycle.	

4				(rd	37))

1		(defun	akan-name-from-fixed	(date)

2				;;	TYPE	fixed-date	->	akan-name	

3				;;	Akan	name	for	date.	

4				(akan-day-name	(-	date	akan-day-name-epoch)))

1		(defun	akan-day-name-on-or-before	(name	date)

2				;;	TYPE	(akan-name	fixed-date)	->	fixed-date	

3				;;	Fixed	date	of	latest	date	on	or	before	fixed	date

4				;;	that	has	Akan	name.	

5				(mod3	

6					(akan-name-difference	(akan-name-from-

fixed	0)	name)	

7					date	(-	date	42)))
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D.2	 The	Gregorian	Calendar
1		(defun	gregorian-date	(year	month	day)	

2				;;	TYPE	(gregorian-year	gregorian-month	gregorian-

day)	

3				;;	TYPE		->	gregorian-date	

4				(list	year	month	day))

1		(defconstant	gregorian-epoch

2				;;	TYPE	fixed-date	

3				;;	Fixed	date	of	start	of	the	(proleptic)	Gregorian	

4				;;	calendar.	

5				(rd	1))

1		(defconstant	january

2				;;	TYPE	standard-month	

3				;;	January	on	Julian/Gregorian	calendar.	

4				1)

1		(defconstant	february

2				;;	TYPE	standard-month	

3				;;	February	on	Julian/Gregorian	calendar.	

4				2)

1		(defconstant	march

2				;;	TYPE	standard-month	

3				;;	March	on	Julian/Gregorian	calendar.	

4				3)

1		(defconstant	april

2				;;	TYPE	standard-month	

3				;;	April	on	Julian/Gregorian	calendar.	

4				4)

1		(defconstant	may

2				;;	TYPE	standard-month	

3				;;	May	on	Julian/Gregorian	calendar.	

4				5)

1		(defconstant	june

2				;;	TYPE	standard-month	

3				;;	June	on	Julian/Gregorian	calendar.	

4				6)
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1		(defconstant	july

2				;;	TYPE	standard-month	

3				;;	July	on	Julian/Gregorian	calendar.	

4				7)

1		(defconstant	august

2				;;	TYPE	standard-month	

3				;;	August	on	Julian/Gregorian	calendar.	

4				8)

1		(defconstant	september

2				;;	TYPE	standard-month	

3				;;	September	on	Julian/Gregorian	calendar.	

4				9)

1		(defconstant	october

2				;;	TYPE	standard-month	

3				;;	October	on	Julian/Gregorian	calendar.	

4				10)

1		(defconstant	november

2				;;	TYPE	standard-month	

3				;;	November	on	Julian/Gregorian	calendar.	

4				11)

1		(defconstant	december

2				;;	TYPE	standard-month	

3				;;	December	on	Julian/Gregorian	calendar.	

4				12)

1		(defun	gregorian-leap-year?	(g-year)

2				;;	TYPE	gregorian-year	->	boolean	

3				;;	True	if	g-year	is	a	leap	year	on	the	Gregorian	

4				;;	calendar.	

5				(and	(=	(mod	g-year	4)	0)	

6									(not	(member	(mod	g-year	400)	

7																						(list	100	200	300)))))

	1		(defun	fixed-from-gregorian	(g-date)

	2				;;	TYPE	gregorian-date	->	fixed-date	

	3				;;	Fixed	date	equivalent	to	the	Gregorian	date	g-

date.	

	4				(let*	((month	(standard-month	g-date))	

	5											(day	(standard-day	g-date))	

	6											(year	(standard-year	g-date)))	

	7						(+	(1-	gregorian-

epoch);	Days	before	start	of	calendar	
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	8									(*	365	(1-	year));	Ordinary	days	since	epoch	

	9									(quotient	(1-	year)	

10																			4);	Julian	leap	days	since	epoch...	

11									(-										;	...minus	century	years	since	epoch...

12										(quotient	(1-	year)	100))	

13									(quotient			;	...plus	years	since	epoch	divisible...

14										(1-	year)	400)		;	...by	400.	

15									(quotient								;	Days	in	prior	months	this	year...

16										(-	(*	367	month)	362);	...assuming	30-day	Feb

17										12)	

18									(if	(<=	month	2)	;	Correct	for	28-	or	29-

day	Feb	

19													0	

20											(if	(gregorian-leap-year?	year)	

21															-1	

22													-2))	

23									day)))										;	Days	so	far	this	month.

1		(defun	gregorian-new-year	(g-year)

2				;;	TYPE	gregorian-year	->	fixed-date	

3				;;	Fixed	date	of	January	1	in	g-year.	

4				(fixed-from-gregorian	

5					(gregorian-date	g-year	january	1)))

1		(defun	gregorian-year-end	(g-year)

2				;;	TYPE	gregorian-year	->	fixed-date	

3				;;	Fixed	date	of	December	31	in	g-year.	

4				(fixed-from-gregorian	

5					(gregorian-date	g-year	december	31)))

1		(defun	gregorian-year-range	(g-year)

2				;;	TYPE	gregorian-year	->	range	

3				;;	The	range	of	moments	in	Gregorian	year	g-year.	

4				(interval	(gregorian-new-year	g-year)	

5														(gregorian-new-year	(1+	g-year))))

	1		(defun	gregorian-year-from-fixed	(date)

	2				;;	TYPE	fixed-date	->	gregorian-year	

	3				;;	Gregorian	year	corresponding	to	the	fixed	date.	

	4				(let*	((d0								;	Prior	days.	

	5												(-	date	gregorian-epoch))	

	6											(n400						;	Completed	400-year	cycles.	

	7												(quotient	d0	146097))	

	8											(d1								;	Prior	days	not	in	n400.	

	9												(mod	d0	146097))	

10											(n100						;	100-year	cycles	not	in	n400.	

11												(quotient	d1	36524))	
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12											(d2								;	Prior	days	not	in	n400	or	n100.

13												(mod	d1	36524))	

14											(n4								;	4-

year	cycles	not	in	n400	or	n100.	

15												(quotient	d2	1461))	

16											(d3								;	Prior	days	not	in	n400,	n100,	or	n4.

17												(mod	d2	1461))	

18											(n1								;	Years	not	in	n400,	n100,	or	n4.

19												(quotient	d3	365))	

20											(year	(+	(*	400	n400)	

21																				(*	100	n100)	

22																				(*	4	n4)	

23																				n1)))	

24						(if	(or	(=	n100	4)	(=	n1	4))	

25										year						;	Date	is	day	366	in	a	leap	year.	

26								(1+	year))));	Date	is	ordinal	day	(1+	(mod	d3	365))

27																																										;	in	(1+	year).

	1		(defun	gregorian-from-fixed	(date)

	2				;;	TYPE	fixed-date	->	gregorian-date	

	3				;;	Gregorian	(year	month	day)	corresponding	to	fixed	date.

	4				(let*	((year	(gregorian-year-from-fixed	date))	

	5											(prior-days;	This	year	

	6												(-	date	(gregorian-new-year	year)))	

	7											(correction;	To	simulate	a	30-day	Feb	

	8												(if	(<	date	(fixed-from-gregorian	

	9																									(gregorian-

date	year	march	1)))	

10																0	

11														(if	(gregorian-leap-year?	year)	

12																		1	

13																2)))	

14											(month					;	Assuming	a	30-day	Feb	

15												(quotient	

16													(+	(*	12	(+	prior-days	correction))	373)	

17													367))	

18											(day							;	Calculate	the	day	by	subtraction.

19												(1+	(-	date	

20																			(fixed-from-gregorian	

21																				(gregorian-date	year	month	1))))))	

22						(gregorian-date	year	month	day)))

1		(defun	gregorian-date-difference	(g-date1	g-date2)

2				;;	TYPE	(gregorian-date	gregorian-date)	->	integer	

3				;;	Number	of	days	from	Gregorian	date	g-date1	until	

4				;;	g-date2.	

5				(-	(fixed-from-gregorian	g-date2)	
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6							(fixed-from-gregorian	g-date1)))

1		(defun	day-number	(g-date)

2				;;	TYPE	gregorian-date	->	positive-integer	

3				;;	Day	number	in	year	of	Gregorian	date	g-date.	

4				(gregorian-date-difference	

5					(gregorian-date	(1-	(standard-year	g-

date))	december	31)	

6					g-date))

1		(defun	days-remaining	(g-date)

2				;;	TYPE	gregorian-date	->	nonnegative-integer	

3				;;	Days	remaining	in	year	after	Gregorian	date	g-

date.	

4				(gregorian-date-difference	

5					g-date	

6					(gregorian-date	(standard-year	g-

date)	december	31)))

	1		(defun	last-day-of-gregorian-month	(g-year	g-month)

	2				;;	TYPE	(gregorian-year	gregorian-month)	-

>	gregorian-day	

	3				;;	Last	day	of	month	g-month	in	Gregorian	year	g-

year.	

	4				(gregorian-date-difference	

	5					(gregorian-date	g-year	g-month	1)	

	6					(gregorian-date	(if	(=	g-month	12)	

	7																									(1+	g-year)	

	8																							g-year)	

	9																					(amod	(1+	g-month)	12)	

10																					1)))

	1		(defun	alt-fixed-from-gregorian	(g-date)

	2				;;	TYPE	gregorian-date	->	fixed-date	

	3				;;	Alternative	calculation	of	fixed	date	equivalent	to	the

	4				;;	Gregorian	date	g-date.	

	5				(let*	((month	(standard-month	g-date))	

	6											(day	(standard-day	g-date))	

	7											(year	(standard-year	g-date))	

	8											(m-prime	(mod	(-	month	3)	12))	

	9											(y-prime	(-	year	(quotient	m-prime	10))))	

10						(+	(1-	gregorian-epoch)	

11									-306								;	Days	in	March...December.	

12									(*	365	y-prime);	Ordinary	days.	

13									(sigma	((y	(to-radix	y-prime	(list	4	25	4)))	

14																	(a	(list	97	24	1	0)))	

15																(*	y	a))	



(2.28)

(2.29)

(2.30)

16									(quotient			;	Days	in	prior	months.	

17										(+	(*	3	m-prime)	2)	

18										5)	

19									(*	30	m-prime)	

20									day)))						;	Days	so	far	this	month.

	1		(defun	alt-gregorian-from-fixed	(date)

	2				;;	TYPE	fixed-date	->	gregorian-date	

	3				;;	Alternative	calculation	of	Gregorian	(year	month	day)

	4				;;	corresponding	to	fixed	date.	

	5				(let*	((y	(gregorian-year-from-fixed	

	6															(+	(1-	gregorian-epoch)	

	7																		date	

	8																		306)))	

	9											(prior-days	

10												(-	date	(fixed-from-gregorian	

11																					(gregorian-date	(1-	y)	march	1))))

12											(month	

13												(amod	(+	(quotient	

14																						(+	(*	5	prior-days)	2)	

15																						153)	

16																					3)	

17																		12))	

18											(year	(-	y	(quotient	(+	month	9)	12)))	

19											(day	

20												(1+	(-	date	

21																			(fixed-from-gregorian	

22																				(gregorian-date	year	month	1))))))	

23						(gregorian-date	year	month	day)))

	1		(defun	alt-gregorian-year-from-fixed	(date)

	2				;;	TYPE	fixed-date	->	gregorian-year	

	3				;;	Gregorian	year	corresponding	to	the	fixed	date.	

	4				(let*	((approx	;	approximate	year	

	5												(quotient	(-	date	gregorian-epoch	-2)	

	6																						146097/400))	

	7											(start		;	start	of	next	year	

	8												(+	gregorian-epoch	

	9															(*	365	approx)	

10															(sigma	((y	(to-

radix	approx	(list	4	25	4)))	

11																							(a	(list	97	24	1	0)))	

12																						(*	y	a)))))	

13						(if	(<	date	start)	

14										approx	

15								(1+	approx))))
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	1		(defun	independence-day	(g-year)

	2				;;	TYPE	gregorian-year	->	fixed-date	

	3				;;	Fixed	date	of	United	States	Independence	Day	in	

	4				;;	Gregorian	year	g-yaer.	

	5				(fixed-from-gregorian	(gregorian-date	g-

year	july	4)))

	1		(defun	nth-kday	(n	k	g-date)

	2				;;	TYPE	(integer	day-of-week	gregorian-date)	-

>	fixed-date	

	3				;;	If	n>0,	return	the	n-th	k-day	on	or	after	

	4				;;	g-date.		If	n<0,	return	the	n-th	k-day	on	or	

	5				;;	before	g-date.		If	n=0	return	bogus.		A	k-day	of

	6				;;	0	means	Sunday,	1	means	Monday,	and	so	on.	

	7				(cond	((>	n	0)	

	8											(+	(*	7	n)	

	9														(kday-before	k	(fixed-from-gregorian	g-

date))))	

10										((<	n	0)	

11											(+	(*	7	n)	

12														(kday-after	k	(fixed-from-gregorian	g-

date))))	

13										(t	bogus)))

	1		(defun	first-kday	(k	g-date)

	2				;;	TYPE	(day-of-week	gregorian-date)	->	fixed-date	

	3				;;	Fixed	date	of	first	k-

day	on	or	after	Gregorian	date	

	4				;;	g-date.	A	k-

day	of	0	means	Sunday,	1	means	Monday,	

	5				;;	and	so	on.	

	6				(nth-kday	1	k	g-date))

	1		(defun	last-kday	(k	g-date)

	2				;;	TYPE	(day-of-week	gregorian-date)	->	fixed-date	

	3				;;	Fixed	date	of	last	k-

day	on	or	before	Gregorian	date	

	4				;;	g-date.	A	k-

day	of	0	means	Sunday,	1	means	Monday,	

	5				;;	and	so	on.	

	6				(nth-kday	-1	k	g-date))

	1		(defun	labor-day	(g-year)

	2				;;	TYPE	gregorian-year	->	fixed-date	

	3				;;	Fixed	date	of	United	States	Labor	Day	in	Gregorian

	4				;;	year	g-year	(the	first	Monday	in	September).	

	5				(first-kday	monday	(gregorian-date	g-
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year	september	1)))

	1		(defun	memorial-day	(g-year)

	2				;;	TYPE	gregorian-year	->	fixed-date	

	3				;;	Fixed	date	of	United	States	Memorial	Day	in	Gregorian

	4				;;	year	g-year	(the	last	Monday	in	May).	

	5				(last-kday	monday	(gregorian-date	g-year	may	31)))

	1		(defun	election-day	(g-year)

	2				;;	TYPE	gregorian-year	->	fixed-date	

	3				;;	Fixed	date	of	United	States	Election	Day	in	Gregorian

	4				;;	year	g-

year	(the	Tuesday	after	the	first	Monday	in	

	5				;;	November).	

	6				(first-kday	tuesday	(gregorian-date	g-

year	november	2)))

	1		(defun	daylight-saving-start	(g-year)

	2				;;	TYPE	gregorian-year	->	fixed-date	

	3				;;	Fixed	date	of	the	start	of	United	States	daylight

	4				;;	saving	time	in	Gregorian	year	g-year	(the	second

	5				;;	Sunday	in	March).	

	6				(nth-kday	2	sunday	(gregorian-date	g-

year	march	1)))

	1		(defun	daylight-saving-end	(g-year)

	2				;;	TYPE	gregorian-year	->	fixed-date	

	3				;;	Fixed	date	of	the	end	of	United	States	daylight	saving

	4				;;	time	in	Gregorian	year	g-

year	(the	first	Sunday	in	

	5				;;	November).	

	6				(first-kday	sunday	(gregorian-date	g-

year	november	1)))

	1		(defun	christmas	(g-year)

	2				;;	TYPE	gregorian-year	->	fixed-date	

	3				;;	Fixed	date	of	Christmas	in	Gregorian	year	g-

year.	

	4				(fixed-from-gregorian	

	5					(gregorian-date	g-year	december	25)))

	1		(defun	advent	(g-year)

	2				;;	TYPE	gregorian-year	->	fixed-date	

	3				;;	Fixed	date	of	Advent	in	Gregorian	year	g-year	

	4				;;	(the	Sunday	closest	to	November	30).	

	5				(kday-nearest	sunday	

	6																		(fixed-from-gregorian	



(2.42)

(2.43)

(2.44)

(2.45)

	7																			(gregorian-date	g-

year	november	30))))

	1		(defun	epiphany	(g-year)

	2				;;	TYPE	gregorian-year	->	fixed-date	

	3				;;	Fixed	date	of	Epiphany	in	U.S.	in	Gregorian	year

	4				;;	g-year	(the	first	Sunday	after	January	1).	

	5				(first-kday	sunday	(gregorian-date	g-

year	january	2)))

	1		(defun	unlucky-fridays-in-range	(range)

	2				;;	TYPE	range	->	list-of-fixed-dates	

	3				;;	List	of	Fridays	within	range	of	dates	

	4				;;	that	are	day	13	of	Gregorian	months.	

	5				(let*	((a	(begin	range))	

	6											(b	(end	range))	

	7											(fri	(kday-on-or-after	friday	a))	

	8											(date	(gregorian-from-fixed	fri)))	

	9						(if	(in-range?	fri	range)	

10										(append	

11											(if	(=	(standard-day	date)	13)	

12															(list	fri)	

13													nil)	

14											(unlucky-fridays-in-range	

15												(interval	(1+	fri)	b)))	

16								nil)))

	1		(defun	unlucky-fridays	(g-year)

	2				;;	TYPE	gregorian-year	->	list-of-fixed-dates	

	3				;;	List	of	Fridays	within	Gregorian	year	g-year	

	4				;;	that	are	day	13	of	Gregorian	months.	

	5				(unlucky-fridays-in-range	

	6					(gregorian-year-range	g-year)))

D.3	 The	Julian	Calendar

In	the	Lisp	code	we	use	 	for	year	n	B.C.E.	(Julian):

	1		(defun	bce	(n)	

	2				;;	TYPE	standard-year	->	julian-year	

	3				;;	Negative	value	to	indicate	a	BCE	Julian	year.	

	4				(-	n))
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and	positive	numbers	for	C.E.	(Julian)	years:

	1		(defun	ce	(n)	

	2				;;	TYPE	standard-year	->	julian-year	

	3				;;	Positive	value	to	indicate	a	CE	Julian	year.	

	4				n)

	1		(defun	julian-date	(year	month	day)	

	2				;;	TYPE	(julian-year	julian-month	julian-day)	

	3				;;	TYPE		->	julian-date	

	4				(list	year	month	day))

	1		(defun	julian-leap-year?	(j-year)

	2				;;	TYPE	julian-year	->	boolean	

	3				;;	True	if	j-

year	is	a	leap	year	on	the	Julian	calendar.	

	4				(=	(mod	j-year	4)	(if	(>	j-year	0)	0	3)))

	1		(defconstant	julian-epoch

	2				;;	TYPE	fixed-date	

	3				;;	Fixed	date	of	start	of	the	Julian	calendar.	

	4				(fixed-from-gregorian	(gregorian-

date	0	december	30)))

	1		(defun	fixed-from-julian	(j-date)

	2				;;	TYPE	julian-date	->	fixed-date	

	3				;;	Fixed	date	equivalent	to	the	Julian	date	j-date.

	4				(let*	((month	(standard-month	j-date))	

	5											(day	(standard-day	j-date))	

	6											(year	(standard-year	j-date))	

	7											(y	(if	(<	year	0)	

	8																		(1+	year)	;	No	year	zero	

	9																year)))	

10						(+	(1-	julian-

epoch)		;	Days	before	start	of	calendar	

11									(*	365	(1-	y))					;	Ordinary	days	since	epoch.

12									(quotient	(1-	y)	4);	Leap	days	since	epoch...	

13									(quotient										;	Days	in	prior	months	this	year...

14										(-	(*	367	month)	362);	...assuming	30-day	Feb

15										12)	

16									(if	(<=	month	2)			;	Correct	for	28-	or	29-

day	Feb	

17													0	

18											(if	(julian-leap-year?	year)	

19															-1	

20													-2))	
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21									day)))													;	Days	so	far	this	month.

	1		(defun	julian-from-fixed	(date)

	2				;;	TYPE	fixed-date	->	julian-date	

	3				;;	Julian	(year	month	day)	corresponding	to	fixed	date.

	4				(let*	((approx						;	Nominal	year.	

	5												(quotient	(+	(*	4	(-	date	julian-

epoch))	1464)	

	6																						1461))	

	7											(year	(if	(<=	approx	0)	

	8																					(1-	approx)	;	No	year	0.	

	9																			approx))	

10											(prior-days;	This	year	

11												(-	date	(fixed-from-julian	

12																					(julian-date	year	january	1))))	

13											(correction;	To	simulate	a	30-day	Feb	

14												(if	(<	date	(fixed-from-julian	

15																									(julian-date	year	march	1)))	

16																0	

17														(if	(julian-leap-year?	year)	

18																		1	

19																2)))	

20											(month					;	Assuming	a	30-day	Feb	

21												(quotient	

22													(+	(*	12	(+	prior-days	correction))	373)	

23													367))	

24											(day							;	Calculate	the	day	by	subtraction.

25												(1+	(-	date	

26																			(fixed-from-julian	

27																				(julian-date	year	month	1))))))	

28						(julian-date	year	month	day)))

	1		(defconstant	kalends

	2				;;	TYPE	roman-event	

	3				;;	Class	of	Kalends.	

	4				1)

	1		(defconstant	nones

	2				;;	TYPE	roman-event	

	3				;;	Class	of	Nones.	

	4				2)

	1		(defconstant	ides

	2				;;	TYPE	roman-event	

	3				;;	Class	of	Ides.	

	4				3)
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	1		(defun	roman-date	(year	month	event	count	leap)	

	2				;;	TYPE	(roman-year	roman-month	roman-event	roman-

count	

	3				;;	TYPE		roman-leap)	->	roman-date	

	4				(list	year	month	event	count	leap))

	1		(defun	roman-year	(date)	

	2				;;	TYPE	roman-date	->	roman-year	

	3				(first	date))

	1		(defun	roman-month	(date)	

	2				;;	TYPE	roman-date	->	roman-month	

	3				(second	date))

	1		(defun	roman-event	(date)	

	2				;;	TYPE	roman-date	->	roman-event	

	3				(third	date))

	1		(defun	roman-count	(date)	

	2				;;	TYPE	roman-date	->	roman-count	

	3				(fourth	date))

	1		(defun	roman-leap	(date)	

	2				;;	TYPE	roman-date	->	roman-leap	

	3				(fifth	date))

	1		(defun	ides-of-month	(month)

	2				;;	TYPE	roman-month	->	ides	

	3				;;	Date	of	Ides	in	Roman	month.	

	4				(if	(member	month	(list	march	may	july	october))	

	5								15	

	6						13))

	1		(defun	nones-of-month	(month)

	2				;;	TYPE	roman-month	->	nones	

	3				;;	Date	of	Nones	in	Roman	month.	

	4				(-	(ides-of-month	month)	8))

	1		(defun	fixed-from-roman	(r-date)

	2				;;	TYPE	roman-date	->	fixed-date	

	3				;;	Fixed	date	for	Roman	name	r-date.	

	4				(let*	((leap	(roman-leap	r-date))	

	5											(count	(roman-count	r-date))	

	6											(event	(roman-event	r-date))	

	7											(month	(roman-month	r-date))	

	8											(year	(roman-year	r-date)))	
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	9						(+	(cond	

10										((=	event	kalends)	

11											(fixed-from-julian	(julian-

date	year	month	1)))	

12										((=	event	nones)	

13											(fixed-from-julian	

14												(julian-date	year	month	(nones-of-

month	month))))	

15										((=	event	ides)	

16											(fixed-from-julian	

17												(julian-date	year	month	(ides-of-

month	month)))))	

18									(-	count)	

19									(if	(and	(julian-leap-year?	year)	

20																		(=	month	march)	

21																		(=	event	kalends)	

22																		(>=	16	count	6))	

23													0	;	After	Ides	until	leap	day	

24											1)	;	Otherwise	

25									(if	leap	

26													1	;	Leap	day	

27											0))))	;	Non-leap	day

	1		(defun	roman-from-fixed	(date)

	2				;;	TYPE	fixed-date	->	roman-date	

	3				;;	Roman	name	for	fixed	date.	

	4				(let*	((j-date	(julian-from-fixed	date))	

	5											(month	(standard-month	j-date))	

	6											(day	(standard-day	j-date))	

	7											(year	(standard-year	j-date))	

	8											(month-prime	(amod	(1+	month)	12))	

	9											(year-prime	(if	(/=	month-prime	1)	

10																											year	

11																									(if	(/=	year	-1)	

12																													(1+	year)	

13																											1)))	

14											(kalends1	(fixed-from-roman	

15																						(roman-date	year-prime	month-

prime	

16																																		kalends	1	false))))	

17						(cond	

18							((=	day	1)	(roman-

date	year	month	kalends	1	false))	

19							((<=	day	(nones-of-month	month))	

20								(roman-date	year	month	nones	

21																				(1+	(-	(nones-of-

month	month)	day))	false))	
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22							((<=	day	(ides-of-month	month))	

23								(roman-date	year	month	ides	

24																				(1+	(-	(ides-of-

month	month)	day))	false))	

25							((or	(/=	month	february)	

26												(not	(julian-leap-year?	year)))	

27								;;	After	the	Ides,	in	a	month	that	is	not	February	of	a

28								;;	leap	year	

29								(roman-date	year-prime	month-prime	kalends	

30																				(1+	(-	kalends1	date))	false))	

31							((<	day	25)	

32								;;	February	of	a	leap	year,	before	leap	day	

33								(roman-

date	year	march	kalends	(-	30	day)	false))	

34							(true	

35								;;	February	of	a	leap	year,	on	or	after	leap	day

36								(roman-date	year	march	kalends	

37																				(-	31	day)	(=	day	25))))))

	1		(defconstant	year-rome-founded

	2				;;	TYPE	julian-year	

	3				;;	Year	on	the	Julian	calendar	of	the	founding	of	Rome.

	4				(bce	753))

	1		(defun	julian-year-from-auc	(year)

	2				;;	TYPE	auc-year	->	julian-year	

	3				;;	Julian	year	equivalent	to	AUC	year	

	4				(if	(<=	1	year	(-	year-rome-founded))	

	5								(+	year	year-rome-founded	-1)	

	6						(+	year	year-rome-founded)))

	1		(defun	auc-year-from-julian	(year)

	2				;;	TYPE	julian-year	->	auc-year	

	3				;;	Year	AUC	equivalent	to	Julian	year	

	4				(if	(<=	year-rome-founded	year	-1)	

	5								(-	year	year-rome-founded	-1)	

	6						(-	year	year-rome-founded)))
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	1		(defun	olympiad	(cycle	year)	

	2				;;	TYPE	(olympiad-cycle	olympiad-year)	->	olympiad	

	3				(list	cycle	year))

	1		(defun	olympiad-cycle	(o-date)	

	2				;;	TYPE	olympiad	->	olympiad-cycle	

	3				(first	o-date))

	1		(defun	olympiad-year	(o-date)	

	2				;;	TYPE	olympiad	->	olympiad-year	

	3				(second	o-date))

	1		(defconstant	olympiad-start

	2				;;	TYPE	julian-year	

	3				;;	Start	of	the	Olympiads.	

	4				(bce	776))

	1		(defun	julian-year-from-olympiad	(o-date)

	2				;;	TYPE	olympiad	->	julian-year	

	3				;;	Julian	year	corresponding	to	Olympian	o-date.	

	4				(let*	((cycle	(olympiad-cycle	o-date))	

	5											(year	(olympiad-year	o-date))	

	6											(years	(+	olympiad-start	

	7																					(*	4	(1-	cycle))	

	8																					year	-1)))	

	9						(if	(<	years	0)	

10										years	

11								(1+	years))))

	1		(defun	olympiad-from-julian-year	(j-year)

	2				;;	TYPE	julian-year	->	olympiad	

	3				;;	Olympiad	corresponding	to	Julian	year	j-year.	

	4				(let*	((years	(-	j-year	olympiad-start	

	5																					(if	(<	j-year	0)	0	1))))	

	6						(olympiad	(1+	(quotient	years	4))	

	7																(1+	(mod	years	4)))))

	1		(defconstant	spring

	2				;;	TYPE	season	

	3				;;	Longitude	of	sun	at	vernal	equinox.	

	4				(deg	0))

	1		(defconstant	summer

	2				;;	TYPE	season	

	3				;;	Longitude	of	sun	at	summer	solstice.	
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	4				(deg	90))

	1		(defconstant	autumn

	2				;;	TYPE	season	

	3				;;	Longitude	of	sun	at	autumnal	equinox.	

	4				(deg	180))

	1		(defconstant	winter

	2				;;	TYPE	season	

	3				;;	Longitude	of	sun	at	winter	solstice.	

	4				(deg	270))

	1		(defun	cycle-in-gregorian	(season	g-year	cap-L	start)

	2				;;	TYPE	(season	gregorian-year	positive-

real	moment)	

	3				;;	TYPE		->	list-of-moments	

	4				;;	Moments	of	season	in	Gregorian	year	g-year.	

	5				;;	Seasonal	year	is	cap-

L	days,	seasons	are	given	as	

	6				;;	longitudes	and	are	of	equal	length,	

	7				;;	and	a	seasonal	year	started	at	moment	start.	

	8				(let*	((year	(gregorian-year-range	g-year))	

	9											(pos	(*	(/	season	(deg	360))	cap-L))	

10											(cap-Delta	(-	pos	(mod	start	cap-L))))	

11						(positions-in-range	pos	cap-L	cap-Delta	year)))

	1		(defun	julian-season-in-gregorian	(season	g-year)

	2				;;	TYPE	(season	gregorian-year)	->	list-of-moments	

	3				;;	Moment(s)	of	Julian	season	in	Gregorian	year	g-

year.	

	4				(let*	((cap-Y	(+	365	(hr	6)))	

	5											(offset	;	season	start	

	6												(*	(/	season	(deg	360))	cap-Y)))	

	7						(cycle-in-gregorian	season	g-year	cap-Y	

	8																										(+	(fixed-from-julian	

	9																														(julian-

date	(bce	1)	march	23))	

10																													offset))))

	1		(defun	julian-in-gregorian	(j-month	j-day	g-year)

	2				;;	TYPE	(julian-month	julian-day	gregorian-year)	

	3				;;	TYPE		->	list-of-fixed-dates	

	4				;;	List	of	the	fixed	dates	of	Julian	month	j-

month,	day	

	5				;;	j-day	that	occur	in	Gregorian	year	g-year.	

	6				(let*	((jan1	(gregorian-new-year	g-year))	

	7											(y	(standard-year	(julian-from-fixed	jan1)))
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	8											(y-prime	(if	(=	y	-1)	

	9																								1	

10																						(1+	y)))	

11											;;	The	possible	occurrences	in	one	year	are	

12											(date0	(fixed-from-julian	

13																			(julian-date	y	j-month	j-day)))	

14											(date1	(fixed-from-julian	

15																			(julian-date	y-prime	j-month	j-

day))))	

16						(list-range	(list	date0	date1)	

17																		(gregorian-year-range	g-year))))

	1		(defun	eastern-orthodox-christmas	(g-year)

	2				;;	TYPE	gregorian-year	->	list-of-fixed-dates	

	3				;;	List	of	zero	or	one	fixed	dates	of	Eastern	Orthodox

	4				;;	Christmas	in	Gregorian	year	g-year.	

	5				(julian-in-gregorian	december	25	g-year))

In	languages	like	Lisp	that	allow	functions	as	parameters,	one	could	write	a
generic	version	of	this	function	to	collect	the	holidays	of	any	given	calendar	and
pass	fixed-from-julian	to	it	as	an	additional	parameter.	We	have	deliberately
avoided	 this	 and	 similar	 advanced	 language	 features	 in	 the	 interests	 of
portability.

D.4	 The	Coptic	and	Ethiopic	Calendars
	1		(defun	coptic-date	(year	month	day)	

	2				;;	TYPE	(coptic-year	coptic-month	coptic-day)	-

>	coptic-date	

	3				(list	year	month	day))

	1		(defconstant	coptic-epoch

	2				;;	TYPE	fixed-date	

	3				;;	Fixed	date	of	start	of	the	Coptic	calendar.	

	4				(fixed-from-julian	(julian-

date	(ce	284)	august	29)))

	1		(defun	coptic-leap-year?	(c-year)

	2				;;	TYPE	coptic-year	->	boolean	

	3				;;	True	if	c-
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year	is	a	leap	year	on	the	Coptic	calendar.	

	4				(=	(mod	c-year	4)	3))

	1		(defun	fixed-from-coptic	(c-date)

	2				;;	TYPE	coptic-date	->	fixed-date	

	3				;;	Fixed	date	of	Coptic	date	c-date.	

	4				(let*	((month	(standard-month	c-date))	

	5											(day	(standard-day	c-date))	

	6											(year	(standard-year	c-date)))	

	7						(+	coptic-

epoch	-1		;	Days	before	start	of	calendar	

	8									(*	365	(1-	year));	Ordinary	days	in	prior	years

	9									(quotient	year	4);	Leap	days	in	prior	years	

10									(*	30	(1-	month));	Days	in	prior	months	this	year

11									day)))											;	Days	so	far	this	month

	1		(defun	coptic-from-fixed	(date)

	2				;;	TYPE	fixed-date	->	coptic-date	

	3				;;	Coptic	equivalent	of	fixed	date.	

	4				(let*	((year	;	Calculate	the	year	by	cycle-of-

years	formula	

	5												(quotient	(+	(*	4	(-	date	coptic-

epoch))	1463)	

	6																						1461))	

	7											(month;	Calculate	the	month	by	division.	

	8												(1+	(quotient	

	9																	(-	date	(fixed-from-coptic	

10																										(coptic-date	year	1	1)))	

11																	30)))	

12											(day		;	Calculate	the	day	by	subtraction.	

13												(-	date	-1	

14															(fixed-from-coptic	

15																(coptic-date	year	month	1)))))	

16						(coptic-date	year	month	day)))

	1		(defun	ethiopic-date	(year	month	day)	

	2				;;	TYPE	(ethiopic-year	ethiopic-month	ethiopic-day)

	3				;;	TYPE		->	ethiopic-date	

	4				(list	year	month	day))

	1		(defconstant	ethiopic-epoch

	2				;;	TYPE	fixed-date	

	3				;;	Fixed	date	of	start	of	the	Ethiopic	calendar.	

	4				(fixed-from-julian	(julian-date	(ce	8)	august	29)))

	1		(defun	fixed-from-ethiopic	(e-date)

	2				;;	TYPE	ethiopic-date	->	fixed-date	
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	3				;;	Fixed	date	of	Ethiopic	date	e-date.	

	4				(let*	((month	(standard-month	e-date))	

	5											(day	(standard-day	e-date))	

	6											(year	(standard-year	e-date)))	

	7						(+	ethiopic-epoch	

	8									(-	(fixed-from-coptic	

	9													(coptic-date	year	month	day))	

10												coptic-epoch))))

	1		(defun	ethiopic-from-fixed	(date)

	2				;;	TYPE	fixed-date	->	ethiopic-date	

	3				;;	Ethiopic	equivalent	of	fixed	date.	

	4				(coptic-from-fixed	

	5					(+	date	(-	coptic-epoch	ethiopic-epoch))))

	1		(defun	coptic-in-gregorian	(c-month	c-day	g-year)

	2				;;	TYPE	(coptic-month	coptic-day	gregorian-year)	

	3				;;	TYPE		->	list-of-fixed-dates	

	4				;;	List	of	the	fixed	dates	of	Coptic	month	c-

month,	day	

	5				;;	c-day	that	occur	in	Gregorian	year	g-year.	

	6				(let*	((jan1	(gregorian-new-year	g-year))	

	7											(y	(standard-year	(coptic-from-fixed	jan1)))

	8											;;	The	possible	occurrences	in	one	year	are	

	9											(date0	(fixed-from-coptic	

10																			(coptic-date	y	c-month	c-day)))	

11											(date1	(fixed-from-coptic	

12																			(coptic-date	(1+	y)	c-month	c-

day))))	

13						(list-range	(list	date0	date1)	

14																		(gregorian-year-range	g-year))))

	1		(defun	coptic-christmas	(g-year)

	2				;;	TYPE	gregorian-year	->	list-of-fixed-dates	

	3				;;	List	of	zero	or	one	fixed	dates	of	Coptic	Christmas

	4				;;	in	Gregorian	year	g-year.	

	5				(coptic-in-gregorian	4	29	g-year))

D.5	 The	ISO	Calendar
	1		(defun	iso-date	(year	week	day)	

	2				;;	TYPE	(iso-year	iso-week	iso-day)	->	iso-date	

	3				(list	year	week	day))
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	1		(defun	iso-week	(date)	

	2				;;	TYPE	iso-date	->	iso-week	

	3				(second	date))

	1		(defun	iso-day	(date)	

	2				;;	TYPE	iso-date	->	day-of-week	

	3				(third	date))

	1		(defun	iso-year	(date)	

	2				;;	TYPE	iso-date	->	iso-year	

	3				(first	date))

	1		(defun	fixed-from-iso	(i-date)

	2				;;	TYPE	iso-date	->	fixed-date	

	3				;;	Fixed	date	equivalent	to	ISO	i-date.	

	4				(let*	((week	(iso-week	i-date))	

	5											(day	(iso-day	i-date))	

	6											(year	(iso-year	i-date)))	

	7						;;	Add	fixed	date	of	Sunday	preceding	date	plus	day

	8						;;	in	week.	

	9						(+	(nth-kday	

10										week	sunday	

11										(gregorian-

date	(1-	year)	december	28))	day)))

	1		(defun	iso-from-fixed	(date)

	2				;;	TYPE	fixed-date	->	iso-date	

	3				;;	ISO	(year	week	day)	corresponding	to	the	fixed	date.

	4				(let*	((approx	;	Year	may	be	one	too	small.	

	5												(gregorian-year-from-fixed	(-	date	3)))	

	6											(year	(if	(>=	date	

	7																									(fixed-from-iso	

	8																										(iso-date	(1+	approx)	1	1)))	

	9																					(1+	approx)	

10																			approx))	

11											(week	(1+	(quotient	

12																						(-	date	

13																									(fixed-from-iso	(iso-

date	year	1	1)))	

14																						7)))	

15											(day	(amod	(-	date	(rd	0))	7)))	

16						(iso-date	year	week	day)))

	1		(defun	iso-long-year?	(i-year)

	2				;;	TYPE	iso-year	->	boolean	

	3				;;	True	if	i-year	is	a	long	(53-week)	year.	

	4				(let*	((jan1	(day-of-week-from-fixed	
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	5																		(gregorian-new-year	i-year)))	

	6											(dec31	(day-of-week-from-fixed	

	7																			(gregorian-year-end	i-year))))	

	8						(or	(=	jan1	thursday)	

	9										(=	dec31	thursday))))

D.6	 The	Icelandic	Calendar
	1		(defun	icelandic-date	(year	season	week	weekday)	

	2				;;	TYPE	(icelandic-year	icelandic-season	

	3				;;	TYPE		icelandic-week	icelandic-weekday)	-

>	icelandic-date	

	4				(list	year	season	week	weekday))

	1		(defun	icelandic-year	(i-date)	

	2				;;	TYPE	icelandic-date	->	icelandic-year	

	3				(first	i-date))

	1		(defun	icelandic-season	(i-date)	

	2				;;	TYPE	icelandic-date	->	icelandic-season	

	3				(second	i-date))

	1		(defun	icelandic-week	(i-date)	

	2				;;	TYPE	icelandic-date	->	icelandic-week	

	3				(third	i-date))

	1		(defun	icelandic-weekday	(i-date)	

	2				;;	TYPE	icelandic-date	->	icelandic-weekday	

	3				(fourth	i-date))

	1		(defconstant	icelandic-epoch

	2				;;	TYPE	fixed-date	

	3				;;	Fixed	date	of	start	of	the	Icelandic	calendar.	

	4				(fixed-from-gregorian	(gregorian-date	1	april	19)))

	1		(defun	icelandic-summer	(i-year)

	2				;;	TYPE	icelandic-year	->	fixed-date	

	3				;;	Fixed	date	of	start	of	Icelandic	year	i-year.	

	4				(let*	((apr19	(+	icelandic-epoch	(*	365	(1-	i-

year))	

	5																					(sigma	((y	(to-radix	i-

year	(list	4	25	4)))	

	6																													(a	(list	97	24	1	0)))	

	7																												(*	y	a)))))	
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	8						(kday-on-or-after	thursday	apr19)))

	1		(defun	icelandic-winter	(i-year)

	2				;;	TYPE	icelandic-year	->	fixed-date	

	3				;;	Fixed	date	of	start	of	Icelandic	winter	season	

	4				;;	in	Icelandic	year	i-year.	

	5				(-	(icelandic-summer	(1+	i-year))	180))

	1		(defun	fixed-from-icelandic	(i-date)

	2				;;	TYPE	icelandic-date	->	fixed-date	

	3				;;	Fixed	date	equivalent	to	Icelandic	i-date.	

	4				(let*	((year	(icelandic-year	i-date))	

	5											(season	(icelandic-season	i-date))	

	6											(week	(icelandic-week	i-date))	

	7											(weekday	(icelandic-weekday	i-date))	

	8											(start	;	Start	of	season.	

	9												(if	(=	season	summer)	

10																(icelandic-summer	year)	

11														(icelandic-winter	year)))	

12											(shift	;	First	day	of	week	in	prior	season.	

13												(if	(=	season	summer)	thursday	saturday)))	

14						(+	start	

15									(*	7	(1-	week))	;	Elapsed	weeks.	

16									(mod	(-	weekday	shift)	7))))

	1		(defun	icelandic-from-fixed	(date)

	2				;;	TYPE	fixed-date	->	icelandic-date	

	3				;;	Icelandic	(year	season	week	weekday)	corresponding	to

	4				;;	the	fixed	date.	

	5				(let*	((approx	;	approximate	year	

	6												(quotient	(-	date	icelandic-epoch	-369)	

	7																						146097/400))	

	8											(year	(if	(>=	date	(icelandic-

summer	approx))	

	9																					approx	

10																			(1-	approx)))	

11											(season	(if	(<	date	(icelandic-winter	year))

12																							summer	

13																					winter))	

14											(start	;	Start	of	current	season.	

15												(if	(=	season	summer)	

16																(icelandic-summer	year)	

17														(icelandic-winter	year)))	

18											(week	;	Weeks	since	start	of	season.	

19												(1+	(quotient	(-	date	start)	7)))	

20											(weekday	(day-of-week-from-fixed	date)))	

21						(icelandic-date	year	season	week	weekday)))
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	1		(defun	icelandic-leap-year?	(i-year)

	2				;;	TYPE	icelandic-year	->	boolean	

	3				;;	True	if	Icelandic	i-

year	is	a	leap	year	(53	weeks)	

	4				;;	on	the	Icelandic	calendar.	

	5				(/=	(-	(icelandic-summer	(1+	i-year))	

	6											(icelandic-summer	i-year))	

	7								364))

	1		(defun	icelandic-month	(i-date)

	2				;;	TYPE	icelandic-date	->	icelandic-month	

	3				;;	Month	of	i-date	on	the	Icelandic	calendar.	

	4				;;	Epagomenae	are	~month~	0.	

	5				(let*	((date	(fixed-from-icelandic	i-date))	

	6											(year	(icelandic-year	i-date))	

	7											(season	(icelandic-season	i-date))	

	8											(midsummer	(-	(icelandic-winter	year)	90))	

	9											(start	(cond	((=	season	winter)	

10																									(icelandic-winter	year))	

11																								((>=	date	midsummer)	

12																									(-	midsummer	90))	

13																								((<	date	(+	(icelandic-

summer	year)	90))	

14																									(icelandic-summer	year))	

15																								(t	;	Epagomenae.	

16																									midsummer))))	

17						(1+	(quotient	(-	date	start)	30))))

D.7	 The	Islamic	Calendar
	1		(defun	islamic-date	(year	month	day)	

	2				;;	TYPE	(islamic-year	islamic-month	islamic-day)	

	3				;;	TYPE		->	islamic-date	

	4				(list	year	month	day))

	1		(defconstant	islamic-epoch

	2				;;	TYPE	fixed-date	

	3				;;	Fixed	date	of	start	of	the	Islamic	calendar.	

	4				(fixed-from-julian	(julian-date	(ce	622)	july	16)))

	1		(defun	islamic-leap-year?	(i-year)

	2				;;	TYPE	islamic-year	->	boolean	

	3				;;	True	if	i-year	is	an	Islamic	leap	year.	

	4				(<	(mod	(+	14	(*	11	i-year))	30)	11))
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	1		(defun	fixed-from-islamic	(i-date)

	2				;;	TYPE	islamic-date	->	fixed-date	

	3				;;	Fixed	date	equivalent	to	Islamic	date	i-date.	

	4				(let*	((month	(standard-month	i-date))	

	5											(day	(standard-day	i-date))	

	6											(year	(standard-year	i-date)))	

	7						(+	(1-	islamic-

epoch)				;	Days	before	start	of	calendar	

	8									(*	(1-	year)	354)					;	Ordinary	days	since	epoch.

	9									(quotient													;	Leap	days	since	epoch.

10										(+	3	(*	11	year))	30)	

11									(*	29	(1-	month))					;	Days	in	prior	months	this	year

12									(quotient	month	2)	

13									day)))																;	Days	so	far	this	month.

	1		(defun	islamic-from-fixed	(date)

	2				;;	TYPE	fixed-date	->	islamic-date	

	3				;;	Islamic	date	(year	month	day)	corresponding	to	fixed

	4				;;	date.	

	5				(let*	((year	

	6												(quotient	

	7													(+	(*	30	(-	date	islamic-epoch))	10646)	

	8													10631))	

	9											(prior-days	

10												(-	date	(fixed-from-islamic	

11																					(islamic-date	year	1	1))))	

12											(month	

13												(quotient	

14													(+	(*	11	prior-days)	330)	

15													325))	

16											(day	

17												(1+	(-	date	(fixed-from-islamic	

18																									(islamic-

date	year	month	1))))))	

19						(islamic-date	year	month	day)))

	1		(defun	islamic-in-gregorian	(i-month	i-day	g-year)

	2				;;	TYPE	(islamic-month	islamic-day	gregorian-year)	

	3				;;	TYPE		->	list-of-fixed-dates	

	4				;;	List	of	the	fixed	dates	of	Islamic	month	i-

month,	day	

	5				;;	i-day	that	occur	in	Gregorian	year	g-year.	

	6				(let*	((jan1	(gregorian-new-year	g-year))	

	7											(y	(standard-year	(islamic-from-

fixed	jan1)))	

	8											;;	The	possible	occurrences	in	one	year	are	

	9											(date0	(fixed-from-islamic	



(7.5)

(7.6)

10																			(islamic-date	y	i-month	i-day)))	

11											(date1	(fixed-from-islamic	

12																			(islamic-date	(1+	y)	i-month	i-

day)))	

13											(date2	(fixed-from-islamic	

14																			(islamic-date	(+	y	2)	i-month	i-

day))))	

15						;;	Combine	in	one	list	those	that	occur	in	current	year

16						(list-range	(list	date0	date1	date2)	

17																		(gregorian-year-range	g-year))))

	1		(defun	mawlid	(g-year)

	2				;;	TYPE	gregorian-year	->	list-of-fixed-dates	

	3				;;	List	of	fixed	dates	of	Mawlid	an-

Nabi	occurring	in	

	4				;;	Gregorian	year	g-year.	

	5				(islamic-in-gregorian	3	12	g-year))
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D.8	 The	Hebrew	Calendar
	1		(defun	hebrew-date	(year	month	day)	

	2				;;	TYPE	(hebrew-year	hebrew-month	hebrew-day)	-

>	hebrew-date	

	3				(list	year	month	day))

	1		(defconstant	nisan

	2				;;	TYPE	hebrew-month	

	3				;;	Nisan	is	month	number	1.	

	4				1)

	1		(defconstant	iyyar

	2				;;	TYPE	hebrew-month	

	3				;;	Iyyar	is	month	number	2.	

	4				2)

	1		(defconstant	sivan

	2				;;	TYPE	hebrew-month	

	3				;;	Sivan	is	month	number	3.	

	4				3)

	1		(defconstant	tammuz

	2				;;	TYPE	hebrew-month	

	3				;;	Tammuz	is	month	number	4.	

	4				4)

	1		(defconstant	av

	2				;;	TYPE	hebrew-month	

	3				;;	Av	is	month	number	5.	

	4				5)

	1		(defconstant	elul

	2				;;	TYPE	hebrew-month	

	3				;;	Elul	is	month	number	6.	

	4				6)

	1		(defconstant	tishri

	2				;;	TYPE	hebrew-month	

	3				;;	Tishri	is	month	number	7.	

	4				7)

	1		(defconstant	marheshvan
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	2				;;	TYPE	hebrew-month	

	3				;;	Marheshvan	is	month	number	8.	

	4				8)

	1		(defconstant	kislev

	2				;;	TYPE	hebrew-month	

	3				;;	Kislev	is	month	number	9.	

	4				9)

	1		(defconstant	tevet

	2				;;	TYPE	hebrew-month	

	3				;;	Tevet	is	month	number	10.	

	4				10)

	1		(defconstant	shevat

	2				;;	TYPE	hebrew-month	

	3				;;	Shevat	is	month	number	11.	

	4				11)

	1		(defconstant	adar

	2				;;	TYPE	hebrew-month	

	3				;;	Adar	is	month	number	12.	

	4				12)

	1		(defconstant	adarii

	2				;;	TYPE	hebrew-month	

	3				;;	Adar	II	is	month	number	13.	

	4				13)

	1		(defun	hebrew-leap-year?	(h-year)

	2				;;	TYPE	hebrew-year	->	boolean	

	3				;;	True	if	h-

year	is	a	leap	year	on	Hebrew	calendar.	

	4				(<	(mod	(1+	(*	7	h-year))	19)	7))

	1		(defun	last-month-of-hebrew-year	(h-year)

	2				;;	TYPE	hebrew-year	->	hebrew-month	

	3				;;	Last	month	of	Hebrew	year	h-year.	

	4				(if	(hebrew-leap-year?	h-year)	

	5								adarii	

	6						adar))

	1		(defun	hebrew-sabbatical-year?	(h-year)

	2				;;	TYPE	hebrew-year	->	boolean	

	3				;;	True	if	h-

year	is	a	sabbatical	year	on	the	Hebrew	
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	4				;;	calendar.	

	5				(=	(mod	h-year	7)	0))

	1		(defconstant	hebrew-epoch

	2				;;	TYPE	fixed-date	

	3				;;	Fixed	date	of	start	of	the	Hebrew	calendar,	that	is,

	4				;;	Tishri	1,	1	AM.	

	5				(fixed-from-julian	(julian-

date	(bce	3761)	october	7)))

	1		(defun	molad	(h-year	h-month)

	2				;;	TYPE	(hebrew-year	hebrew-month)	->	rational-

moment	

	3				;;	Moment	of	mean	conjunction	of	h-month	in	Hebrew	

	4				;;	h-year.	

	5				(let*	((y	;;	Treat	Nisan	as	start	of	year.	

	6												(if	(<	h-month	tishri)	

	7																(1+	h-year)	

	8														h-year))	

	9											(months-elapsed	

10												(+	(-	h-month	tishri)		;;	Months	this	year.

11															(quotient	;;	Months	until	New	Year.	

12																(-	(*	235	y)	234)	

13																19))))	

14						(+	hebrew-epoch	

15									-876/25920	

16									(*	months-elapsed	(+	29	(hr	12)	793/25920)))))

	1		(defun	hebrew-calendar-elapsed-days	(h-year)

	2				;;	TYPE	hebrew-year	->	integer	

	3				;;	Number	of	days	elapsed	from	the	(Sunday)	noon	prior

	4				;;	to	the	epoch	of	the	Hebrew	calendar	to	the	mean	

	5				;;	conjunction	(molad)	of	Tishri	of	Hebrew	year	h-

year,	

	6				;;	or	one	day	later.	

	7				(let*	((months-

elapsed		;	Since	start	of	Hebrew	calendar.	

	8												(quotient	(-	(*	235	h-year)	234)	19))	

	9											(parts-

elapsed;	Fractions	of	days	since	prior	noon.	

10												(+	12084	(*	13753	months-elapsed)))	

11											(days		;	Whole	days	since	prior	noon.	

12												(+	(*	29	months-elapsed)	

13															(quotient	parts-elapsed	25920)))	

14											;;	If	(*	13753	months-

elapsed)	causes	integers	that	

15											;;	are	too	large,	use	instead:	
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16											;;	(parts-elapsed	

17											;;		(+	204	(*	793	(mod	months-

elapsed	1080))))	

18											;;	(hours-elapsed	

19											;;		(+	11	(*	12	months-elapsed)	

20											;;					(*	793	(quotient	months-

elapsed	1080))	

21											;;					(quotient	parts-elapsed	1080)))	

22											;;	(days	

23											;;		(+	(*	29	months-elapsed)	

24											;;					(quotient	hours-elapsed	24)))	

25											;;	If	even	larger	integers	aren’t	a	problem,	use	just:

26											;;	(days	

27											;;		(quotient	(+	12084	(*	months-

elapsed	765433))	

28											;;												25920)))	

29											)	

30						(if	(<	(mod	(*	3	(1+	days))	7)	3);	Sun,	Wed,	or	Fri

31										(+	days	1)	;	Delay	one	day.	

32								days)))

	1		(defun	hebrew-year-length-correction	(h-year)

	2				;;	TYPE	hebrew-year	->	0-2	

	3				;;	Delays	to	start	of	Hebrew	year	h-

year	to	keep	ordinary	

	4				;;	year	in	range	353-

356	and	leap	year	in	range	383-386.	

	5				(let*	((ny0	(hebrew-calendar-elapsed-days	(1-	h-

year)))	

	6											(ny1	(hebrew-calendar-elapsed-days	h-year))	

	7											(ny2	(hebrew-calendar-elapsed-days	(1+	h-

year))))	

	8						(cond	

	9							((=	(-	ny2	ny1)	356)	;	Next	year	would	be	too	long.

10								2)	

11							((=	(-	ny1	ny0)	382)	;	Previous	year	too	short.	

12								1)	

13							(t	0))))

	1		(defun	hebrew-new-year	(h-year)

	2				;;	TYPE	hebrew-year	->	fixed-date	

	3				;;	Fixed	date	of	Hebrew	new	year	h-year.	

	4				(+	hebrew-epoch	

	5							(hebrew-calendar-elapsed-days	h-year)	

	6							(hebrew-year-length-correction	h-year)))

	1		(defun	last-day-of-hebrew-month	(h-year	h-month)
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	2				;;	TYPE	(hebrew-year	hebrew-month)	->	hebrew-day	

	3				;;	Last	day	of	month	h-month	in	Hebrew	year	h-year.

	4				(if	(or	(member	h-month	

	5																				(list	iyyar	tammuz	elul	tevet	adarii))

	6												(and	(=	h-month	adar)	

	7																	(not	(hebrew-leap-year?	h-year)))	

	8												(and	(=	h-month	marheshvan)	

	9																	(not	(long-marheshvan?	h-year)))	

10												(and	(=	h-month	kislev)	

11																	(short-kislev?	h-year)))	

12								29	

13						30))

	1		(defun	long-marheshvan?	(h-year)

	2				;;	TYPE	hebrew-year	->	boolean	

	3				;;	True	if	Marheshvan	is	long	in	Hebrew	year	h-

year.	

	4				(member	(days-in-hebrew-year	h-

year)	(list	355	385)))

	1		(defun	short-kislev?	(h-year)

	2				;;	TYPE	hebrew-year	->	boolean	

	3				;;	True	if	Kislev	is	short	in	Hebrew	year	h-year.	

	4				(member	(days-in-hebrew-year	h-

year)	(list	353	383)))

	1		(defun	days-in-hebrew-year	(h-year)

	2				;;	TYPE	hebrew-year	->	{353,354,355,383,384,385}	

	3				;;	Number	of	days	in	Hebrew	year	h-year.	

	4				(-	(hebrew-new-year	(1+	h-year))	

	5							(hebrew-new-year	h-year)))

	1		(defun	fixed-from-hebrew	(h-date)

	2				;;	TYPE	hebrew-date	->	fixed-date	

	3				;;	Fixed	date	of	Hebrew	date	h-date.	

	4				(let*	((month	(standard-month	h-date))	

	5											(day	(standard-day	h-date))	

	6											(year	(standard-year	h-date)))	

	7						(+	(hebrew-new-year	year)	

	8									day	-1															;	Days	so	far	this	month.

	9									(if	;;	before	Tishri	

10													(<	month	tishri)	

11													;;	Then	add	days	in	prior	months	this	year	before

12													;;	and	after	Nisan.	

13													(+	(sum	(last-day-of-hebrew-month	year	m)	

14																					m	tishri	

15																					(<=	m	(last-month-of-hebrew-
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year	year)))	

16																(sum	(last-day-of-hebrew-month	year	m)	

17																					m	nisan	(<	m	month)))	

18											;;	Else	add	days	in	prior	months	this	year	

19											(sum	(last-day-of-hebrew-month	year	m)	

20																m	tishri	(<	m	month))))))

	1		(defun	hebrew-from-fixed	(date)

	2				;;	TYPE	fixed-date	->	hebrew-date	

	3				;;	Hebrew	(year	month	day)	corresponding	to	fixed	date.

	4				;;	The	fraction	can	be	approximated	by	365.25.	

	5				(let*	((approx				;	Approximate	year	

	6												(1+	

	7													(quotient	(-	date	hebrew-

epoch)	35975351/98496)))	

	8											;;	The	value	35975351/98496,	the	average	length	of

	9											;;	a	Hebrew	year,	can	be	approximated	by	365.25

10											(year						;	Search	forward.	

11												(final	y	(1-	approx)	

12																			(<=	(hebrew-new-year	y)	date)))	

13											(start					;	Starting	month	for	search	for	month.

14												(if	(<	date	(fixed-from-hebrew	

15																									(hebrew-date	year	nisan	1)))	

16																tishri	

17														nisan))	

18											(month	;	Search	forward	from	either	Tishri	or	Nisan.

19												(next	m	start	

20																		(<=	date	

21																						(fixed-from-hebrew	

22																							(hebrew-date	

23																								year	

24																								m	

25																								(last-day-of-hebrew-

month	year	m))))))	

26											(day			;	Calculate	the	day	by	subtraction.	

27												(1+	(-	date	(fixed-from-hebrew	

28																									(hebrew-

date	year	month	1))))))	

29						(hebrew-date	year	month	day)))

We	 are	 using	 Common	 Lisp	 exact	 arithmetic	 for	 rationals	 here	 (and
elsewhere).	Without	 that	 facility,	 one	must	 rephrase	 all	 quotient	 operations	 to
work	with	integers	only.
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The	function	hebrew-calendar-elapsed-days	 is	called	repeatedly	during
the	 calculations,	 often	 several	 times	 for	 the	 same	 year.	 A	 more	 efficient
algorithm	could	avoid	such	repetition.

	1		(defun	fixed-from-molad	(moon)

	2				;;	TYPE	duration	->	fixed-date	

	3				;;	Fixed	date	of	the	molad	that	occurs	moon	days	

	4				;;	and	fractional	days	into	the	week.	

	5				(let*	((r	(mod	(-	(*	74377	moon)	2879/2160)	7)))	

	6						(fixed-from-moment	

	7							(+	(molad	1	tishri)	(*	r	765433)))))

(This	latter	function	requires	64-bit	integers.)

	1		(defun	yom-kippur	(g-year)

	2				;;	TYPE	gregorian-year	->	fixed-date	

	3				;;	Fixed	date	of	Yom	Kippur	occurring	in	Gregorian	year

	4				;;	g-year.	

	5				(let*	((h-year	

	6												(1+	(-	g-year	

	7																			(gregorian-year-from-fixed	

	8																				hebrew-epoch)))))	

	9						(fixed-from-hebrew	(hebrew-date	h-

year	tishri	10))))

	1		(defun	passover	(g-year)

	2				;;	TYPE	gregorian-year	->	fixed-date	

	3				;;	Fixed	date	of	Passover	occurring	in	Gregorian	year

	4				;;	g-year.	

	5				(let*	((h-year	

	6												(-	g-year	

	7															(gregorian-year-from-fixed	hebrew-

epoch))))	

	8						(fixed-from-hebrew	(hebrew-date	h-

year	nisan	15))))

	1		(defun	omer	(date)

	2				;;	TYPE	fixed-date	->	omer-count	

	3				;;	Number	of	elapsed	weeks	and	days	in	the	omer	at	date.

	4				;;	Returns	bogus	if	that	date	does	not	fall	during	the

	5				;;	omer.	

	6				(let*	((c	(-	date	

	7																	(passover	

	8																		(gregorian-year-from-fixed	date)))))	
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	9						(if	(<=	1	c	49)	

10										(list	(quotient	c	7)	(mod	c	7))	

11								bogus)))

	1		(defun	purim	(g-year)

	2				;;	TYPE	gregorian-year	->	fixed-date	

	3				;;	Fixed	date	of	Purim	occurring	in	Gregorian	year	g-

year.	

	4				(let*	((h-year	

	5												(-	g-year	

	6															(gregorian-year-from-fixed	hebrew-

epoch)))	

	7											(last-month		;	Adar	or	Adar	II	

	8												(last-month-of-hebrew-year	h-year)))	

	9						(fixed-from-hebrew	

10							(hebrew-date	h-year	last-month	14))))

	1		(defun	ta-anit-esther	(g-year)

	2				;;	TYPE	gregorian-year	->	fixed-date	

	3				;;	Fixed	date	of	Ta’anit	Esther	occurring	in	

	4				;;	Gregorian	year	g-year.	

	5				(let*	((purim-date	(purim	g-year)))	

	6						(if	;	Purim	is	on	Sunday	

	7										(=	(day-of-week-from-fixed	purim-

date)	sunday)	

	8										;;	Then	prior	Thursday	

	9										(-	purim-date	3)	

10								;;	Else	previous	day	

11								(1-	purim-date))))

	1		(defun	tishah-be-av	(g-year)

	2				;;	TYPE	gregorian-year	->	fixed-date	

	3				;;	Fixed	date	of	Tishah	be-Av	occurring	in	

	4				;;	Gregorian	year	g-year.	

	5				(let*	((h-year	;	Hebrew	year	

	6												(-	g-year	

	7															(gregorian-year-from-fixed	hebrew-

epoch)))	

	8											(av9	

	9												(fixed-from-hebrew	

10													(hebrew-date	h-year	av	9))))	

11						(if	;	Ninth	of	Av	is	Saturday	

12										(=	(day-of-week-from-fixed	av9)	saturday)	

13										;;	Then	the	next	day	

14										(1+	av9)	

15								av9)))
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	1		(defun	yom-ha-zikkaron	(g-year)

	2				;;	TYPE	gregorian-year	->	fixed-date	

	3				;;	Fixed	date	of	Yom	ha-

Zikkaron	occurring	in	Gregorian	

	4				;;	year	g-year.	

	5				(let*	((h-year	;	Hebrew	year	

	6												(-	g-year	

	7															(gregorian-year-from-fixed	hebrew-

epoch)))	

	8											(iyyar4;	Ordinarily	Iyyar	4	

	9												(fixed-from-hebrew	

10													(hebrew-date	h-year	iyyar	4))))	

11						(cond	((member	(day-of-week-from-fixed	iyyar4)	

12																					(list	thursday	friday))	

13													;;	If	Iyyar	4	is	Thursday	or	Friday,	then	Wednesday

14													(kday-before	wednesday	iyyar4))	

15												;;	If	it’s	on	Sunday,	then	Monday	

16												((=	sunday	(day-of-week-from-fixed	iyyar4))

17													(1+	iyyar4))	

18												(t	iyyar4))))

	1		(defun	sh-ela	(g-year)

	2				;;	TYPE	gregorian-year	->	list-of-fixed-dates	

	3				;;	List	of	fixed	dates	of	Sh’ela	occurring	in	

	4				;;	Gregorian	year	g-year.	

	5				(coptic-in-gregorian	3	26	g-year))

	1		(defun	birkath-ha-hama	(g-year)

	2				;;	TYPE	gregorian-year	->	list-of-fixed-dates	

	3				;;	List	of	fixed	date	of	Birkath	ha-

Hama	occurring	in	

	4				;;	Gregorian	year	g-year,	if	it	occurs.	

	5				(let*	((dates	(coptic-in-gregorian	7	30	g-year)))	

	6						(if	(and	(not	(equal	dates	nil))	

	7															(=	(mod	(standard-year	

	8																								(coptic-from-

fixed	(first	dates)))	

	9																							28)	

10																		17))	

11										dates	

12								nil)))

	1		(defun	samuel-season-in-gregorian	(season	g-year)

	2				;;	TYPE	(season	gregorian-year)	->	list-of-moments	

	3				;;	Moment(s)	of	season	in	Gregorian	year	g-year	

	4				;;	per	Samuel.	

	5				(let*	((cap-Y	(+	365	(hr	6)))	
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	6											(offset	;	season	start	

	7												(*	(/	season	(deg	360))	cap-Y)))	

	8						(cycle-in-gregorian	season	g-year	cap-Y	

	9																										(+	(fixed-from-hebrew	

10																														(hebrew-date	1	adar	21))	

11																													(hr	18)	

12																													offset))))

	1		(defun	alt-birkath-ha-hama	(g-year)

	2				;;	TYPE	gregorian-year	->	list-of-fixed-dates	

	3				;;	List	of	fixed	date	of	Birkath	ha-

Hama	occurring	in	

	4				;;	Gregorian	year	g-year,	if	it	occurs.	

	5				(let*	((cap-Y	(+	365	(hr	6)))	;	year	

	6											(season	(+	spring	(*	(hr	6)	(/	(deg	360)	cap-

Y))))	

	7											(moments	(samuel-season-in-

gregorian	season	g-year)))	

	8						(if	(and	(not	(equal	moments	nil))	

	9															(=	(day-of-week-from-

fixed	(first	moments))	

10																		wednesday)	

11															(=	(time-from-moment	(first	moments))	

12																		(hr	0)))	;	midnight	

13										(list	(fixed-from-moment	(first	moments)))	

14								nil)))

	1		(defun	adda-season-in-gregorian	(season	g-year)

	2				;;	TYPE	(season	gregorian-year)	->	list-of-moments	

	3				;;	Moment(s)	of	season	in	Gregorian	year	g-year	

	4				;;	per	R.	Adda	bar	Ahava.	

	5				(let*	((cap-Y	(+	365	(hr	(+	5	3791/4104))))	

	6											(offset	;	season	start	

	7												(*	(/	season	(deg	360))	cap-Y)))	

	8						(cycle-in-gregorian	season	g-year	cap-Y	

	9																										(+	(fixed-from-hebrew	

10																														(hebrew-date	1	adar	28))	

11																													(hr	18)	

12																													offset))))

	1		(defun	hebrew-in-gregorian	(h-month	h-day	g-year)

	2				;;	TYPE	(hebrew-month	hebrew-day	gregorian-year)	

	3				;;	TYPE		->	list-of-fixed-dates	

	4				;;	List	of	the	fixed	dates	of	Hebrew	month	h-

month,	day	

	5				;;	h-day	that	occur	in	Gregorian	year	g-year.	

	6				(let*	((jan1	(gregorian-new-year	g-year))	
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	7											(y	(standard-year	(hebrew-from-fixed	jan1)))

	8											;;	The	possible	occurrences	in	one	year	are	

	9											(date0	(fixed-from-hebrew	

10																			(hebrew-date	y	h-month	h-day)))	

11											(date1	(fixed-from-hebrew	

12																			(hebrew-date	(1+	y)	h-month	h-day)))

13											(date2	(fixed-from-hebrew	

14																			(hebrew-date	(+	y	2)	h-month	h-

day))))	

15						(list-range	(list	date0	date1	date2)	

16																		(gregorian-year-range	g-year))))

	1		(defun	hanukkah	(g-year)

	2				;;	TYPE	gregorian-year	->	list-of-fixed-dates	

	3				;;	Fixed	date(s)	of	first	day	of	Hanukkah	

	4				;;	occurring	in	Gregorian	year	g-year.	

	5				(hebrew-in-gregorian	kislev	25	g-year))

	1		(defun	hebrew-birthday	(birthdate	h-year)

	2				;;	TYPE	(hebrew-date	hebrew-year)	->	fixed-date	

	3				;;	Fixed	date	of	the	anniversary	of	Hebrew	birthdate

	4				;;	occurring	in	Hebrew	h-year.	

	5				(let*	((birth-day	(standard-day	birthdate))	

	6											(birth-month	(standard-month	birthdate))	

	7											(birth-year	(standard-year	birthdate)))	

	8						(if	;	It’s	Adar	in	a	normal	Hebrew	year	or	Adar	II

	9																																										;	in	a	Hebrew	leap	year,

10										(=	birth-month	(last-month-of-hebrew-

year	birth-year))	

11										;;	Then	use	the	same	day	in	last	month	of	Hebrew	year.

12										(fixed-from-hebrew	

13											(hebrew-date	h-year	(last-month-of-hebrew-

year	h-year)	

14																								birth-day))	

15								;;	Else	use	the	normal	anniversary	of	the	birth	date,

16								;;	or	the	corresponding	day	in	years	without	that	date

17								(+	(fixed-from-hebrew	

18												(hebrew-date	h-year	birth-month	1))	

19											birth-day	-1))))

	1		(defun	hebrew-birthday-in-gregorian	(birthdate	g-

year)

	2				;;	TYPE	(hebrew-date	gregorian-year)	

	3				;;	TYPE		->	list-of-fixed-dates	

	4				;;	List	of	the	fixed	dates	of	Hebrew	birthday	

	5				;;	that	occur	in	Gregorian	g-year.	

	6				(let*	((jan1	(gregorian-new-year	g-year))	
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	7											(y	(standard-year	(hebrew-from-fixed	jan1)))

	8											;;	The	possible	occurrences	in	one	year	are	

	9											(date0	(hebrew-birthday	birthdate	y))	

10											(date1	(hebrew-birthday	birthdate	(1+	y)))	

11											(date2	(hebrew-birthday	birthdate	(+	y	2))))

12						;;	Combine	in	one	list	those	that	occur	in	current	year.

13						(list-range	(list	date0	date1	date2)	

14																		(gregorian-year-range	g-year))))

	1		(defun	yahrzeit	(death-date	h-year)

	2				;;	TYPE	(hebrew-date	hebrew-year)	->	fixed-date	

	3				;;	Fixed	date	of	the	anniversary	of	Hebrew	death-

date	

	4				;;	occurring	in	Hebrew	h-year.	

	5				(let*	((death-day	(standard-day	death-date))	

	6											(death-month	(standard-month	death-date))	

	7											(death-year	(standard-year	death-date)))	

	8						(cond	

	9							;;	If	it’s	Marheshvan	30	it	depends	on	the	first

10							;;	anniversary;	if	that	was	not	Marheshvan	30,	use

11							;;	the	day	before	Kislev	1.	

12							((and	(=	death-month	marheshvan)	

13													(=	death-day	30)	

14													(not	(long-marheshvan?	(1+	death-year))))	

15								(1-	(fixed-from-hebrew	

16													(hebrew-date	h-year	kislev	1))))	

17							;;	If	it’s	Kislev	30	it	depends	on	the	first	

18							;;	anniversary;	if	that	was	not	Kislev	30,	use	

19							;;	the	day	before	Tevet	1.	

20							((and	(=	death-month	kislev)	

21													(=	death-day	30)	

22													(short-kislev?	(1+	death-year)))	

23								(1-	(fixed-from-hebrew	

24													(hebrew-date	h-year	tevet	1))))	

25							;;	If	it’s	Adar	II,	use	the	same	day	in	last	

26							;;	month	of	Hebrew	year	(Adar	or	Adar	II).	

27							((=	death-month	adarii)	

28								(fixed-from-hebrew	

29									(hebrew-date	

30										h-year	(last-month-of-hebrew-year	h-year)	

31										death-day)))	

32							;;	If	it’s	the	30th	in	Adar	I	and	Hebrew	year	is	not	a

33							;;	Hebrew	leap	year	(so	Adar	has	only	29	days),	use	the

34							;;	last	day	in	Shevat.	

35							((and	(=	death-day	30)	

36													(=	death-month	adar)	

37													(not	(hebrew-leap-year?	h-year)))	
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38								(fixed-from-hebrew	(hebrew-date	h-

year	shevat	30)))	

39							;;	In	all	other	cases,	use	the	normal	anniversary	of

40							;;	the	date	of	death.	

41							(t	(+	(fixed-from-hebrew	

42														(hebrew-date	h-year	death-month	1))	

43													death-day	-1)))))

	1		(defun	yahrzeit-in-gregorian	(death-date	g-year)

	2				;;	TYPE	(hebrew-date	gregorian-year)	

	3				;;	TYPE		->	list-of-fixed-dates	

	4				;;	List	of	the	fixed	dates	of	death-date	(yahrzeit)

	5				;;	that	occur	in	Gregorian	year	g-year.	

	6				(let*	((jan1	(gregorian-new-year	g-year))	

	7											(y	(standard-year	(hebrew-from-fixed	jan1)))

	8											;;	The	possible	occurrences	in	one	year	are	

	9											(date0	(yahrzeit	death-date	y))	

10											(date1	(yahrzeit	death-date	(1+	y)))	

11											(date2	(yahrzeit	death-date	(+	y	2))))	

12						;;	Combine	in	one	list	those	that	occur	in	current	year

13						(list-range	(list	date0	date1	date2)	

14																		(gregorian-year-range	g-year))))

	1		(defun	shift-days	(l	cap-Delta)

	2				;;	TYPE	(list-of-weekdays	integer)	->	list-of-

weekdays	

	3				;;	Shift	each	weekday	on	list	l	by	cap-Delta	days	

	4				(if	(equal	l	nil)	

	5								nil	

	6						(append	(list	(mod	(+	(first	l)	cap-Delta)	7))	

	7														(shift-days	(rest	l)	cap-Delta))))

	1		(defun	possible-hebrew-days	(h-month	h-day)

	2				;;	TYPE	(hebrew-month	hebrew-day)	->	list-of-

weekdays	

	3				;;	Possible	days	of	week	

	4				(let*	((h-date0	(hebrew-date	5	nisan	1))	

	5											;;	leap	year	with	full	pattern	

	6											(h-year	(if	(>	h-month	elul)	6	5))	

	7											(h-date	(hebrew-date	h-year	h-month	h-day))	

	8											(n	(-	(fixed-from-hebrew	h-date)	

	9																	(fixed-from-hebrew	h-date0)))	

10											(basic	(list	tuesday	thursday	saturday))	

11											(extra	

12												(cond	

13													((and	(=	h-month	marheshvan)	(=	h-day	30))

14														nil)	
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15													((and	(=	h-month	kislev)	(<	h-day	30))	

16														(list	monday	wednesday	friday))	

17													((and	(=	h-month	kislev)	(=	h-day	30))	

18														(list	monday))	

19													((member	h-month	(list	tevet	shevat))	

20														(list	sunday	monday))	

21													((and	(=	h-month	adar)	(<	h-day	30))	

22														(list	sunday	monday))	

23													(t	(list	sunday)))))	

24						(shift-days	(append	basic	extra)	n)))
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D.9	 The	Ecclesiastical	Calendars
	1		(defun	orthodox-easter	(g-year)

	2				;;	TYPE	gregorian-year	->	fixed-date	

	3				;;	Fixed	date	of	Orthodox	Easter	in	Gregorian	year	g-

year.	

	4				(let*	((shifted-epact	;	Age	of	moon	for	April	5.	

	5												(mod	(+	14	(*	11	(mod	g-year	19)))	

	6																	30))	

	7											(j-year	(if	(>	g-

year	0);	Julian	year	number.	

	8																							g-year	

	9																					(1-	g-year)))	

10											(paschal-moon		;	Day	after	full	moon	on	

11																																										;	or	after	March	21.

12												(-	(fixed-from-julian	(julian-date	j-

year	april	19))	

13															shifted-epact)))	

14						;;	Return	the	Sunday	following	the	Paschal	moon.	

15						(kday-after	sunday	paschal-moon)))

	1		(defun	alt-orthodox-easter	(g-year)

	2				;;	TYPE	gregorian-year	->	fixed-date	

	3				;;	Alternative	calculation	of	fixed	date	of	Orthodox	Easter

	4				;;	in	Gregorian	year	g-year.	

	5				(let*	((paschal-moon		;	Day	after	full	moon	on	

	6																																										;	or	after	March	21.

	7												(+	(*	354	g-year)	

	8															(*	30	(quotient	(+	(*	7	g-year)	8)	19))	

	9															(quotient	g-year	4)	

10															(-	(quotient	g-year	19))	

11															-273	

12															gregorian-epoch)))	

13						;;	Return	the	Sunday	following	the	Paschal	moon.	

14						(kday-after	sunday	paschal-moon)))

	1		(defun	easter	(g-year)

	2				;;	TYPE	gregorian-year	->	fixed-date	

	3				;;	Fixed	date	of	Easter	in	Gregorian	year	g-year.	

	4				(let*	((century	(1+	(quotient	g-year	100)))	

	5											(shifted-

epact								;	Age	of	moon	for	April	5...	

	6												(mod	
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	7													(+	14	(*	11	(mod	g-

year	19));			...by	Nicaean	rule	

	8																(-	;...corrected	for	the	Gregorian	century	rule

	9																	(quotient	(*	3	century)	4))	

10																(quotient;	...corrected	for	Metonic	

11																																										;	cycle	inaccuracy.

12																	(+	5	(*	8	century))	25))	

13													30))	

14											(adjusted-

epact							;		Adjust	for	29.5	day	month.	

15												(if	(or	(=	shifted-epact	0)	

16																				(and	(=	shifted-epact	1)	

17																									(<	10	(mod	g-year	19))))	

18																(1+	shifted-epact)	

19														shifted-epact))	

20											(paschal-moon;	Day	after	full	moon	on	

21																																										;	or	after	March	21.

22												(-	(fixed-from-gregorian	

23																(gregorian-date	g-year	april	19))	

24															adjusted-epact)))	

25						;;	Return	the	Sunday	following	the	Paschal	moon.	

26						(kday-after	sunday	paschal-moon)))

	1		(defun	pentecost	(g-year)

	2				;;	TYPE	gregorian-year	->	fixed-date	

	3				;;	Fixed	date	of	Pentecost	in	Gregorian	year	g-

year.	

	4				(+	(easter	g-year)	49))

D.10	 The	Old	Hindu	Calendars
	1		(defconstant	hindu-epoch

	2				;;	TYPE	fixed-date	

	3				;;	Fixed	date	of	start	of	the	Hindu	calendar	(Kali	Yuga).

	4				(fixed-from-julian	(julian-

date	(bce	3102)	february	18)))

	1		(defun	hindu-day-count	(date)

	2				;;	TYPE	fixed-date	->	integer	

	3				;;	Elapsed	days	(Ahargana)	to	date	since	Hindu	epoch	(KY).

	4				(-	date	hindu-epoch))

	1		(defconstant	arya-solar-year

	2				;;	TYPE	rational	
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	3				;;	Length	of	Old	Hindu	solar	year.	

	4				1577917500/4320000)

	1		(defconstant	arya-jovian-period

	2				;;	TYPE	rational	

	3				;;	Number	of	days	in	one	revolution	of	Jupiter	around	the

	4				;;	Sun.	

	5				1577917500/364224)

	1		(defun	jovian-year	(date)

	2				;;	TYPE	fixed-date	->	1-60	

	3				;;	Year	of	Jupiter	cycle	at	fixed	date.	

	4				(amod	(+	27	(quotient	(hindu-day-count	date)	

	5																										(/	arya-jovian-period	12)))	

	6										60))

	1		(defconstant	arya-solar-month

	2				;;	TYPE	rational	

	3				;;	Length	of	Old	Hindu	solar	month.	

	4				(/	arya-solar-year	12))

	1		(defun	fixed-from-old-hindu-solar	(s-date)

	2				;;	TYPE	hindu-solar-date	->	fixed-date	

	3				;;	Fixed	date	corresponding	to	Old	Hindu	solar	date	s-

date.	

	4				(let*	((month	(standard-month	s-date))	

	5											(day	(standard-day	s-date))	

	6											(year	(standard-year	s-date)))	

	7						(ceiling	

	8							(+	hindu-epoch	;	Since	start	of	era.	

	9										(*	year	arya-solar-

year)	;	Days	in	elapsed	years	

10										(*	(1-	month)	arya-solar-

month)	;	...in	months.	

11										day	(hr	-30)))))	;	Midnight	of	day.

	1		(defun	old-hindu-solar-from-fixed	(date)

	2				;;	TYPE	fixed-date	->	hindu-solar-date	

	3				;;	Old	Hindu	solar	date	equivalent	to	fixed	date.	

	4				(let*	((sun	;	Sunrise	on	Hindu	date.	

	5												(+	(hindu-day-count	date)	(hr	6)))	

	6											(year				;	Elapsed	years.	

	7												(quotient	sun	arya-solar-year))	

	8											(month	(1+	(mod	(quotient	sun	arya-solar-

month)	

	9																											12)))	

10											(day	(1+	(floor	(mod	sun	arya-solar-
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month)))))	

11						(hindu-solar-date	year	month	day)))

	1		(defun	old-hindu-lunar-date	(year	month	leap	day)	

	2				;;	TYPE	(old-hindu-lunar-year	old-hindu-lunar-month

	3				;;	TYPE		old-hindu-lunar-leap	old-hindu-lunar-day)	

	4				;;	TYPE		->	old-hindu-lunar-date	

	5				(list	year	month	leap	day))

	1		(defun	old-hindu-lunar-month	(date)	

	2				;;	TYPE	old-hindu-lunar-date	->	old-hindu-lunar-

month	

	3				(second	date))

	1		(defun	old-hindu-lunar-leap	(date)	

	2				;;	TYPE	old-hindu-lunar-date	->	old-hindu-lunar-

leap	

	3				(third	date))

	1		(defun	old-hindu-lunar-day	(date)	

	2				;;	TYPE	old-hindu-lunar-date	->	old-hindu-lunar-day

	3				(fourth	date))

	1		(defun	old-hindu-lunar-year	(date)	

	2				;;	TYPE	old-hindu-lunar-date	->	old-hindu-lunar-

year	

	3				(first	date))

	1		(defconstant	arya-lunar-month

	2				;;	TYPE	rational	

	3				;;	Length	of	Old	Hindu	lunar	month.	

	4				1577917500/53433336)

	1		(defconstant	arya-lunar-day

	2				;;	TYPE	rational	

	3				;;	Length	of	Old	Hindu	lunar	day.	

	4				(/	arya-lunar-month	30))

	1		(defun	old-hindu-lunar-leap-year?	(l-year)

	2				;;	TYPE	old-hindu-lunar-year	->	boolean	

	3				;;	True	if	l-year	is	a	leap	year	on	the	

	4				;;	old	Hindu	calendar.	

	5				(>=	(mod	(-	(*	l-year	arya-solar-year)	

	6																arya-solar-month)	

	7													arya-lunar-month)	

	8								23902504679/1282400064))
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	1		(defun	old-hindu-lunar-from-fixed	(date)

	2				;;	TYPE	fixed-date	->	old-hindu-lunar-date	

	3				;;	Old	Hindu	lunar	date	equivalent	to	fixed	date.	

	4				(let*	((sun	;	Sunrise	on	Hindu	date.	

	5												(+	(hindu-day-count	date)	(hr	6)))	

	6											(new-moon	;	Beginning	of	lunar	month.	

	7												(-	sun	(mod	sun	arya-lunar-month)))	

	8											(leap	;	If	lunar	contained	in	solar.	

	9												(and	(>=	(-	arya-solar-month	arya-lunar-

month)	

10																					(mod	new-moon	arya-solar-month))	

11																	(>	(mod	new-moon	arya-solar-

month)	0)))	

12											(month	;	Next	solar	month’s	name.	

13												(1+	(mod	(ceiling	(/	new-moon	

14																																	arya-solar-month))	

15																					12)))	

16											(day	;	Lunar	days	since	beginning	of	lunar	month.

17												(1+	(mod	(quotient	sun	arya-lunar-

day)	30)))	

18											(year	;	Solar	year	at	end	of	lunar	month(s).

19												(1-	(ceiling	(/	(+	new-moon	arya-solar-

month)	

20																												arya-solar-year)))))	

21						(old-hindu-lunar-date	year	month	leap	day)))

	1		(defun	fixed-from-old-hindu-lunar	(l-date)

	2				;;	TYPE	old-hindu-lunar-date	->	fixed-date	

	3				;;	Fixed	date	corresponding	to	Old	Hindu	lunar	date

	4				;;	l-date.	

	5				(let*	((year	(old-hindu-lunar-year	l-date))	

	6											(month	(old-hindu-lunar-month	l-date))	

	7											(leap	(old-hindu-lunar-leap	l-date))	

	8											(day	(old-hindu-lunar-day	l-date))	

	9											(mina	;	One	solar	month	before	solar	new	year.

10												(*	(1-	(*	12	year))	arya-solar-month))	

11											(lunar-new-year	;	New	moon	after	mina.	

12												(*	arya-lunar-month	

13															(1+	(quotient	mina	arya-lunar-month)))))

14						(ceiling	

15							(+	hindu-epoch	

16										lunar-new-year	

17										(*	arya-lunar-month	

18													(if	;	If	there	was	a	leap	month	this	year.

19																	(and	(not	leap)	

20																						(<=	(ceiling	(/	(-	lunar-new-

year	mina)	
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21																																						(-	arya-solar-

month	

22																																									arya-lunar-

month)))	

23																										month))	

24																	month	

25															(1-	month)))	

26										(*	(1-	day)	arya-lunar-day)	;	Lunar	days.	

27										(hr	-6)))))	;	Subtract	1	if	phase	begins	before

28																																										;	sunrise.

D.11	 The	Mayan	Calendars
	1		(defun	mayan-long-count-

date	(baktun	katun	tun	uinal	kin)	

	2				;;	TYPE	(mayan-baktun	mayan-katun	mayan-tun	mayan-

uinal	

	3				;;	TYPE		mayan-kin)	->	mayan-long-count-date	

	4				(list	baktun	katun	tun	uinal	kin))

	1		(defun	mayan-baktun	(date)	

	2				;;	TYPE	mayan-long-count-date	->	mayan-baktun	

	3				(first	date))

	1		(defun	mayan-katun	(date)	

	2				;;	TYPE	mayan-long-count-date	->	mayan-katun	

	3				(second	date))

	1		(defun	mayan-tun	(date)	

	2				;;	TYPE	mayan-long-count-date	->	mayan-tun	

	3				(third	date))

	1		(defun	mayan-uinal	(date)	

	2				;;	TYPE	mayan-long-count-date	->	mayan-uinal	

	3				(fourth	date))

	1		(defun	mayan-kin	(date)	

	2				;;	TYPE	mayan-long-count-date	->	mayan-kin	

	3				(fifth	date))

	1		(defconstant	mayan-epoch

	2				;;	TYPE	fixed-date	

	3				;;	Fixed	date	of	start	of	the	Mayan	calendar,	according

	4				;;	to	the	Goodman-Martinez-Thompson	correlation.	
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	5				;;	That	is,	August	11,	-3113.	

	6				(fixed-from-jd	584283))

	1		(defun	fixed-from-mayan-long-count	(count)

	2				;;	TYPE	mayan-long-count-date	->	fixed-date	

	3				;;	Fixed	date	corresponding	to	the	Mayan	long	count,

	4				;;	which	is	a	list	(baktun	katun	tun	uinal	kin).	

	5				(+	mayan-epoch						;	Fixed	date	at	Mayan	0.0.0.0.0

	6							(from-radix	count	(list	20	20	18	20))))

	1		(defun	mayan-long-count-from-fixed	(date)

	2				;;	TYPE	fixed-date	->	mayan-long-count-date	

	3				;;	Mayan	long	count	date	of	fixed	date.	

	4				(to-radix	(-	date	mayan-epoch)	(list	20	20	18	20)))

	1		(defun	mayan-haab-date	(month	day)	

	2				;;	TYPE	(mayan-haab-month	mayan-haab-day)	->	mayan-

haab-date	

	3				(list	month	day))

	1		(defun	mayan-haab-day	(date)	

	2				;;	TYPE	mayan-haab-date	->	mayan-haab-day	

	3				(second	date))

	1		(defun	mayan-haab-month	(date)	

	2				;;	TYPE	mayan-haab-date	->	mayan-haab-month	

	3				(first	date))

	1		(defun	mayan-haab-ordinal	(h-date)

	2				;;	TYPE	mayan-haab-date	->	nonnegative-integer	

	3				;;	Number	of	days	into	cycle	of	Mayan	haab	date	h-

date.	

	4				(let*	((day	(mayan-haab-day	h-date))	

	5											(month	(mayan-haab-month	h-date)))	

	6						(+	(*	(1-	month)	20)	day)))

	1		(defconstant	mayan-haab-epoch

	2				;;	TYPE	fixed-date	

	3				;;	Fixed	date	of	start	of	haab	cycle.	

	4				(-	mayan-epoch	

	5							(mayan-haab-ordinal	(mayan-haab-date	18	8))))

	1		(defun	mayan-haab-from-fixed	(date)

	2				;;	TYPE	fixed-date	->	mayan-haab-date	

	3				;;	Mayan	haab	date	of	fixed	date.	

	4				(let*	((count	
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	5												(mod	(-	date	mayan-haab-epoch)	365))	

	6											(day	(mod	count	20))	

	7											(month	(1+	(quotient	count	20))))	

	8						(mayan-haab-date	month	day)))

	1		(defun	mayan-haab-on-or-before	(haab	date)

	2				;;	TYPE	(mayan-haab-date	fixed-date)	->	fixed-date	

	3				;;	Fixed	date	of	latest	date	on	or	before	fixed	date

	4				;;	that	is	Mayan	haab	date	haab.	

	5				(mod3	(+	(mayan-haab-ordinal	haab)	mayan-haab-

epoch)	

	6										date	(-	date	365)))

	1		(defun	mayan-tzolkin-date	(number	name)	

	2				;;	TYPE	(mayan-tzolkin-number	mayan-tzolkin-name)	

	3				;;	TYPE		->	mayan-tzolkin-date	

	4				(list	number	name))

	1		(defun	mayan-tzolkin-number	(date)	

	2				;;	TYPE	mayan-tzolkin-date	->	mayan-tzolkin-number	

	3				(first	date))

	1		(defun	mayan-tzolkin-name	(date)	

	2				;;	TYPE	mayan-tzolkin-date	->	mayan-tzolkin-name	

	3				(second	date))

	1		(defconstant	mayan-tzolkin-epoch

	2				;;	TYPE	fixed-date	

	3				;;	Start	of	tzolkin	date	cycle.	

	4				(-	mayan-epoch	

	5							(mayan-tzolkin-ordinal	(mayan-tzolkin-

date	4	20))))

	1		(defun	mayan-tzolkin-from-fixed	(date)

	2				;;	TYPE	fixed-date	->	mayan-tzolkin-date	

	3				;;	Mayan	tzolkin	date	of	fixed	date.	

	4				(let*	((count	(-	date	mayan-tzolkin-epoch	-1))	

	5											(number	(amod	count	13))	

	6											(name	(amod	count	20)))	

	7						(mayan-tzolkin-date	number	name)))

	1		(defun	mayan-tzolkin-ordinal	(t-date)

	2				;;	TYPE	mayan-tzolkin-date	->	nonnegative-integer	

	3				;;	Number	of	days	into	Mayan	tzolkin	cycle	of	t-

date.	

	4				(let*	((number	(mayan-tzolkin-number	t-date))	

	5											(name	(mayan-tzolkin-name	t-date)))	
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	6						(mod	(+	number	-1	

	7														(*	39	(-	number	name)))	

	8											260)))

	1		(defun	mayan-tzolkin-on-or-before	(tzolkin	date)

	2				;;	TYPE	(mayan-tzolkin-date	fixed-date)	->	fixed-

date	

	3				;;	Fixed	date	of	latest	date	on	or	before	fixed	date

	4				;;	that	is	Mayan	tzolkin	date	tzolkin.	

	5				(mod3	(+	(mayan-tzolkin-ordinal	tzolkin)	mayan-

tzolkin-epoch)	

	6										date	(-	date	260)))

	1		(defun	mayan-year-bearer-from-fixed	(date)

	2				;;	TYPE	fixed-date	->	mayan-tzolkin-name	

	3				;;	Year	bearer	of	year	containing	fixed	date.	

	4				;;	Returns	bogus	for	uayeb.	

	5				(let*	((x	(mayan-haab-on-or-before	

	6															(mayan-haab-date	1	0)	

	7															date)))	

	8						(if	(=	(mayan-haab-month	(mayan-haab-from-

fixed	date))	

	9													19)	

10										bogus	

11								(mayan-tzolkin-name	(mayan-tzolkin-from-

fixed	x)))))

	1		(defun	mayan-calendar-round-on-or-

before	(haab	tzolkin	date)

	2				;;	TYPE	(mayan-haab-date	mayan-tzolkin-date	fixed-

date)	

	3				;;	TYPE		->	fixed-date	

	4				;;	Fixed	date	of	latest	date	on	or	before	date,	that	is

	5				;;	Mayan	haab	date	haab	and	tzolkin	date	tzolkin.	

	6				;;	Returns	bogus	for	impossible	combinations.	

	7				(let*	((haab-count	

	8												(+	(mayan-haab-ordinal	haab)	mayan-haab-

epoch))	

	9											(tzolkin-count	

10												(+	(mayan-tzolkin-ordinal	tzolkin)	

11															mayan-tzolkin-epoch))	

12											(diff	(-	tzolkin-count	haab-count)))	

13						(if	(=	(mod	diff	5)	0)	

14										(mod3	(+	haab-count	(*	365	diff))	

15																date	(-	date	18980))	

16								bogus)));		haab-

tzolkin	combination	is	impossible.
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	1		(defconstant	aztec-correlation

	2				;;	TYPE	fixed-date	

	3				;;	Known	date	of	Aztec	cycles	(Caso’s	correlation)	

	4				(fixed-from-julian	(julian-date	1521	August	13)))

	1		(defun	aztec-xihuitl-date	(month	day)	

	2				;;	TYPE	(aztec-xihuitl-month	aztec-xihuitl-day)	->	

	3				;;	TYPE		aztec-xihuitl-date	

	4				(list	month	day))

	1		(defun	aztec-xihuitl-month	(date)	

	2				;;	TYPE	aztec-xihuitl-date	->	aztec-xihuitl-month	

	3				(first	date))

	1		(defun	aztec-xihuitl-day	(date)	

	2				;;	TYPE	aztec-xihuitl-date	->	aztec-xihuitl-day	

	3				(second	date))

	1		(defun	aztec-xihuitl-ordinal	(x-date)

	2				;;	TYPE	aztec-xihuitl-date	->	nonnegative-integer	

	3				;;	Number	of	elapsed	days	into	cycle	of	Aztec	xihuitl	x-

date.	

	4				(let*	((day	(aztec-xihuitl-day	x-date))	

	5											(month	(aztec-xihuitl-month	x-date)))	

	6						(+	(*	(1-	month)	20)	(1-	day))))

	1		(defconstant	aztec-xihuitl-correlation

	2				;;	TYPE	fixed-date	

	3				;;	Start	of	a	xihuitl	cycle.	

	4				(-	aztec-correlation	

	5							(aztec-xihuitl-ordinal	(aztec-xihuitl-

date	11	2))))

	1		(defun	aztec-xihuitl-from-fixed	(date)

	2				;;	TYPE	fixed-date	->	aztec-xihuitl-date	

	3				;;	Aztec	xihuitl	date	of	fixed	date.	

	4				(let*	((count	(mod	(-	date	aztec-xihuitl-

correlation)	365))	

	5											(day	(1+	(mod	count	20)))	

	6											(month	(1+	(quotient	count	20))))	

	7						(aztec-xihuitl-date	month	day)))

	1		(defun	aztec-xihuitl-on-or-before	(xihuitl	date)

	2				;;	TYPE	(aztec-xihuitl-date	fixed-date)	->	fixed-

date	

	3				;;	Fixed	date	of	latest	date	on	or	before	fixed	date

	4				;;	that	is	Aztec	xihuitl	date	xihuitl.	
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	5				(mod3	(+	aztec-xihuitl-correlation	

	6													(aztec-xihuitl-ordinal	xihuitl))	

	7										date	(-	date	365)))

	1		(defun	aztec-tonalpohualli-date	(number	name)	

	2				;;	TYPE	(aztec-tonalpohualli-number	aztec-

tonalpohualli-name)	

	3				;;	TYPE		->	aztec-tonalpohualli-date	

	4				(list	number	name))

	1		(defun	aztec-tonalpohualli-number	(date)	

	2				;;	TYPE	aztec-tonalpohualli-date	->	aztec-

tonalpohualli-number	

	3				(first	date))

	1		(defun	aztec-tonalpohualli-name	(date)	

	2				;;	TYPE	aztec-tonalpohualli-date	->	aztec-

tonalpohualli-name	

	3				(second	date))

	1		(defun	aztec-tonalpohualli-ordinal	(t-date)

	2				;;	TYPE	aztec-tonalpohualli-date	->	nonnegative-

integer	

	3				;;	Number	of	days	into	Aztec	tonalpohualli	cycle	of	t-

date.	

	4				(let*	((number	(aztec-tonalpohualli-number	t-date))

	5											(name	(aztec-tonalpohualli-name	t-date)))	

	6						(mod	(+	number	-1	

	7														(*	39	(-	number	name)))	

	8											260)))

	1		(defconstant	aztec-tonalpohualli-correlation

	2				;;	TYPE	fixed-date	

	3				;;	Start	of	a	tonalpohualli	date	cycle.	

	4				(-	aztec-correlation	

	5							(aztec-tonalpohualli-ordinal	

	6								(aztec-tonalpohualli-date	1	5))))

	1		(defun	aztec-tonalpohualli-from-fixed	(date)

	2				;;	TYPE	fixed-date	->	aztec-tonalpohualli-date	

	3				;;	Aztec	tonalpohualli	date	of	fixed	date.	

	4				(let*	((count	(-	date	aztec-tonalpohualli-

correlation	-1))	

	5											(number	(amod	count	13))	

	6											(name	(amod	count	20)))	

	7						(aztec-tonalpohualli-date	number	name)))
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	1		(defun	aztec-tonalpohualli-on-or-

before	(tonalpohualli	date)

	2				;;	TYPE	(aztec-tonalpohualli-date	fixed-date)	-

>	fixed-date	

	3				;;	Fixed	date	of	latest	date	on	or	before	fixed	date

	4				;;	that	is	Aztec	tonalpohualli	date	tonalpohualli.	

	5				(mod3	(+	aztec-tonalpohualli-correlation	

	6													(aztec-tonalpohualli-

ordinal	tonalpohualli))	

	7										date	(-	date	260)))

	1		(defun	aztec-xiuhmolpilli-designation	(number	name)	

	2				;;	TYPE	(aztec-xiuhmolpilli-number	aztec-

xiuhmolpilli-name)	

	3				;;	TYPE		->	aztec-xiuhmolpilli-designation	

	4				(list	number	name))

	1		(defun	aztec-xiuhmolpilli-number	(date)	

	2				;;	TYPE	aztec-xiuhmolpilli-designation	->	aztec-

xiuhmolpilli-number	

	3				(first	date))

	1		(defun	aztec-xiuhmolpilli-name	(date)	

	2				;;	TYPE	aztec-xiuhmolpilli-designation	->	aztec-

xiuhmolpilli-name	

	3				(second	date))

	1		(defun	aztec-xiuhmolpilli-from-fixed	(date)

	2				;;	TYPE	fixed-date	->	aztec-xiuhmolpilli-

designation	

	3				;;	Designation	of	year	containing	fixed	date.	

	4				;;	Returns	bogus	for	nemontemi.	

	5				(let*	((x	(aztec-xihuitl-on-or-before	

	6															(aztec-xihuitl-date	18	20)	

	7															(+	date	364)))	

	8											(month	(aztec-xihuitl-month	

	9																			(aztec-xihuitl-from-fixed	date))))	

10						(if	(=	month	19)	

11										bogus	

12								(aztec-tonalpohualli-from-fixed	x))))

	1		(defun	aztec-xihuitl-tonalpohualli-on-or-before	

	2				(xihuitl	tonalpohualli	date)	

	3				;;	TYPE	(aztec-xihuitl-date	aztec-tonalpohualli-

date	

	4				;;	TYPE		fixed-date)	->	fixed-date	

	5				;;	Fixed	date	of	latest	xihuitl-
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tonalpohualli	combination	

	6				;;	on	or	before	date.		That	is	the	date	on	or	before

	7				;;	date	that	is	Aztec	xihuitl	date	xihuitl	and	

	8				;;	tonalpohualli	date	tonalpohualli.	

	9				;;	Returns	bogus	for	impossible	combinations.	

10				(let*	((xihuitl-count	

11												(+	(aztec-xihuitl-ordinal	xihuitl)	

12															aztec-xihuitl-correlation))	

13											(tonalpohualli-count	

14												(+	(aztec-tonalpohualli-

ordinal	tonalpohualli)	

15															aztec-tonalpohualli-correlation))	

16											(diff	(-	tonalpohualli-count	xihuitl-

count)))	

17						(if	(=	(mod	diff	5)	0)	

18										(mod3	(+	xihuitl-count	(*	365	diff))	

19																date	(-	date	18980))	

20								bogus)));		xihuitl-

tonalpohualli	combination	is	impossible.



D.12	 The	Balinese	Pawukon	Calendar
	1		(defun	balinese-date	(b1	b2	b3	b4	b5	b6	b7	b8	b9	b0)	

	2				;;	TYPE	(boolean	1-2	1-3	1-4	1-5	1-6	1-7	1-8	1-9	0-

9)	

	3				;;	TYPE		->	balinese-date	

	4				(list	b1	b2	b3	b4	b5	b6	b7	b8	b9	b0))

	1		(defun	bali-luang	(b-date)	

	2				;;	TYPE	balinese-date	->	boolean	

	3				(first	b-date))

	1		(defun	bali-dwiwara	(b-date)	

	2				;;	TYPE	balinese-date	->	1-2	

	3				(second	b-date))

	1		(defun	bali-triwara	(b-date)	

	2				;;	TYPE	balinese-date	->	1-3	

	3				(third	b-date))

	1		(defun	bali-caturwara	(b-date)	

	2				;;	TYPE	balinese-date	->	1-4	

	3				(fourth	b-date))

	1		(defun	bali-pancawara	(b-date)	

	2				;;	TYPE	balinese-date	->	1-5	

	3				(fifth	b-date))

	1		(defun	bali-sadwara	(b-date)	

	2				;;	TYPE	balinese-date	->	1-6	

	3				(sixth	b-date))

	1		(defun	bali-saptawara	(b-date)	

	2				;;	TYPE	balinese-date	->	1-7	

	3				(seventh	b-date))

	1		(defun	bali-asatawara	(b-date)	

	2				;;	TYPE	balinese-date	->	1-8	

	3				(eighth	b-date))

	1		(defun	bali-sangawara	(b-date)	

	2				;;	TYPE	balinese-date	->	1-9	
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	3				(ninth	b-date))

	1		(defun	bali-dasawara	(b-date)	

	2				;;	TYPE	balinese-date	->	0-9	

	3				(tenth	b-date))

	1		(defun	bali-pawukon-from-fixed	(date)

	2				;;	TYPE	fixed-date	->	balinese-date	

	3				;;	Positions	of	date	in	ten	cycles	of	Balinese	Pawukon

	4				;;	calendar.	

	5				(balinese-date	(bali-luang-from-fixed	date)	

	6																			(bali-dwiwara-from-fixed	date)	

	7																			(bali-triwara-from-fixed	date)	

	8																			(bali-caturwara-from-fixed	date)	

	9																			(bali-pancawara-from-fixed	date)	

10																			(bali-sadwara-from-fixed	date)	

11																			(bali-saptawara-from-fixed	date)	

12																			(bali-asatawara-from-fixed	date)	

13																			(bali-sangawara-from-fixed	date)	

14																			(bali-dasawara-from-fixed	date)))

	1		(defconstant	bali-epoch

	2				;;	TYPE	fixed-date	

	3				;;	Fixed	date	of	start	of	a	Balinese	Pawukon	cycle.

	4				(fixed-from-jd	146))

	1		(defun	bali-day-from-fixed	(date)

	2				;;	TYPE	fixed-date	->	0-209	

	3				;;	Position	of	date	in	210-day	Pawukon	cycle.	

	4				(mod	(-	date	bali-epoch)	210))

	1		(defun	bali-triwara-from-fixed	(date)

	2				;;	TYPE	fixed-date	->	1-3	

	3				;;	Position	of	date	in	3-day	Balinese	cycle.	

	4				(1+	(mod	(bali-day-from-fixed	date)	3)))

	1		(defun	bali-sadwara-from-fixed	(date)

	2				;;	TYPE	fixed-date	->	1-6	

	3				;;	Position	of	date	in	6-day	Balinese	cycle.	

	4				(1+	(mod	(bali-day-from-fixed	date)	6)))

	1		(defun	bali-saptawara-from-fixed	(date)

	2				;;	TYPE	fixed-date	->	1-7	

	3				;;	Position	of	date	in	Balinese	week.	

	4				(1+	(mod	(bali-day-from-fixed	date)	7)))
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	1		(defun	bali-pancawara-from-fixed	(date)

	2				;;	TYPE	fixed-date	->	1-5	

	3				;;	Position	of	date	in	5-day	Balinese	cycle.	

	4				(amod	(+	(bali-day-from-fixed	date)	2)	5))

	1		(defun	bali-week-from-fixed	(date)

	2				;;	TYPE	fixed-date	->	1-30	

	3				;;	Week	number	of	date	in	Balinese	cycle.	

	4				(1+	(quotient	(bali-day-from-fixed	date)	7)))

	1		(defun	bali-dasawara-from-fixed	(date)

	2				;;	TYPE	fixed-date	->	0-9	

	3				;;	Position	of	date	in	10-day	Balinese	cycle.	

	4				(let*	((i	;	Position	in	5-day	cycle.	

	5												(1-	(bali-pancawara-from-fixed	date)))	

	6											(j	;	Weekday.	

	7												(1-	(bali-saptawara-from-fixed	date))))	

	8						(mod	(+	1	(nth	i	(list	5	9	7	4	8))	

	9														(nth	j	(list	5	4	3	7	8	6	9)))	

10											10)))

	1		(defun	bali-dwiwara-from-fixed	(date)

	2				;;	TYPE	fixed-date	->	1-2	

	3				;;	Position	of	date	in	2-day	Balinese	cycle.	

	4				(amod	(bali-dasawara-from-fixed	date)	2))

	1		(defun	bali-luang-from-fixed	(date)

	2				;;	TYPE	fixed-date	->	boolean	

	3				;;	Membership	of	date	in	"1-day"	Balinese	cycle.	

	4				(evenp	(bali-dasawara-from-fixed	date)))

	1		(defun	bali-sangawara-from-fixed	(date)

	2				;;	TYPE	fixed-date	->	1-9	

	3				;;	Position	of	date	in	9-day	Balinese	cycle.	

	4				(1+	(mod	(max	0	

	5																		(-	(bali-day-from-fixed	date)	3))	

	6													9)))

	1		(defun	bali-asatawara-from-fixed	(date)

	2				;;	TYPE	fixed-date	->	1-8	

	3				;;	Position	of	date	in	8-day	Balinese	cycle.	

	4				(let*	((day	(bali-day-from-fixed	date)))	

	5						(1+	(mod	

	6											(max	6	

	7																(+	4	(mod	(-	day	70)	

	8																										210)))	

	9											8))))
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	1		(defun	bali-caturwara-from-fixed	(date)

	2				;;	TYPE	fixed-date	->	1-4	

	3				;;	Position	of	date	in	4-day	Balinese	cycle.	

	4				(amod	(bali-asatawara-from-fixed	date)	4))

	1		(defun	bali-on-or-before	(b-date	date)

	2				;;	TYPE	(balinese-date	fixed-date)	->	fixed-date	

	3				;;	Last	fixed	date	on	or	before	date	with	Pawukon	b-

date.	

	4				(let*	((luang	(bali-luang	b-date))	

	5											(dwiwara	(bali-dwiwara	b-date))	

	6											(triwara	(bali-triwara	b-date))	

	7											(caturwara	(bali-caturwara	b-date))	

	8											(pancawara	(bali-pancawara	b-date))	

	9											(sadwara	(bali-sadwara	b-date))	

10											(saptawara	(bali-saptawara	b-date))	

11											(asatawara	(bali-asatawara	b-date))	

12											(sangawara	(bali-sangawara	b-date))	

13											(dasawara	(bali-dasawara	b-date))	

14											(a5	;	Position	in	5-day	subcycle.	

15												(1-	pancawara))	

16											(a6	;	Position	in	6-day	subcycle.	

17												(1-	sadwara))	

18											(b7	;	Position	in	7-day	subcycle.	

19												(1-	saptawara))	

20											(b35	;	Position	in	35-day	subcycle.	

21												(mod	(+	a5	14	(*	15	(-	b7	a5)))	35))	

22											(days	;	Position	in	full	cycle.	

23												(+	a6	(*	36	(-	b35	a6))))	

24											(cap-Delta	(bali-day-from-fixed	(rd	0))))	

25						(-	date	(mod	(-	(+	date	cap-Delta)	days)	210))))

	1		(defun	kajeng-keliwon	(g-year)

	2				;;	TYPE	gregorian-year	->	list-of-fixed-dates	

	3				;;	Occurrences	of	Kajeng	Keliwon	(9th	day	of	each	

	4				;;	15-day	subcycle	of	Pawukon)	in	Gregorian	year	g-

year.	

	5				(let*	((year	(gregorian-year-range	g-year))	

	6											(cap-Delta	(bali-day-from-fixed	(rd	0))))	

	7						(positions-in-range	8	15	cap-Delta	year)))

	1		(defun	tumpek	(g-year)

	2				;;	TYPE	gregorian-year	->	list-of-fixed-dates	

	3				;;	Occurrences	of	Tumpek	(14th	day	of	Pawukon	and	every

	4				;;	35th	subsequent	day)	within	Gregorian	year	g-

year.	

	5				(let*	((year	(gregorian-year-range	g-year))	
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	6											(cap-Delta	(bali-day-from-fixed	(rd	0))))	

	7						(positions-in-range	13	35	cap-Delta	year)))

D.13	 General	Cyclical	Calendars

No	Lisp	code	is	included	for	this	chapter.

D.14	 Time	and	Astronomy

Common	Lisp’s	built-in	trigonometric	functions	work	with	radians,	whereas	we
have	used	degrees.	The	following	functions	do	the	necessary	normalization	and
conversions:

	1		(defun	radians-from-degrees	(theta)	

	2				;;	TYPE	real	->	radian	

	3				;;	Convert	angle	theta	from	degrees	to	radians.	

	4				(*	(mod	theta	360)	pi	1/180))

	1		(defun	degrees-from-radians	(theta)	

	2				;;	TYPE	radian	->	angle	

	3				;;	Convert	angle	theta	from	radians	to	degrees.	

	4				(mod	(/	theta	pi	1/180)	360))

	1		(defun	sin-degrees	(theta)	

	2				;;	TYPE	angle	->	amplitude	

	3				;;	Sine	of	theta	(given	in	degrees).	

	4				(sin	(radians-from-degrees	theta)))

	1		(defun	cos-degrees	(theta)	

	2				;;	TYPE	angle	->	amplitude	

	3				;;	Cosine	of	theta	(given	in	degrees).	

	4				(cos	(radians-from-degrees	theta)))

	1		(defun	tan-degrees	(theta)	

	2				;;	TYPE	angle	->	real	

	3				;;	Tangent	of	theta	(given	in	degrees).	

	4				(tan	(radians-from-degrees	theta)))

	1		(defun	arctan-degrees	(y	x)
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	2				;;	TYPE	(real	real)	->	angle	

	3				;;	Arctangent	of	y/x	in	degrees.	

	4				;;	Returns	bogus	if	x	and	y	are	both	0.	

	5				(if	(and	(=	x	y	0))	

	6								bogus	

	7						(mod	

	8							(if	(=	x	0)	

	9											(*	(sign	y)	(deg	90L0))	

10									(let*	((alpha	(degrees-from-radians	

11																								(atan	(/	y	x)))))	

12											(if	(>=	x	0)	

13															alpha	

14													(+	alpha	(deg	180L0)))))	

15							360)))

	1		(defun	arcsin-degrees	(x)	

	2				;;	TYPE	amplitude	->	angle	

	3				;;	Arcsine	of	x	in	degrees.	

	4				(degrees-from-radians	(asin	x)))

	1		(defun	arccos-degrees	(x)	

	2				;;	TYPE	amplitude	->	angle	

	3				;;	Arccosine	of	x	in	degrees.	

	4				(degrees-from-radians	(acos	x)))

We	also	use	the	following	functions	to	indicate	units;	they	are	also	used	for
typesetting:

	1		(defun	hr	(x)	

	2				;;	TYPE	real	->	duration	

	3				;;	x	hours.	

	4				(/	x	24))

	1		(defun	mn	(x)	

	2				;;	TYPE	real	->	duration	

	3				;;	x	minutes.	

	4				(/	x	24	60))

	1		(defun	sec	(x)	

	2				;;	TYPE	real	->	duration	

	3				;;	x	seconds.	

	4				(/	x	24	60	60))

	1		(defun	mt	(x)	

	2				;;	TYPE	real	->	distance	



	3				;;	x	meters.	

	4				;;	For	typesetting	purposes.	

	5				x)

	1		(defun	deg	(x)	

	2				;;	TYPE	real	->	angle	

	3				;;	TYPE	list-of-reals	->	list-of-angles	

	4				;;	x	degrees.	

	5				;;	For	typesetting	purposes.	

	6				x)

	1		(defun	mins	(x)	

	2				;;	TYPE	real	->	angle	

	3				;;	x	arcminutes	

	4				(/	x	60))

	1		(defun	secs	(x)	

	2				;;	TYPE	real	->	angle	

	3				;;	x	arcseconds	

	4				(/	x	3600))

	1		(defun	angle	(d	m	s)	

	2				;;	TYPE	(integer	integer	real)	->	angle	

	3				;;	d	degrees,	m	arcminutes,	s	arcseconds.	

	4				(+	d	(/	(+	m	(/	s	60))	60)))

	1		(defun	degrees-minutes-seconds	(d	m	s)	

	2				;;	TYPE	(degree	minute	real)	->	angle	

	3				(list	d	m	s))

The	deg	function	is	also	applied	to	lists,	to	indicate	that	it	is	a	list	of	angles.
The	following	allow	us	to	specify	locations	and	directions:

	1		(defun	location	(latitude	longitude	elevation	zone)	

	2				;;	TYPE	(half-circle	circle	distance	real)	-

>	location	

	3				(list	latitude	longitude	elevation	zone))

	1		(defun	latitude	(location)	

	2				;;	TYPE	location	->	half-circle	

	3				(first	location))

	1		(defun	longitude	(location)	

	2				;;	TYPE	location	->	circle	

	3				(second	location))



(14.3)

(14.6)

(14.4)

(14.5)

	1		(defun	elevation	(location)	

	2				;;	TYPE	location	->	distance	

	3				(third	location))

	1		(defun	zone	(location)	

	2				;;	TYPE	location	->	real	

	3				(fourth	location))

	1		(defconstant	mecca

	2				;;	TYPE	location	

	3				;;	Location	of	Mecca.	

	4				(location	(angle	21	25	24)	(angle	39	49	24)	

	5														(mt	298)	(hr	3)))

	1		(defconstant	jerusalem

	2				;;	TYPE	location	

	3				;;	Location	of	Jerusalem.	

	4				(location	(deg	31.78L0)	(deg	35.24L0)	(mt	740)	(hr	2)))

	1		(defconstant	acre

	2				;;	TYPE	location	

	3				;;	Location	of	Acre.	

	4				(location	(deg	32.94L0)	(deg	35.09L0)	(mt	22)	(hr	2)))

	1		(defun	direction	(location	focus)

	2				;;	TYPE	(location	location)	->	angle	

	3				;;	Angle	(clockwise	from	North)	to	face	focus	when	

	4				;;	standing	in	location.		Subject	to	errors	near	focus	and

	5				;;	its	antipode.	

	6				(let*	((phi	(latitude	location))	

	7											(phi-prime	(latitude	focus))	

	8											(psi	(longitude	location))	

	9											(psi-prime	(longitude	focus))	

10											(y	(sin-degrees	(-	psi-prime	psi)))	

11											(x	

12												(-	(*	(cos-degrees	phi)	

13																		(tan-degrees	phi-prime))	

14															(*	(sin-degrees	phi)	

15																		(cos-degrees	

16																			(-	psi	psi-prime))))))	

17						(cond	((or	(=	x	y	0)	(=	phi-prime	(deg	90)))	

18													(deg	0))	

19												((=	phi-prime	(deg	-90))	

20													(deg	180))	

21												(t	(arctan-degrees	y	x)))))



(14.8)

(14.9)

(14.10)

(14.11)

(14.12)

(14.13)

The	following	functions	compute	times:

	1		(defun	zone-from-longitude	(phi)

	2				;;	TYPE	circle	->	duration	

	3				;;	Difference	between	UT	and	local	mean	time	at	longitude

	4				;;	phi	as	a	fraction	of	a	day.	

	5				(/	phi	(deg	360)))

	1		(defun	universal-from-local	(tee_ell	location)

	2				;;	TYPE	(moment	location)	->	moment	

	3				;;	Universal	time	from	local	tee_ell	at	location.	

	4				(-	tee_ell	(zone-from-

longitude	(longitude	location))))

	1		(defun	local-from-universal	(tee_rom-u	location)

	2				;;	TYPE	(moment	location)	->	moment	

	3				;;	Local	time	from	universal	tee_rom-u	at	location.

	4				(+	tee_rom-u	(zone-from-

longitude	(longitude	location))))

	1		(defun	standard-from-universal	(tee_rom-u	location)

	2				;;	TYPE	(moment	location)	->	moment	

	3				;;	Standard	time	from	tee_rom-

u	in	universal	time	at	

	4				;;	location.	

	5				(+	tee_rom-u	(zone	location)))

	1		(defun	universal-from-standard	(tee_rom-s	location)

	2				;;	TYPE	(moment	location)	->	moment	

	3				;;	Universal	time	from	tee_rom-

s	in	standard	time	at	

	4				;;	location.	

	5				(-	tee_rom-s	(zone	location)))

	1		(defun	standard-from-local	(tee_ell	location)

	2				;;	TYPE	(moment	location)	->	moment	

	3				;;	Standard	time	from	local	tee_ell	at	location.	

	4				(standard-from-universal	

	5					(universal-from-local	tee_ell	location)	

	6					location))

	1		(defun	local-from-standard	(tee_rom-s	location)

	2				;;	TYPE	(moment	location)	->	moment	

	3				;;	Local	time	from	standard	tee_rom-s	at	location.	

	4				(local-from-universal	

	5					(universal-from-standard	tee_rom-s	location)	



(14.14)	6					location))

	1		(defun	ephemeris-correction	(tee)

	2				;;	TYPE	moment	->	fraction-of-day	

	3				;;	Dynamical	Time	minus	Universal	Time	(in	days)	for

	4				;;	moment	tee.		Adapted	from	"Astronomical	Algorithms"

	5				;;	by	Jean	Meeus,	Willmann-Bell	(1991)	for	years	

	6				;;	1600-1986	and	from	polynomials	on	the	NASA	

	7				;;	Eclipse	web	site	for	other	years.	

	8				(let*	((year	(gregorian-year-from-

fixed	(floor	tee)))	

	9											(c	(/	(gregorian-date-difference	

10																		(gregorian-date	1900	january	1)	

11																		(gregorian-date	year	july	1))	

12																	36525))	

13											(c2051	(*	1/86400	

14																					(+	-20	(*	32	(expt	(/	(-	year	1820)	100)	2))

15																								(*	0.5628L0	(-	2150	year)))))	

16											(y2000	(-	year	2000))	

17											(c2006	(*	1/86400	

18																					(poly	y2000	

19																											(list	62.92L0	0.32217L0	0.005589L0))))

20											(c1987	(*	1/86400	

21																					(poly	y2000	

22																											(list	63.86L0	0.3345L0	-0.060374L0

23																																	0.0017275L0	

24																																	0.000651814L0	0.00002373599L0))))

25											(c1900	(poly	c	

26																								(list	-0.00002L0	0.000297L0	0.025184L0

27																														-0.181133L0	0.553040L0	-0.861938L0

28																														0.677066L0	-0.212591L0)))

29											(c1800	(poly	c	

30																								(list	-0.000009L0	0.003844L0	0.083563L0

31																														0.865736L0	

32																														4.867575L0	15.845535L0	31.332267L0

33																														38.291999L0	28.316289L0	11.636204L0

34																														2.043794L0)))	

35											(y1700	(-	year	1700))	

36											(c1700	(*	1/86400	

37																					(poly	y1700	

38																											(list	8.118780842L0	-0.005092142L0

39																																	0.003336121L0	-0.0000266484L0))))

40											(y1600	(-	year	1600))	

41											(c1600	(*	1/86400	

42																					(poly	y1600	

43																											(list	120	-0.9808L0	-0.01532L0

44																																	0.000140272128L0))))	



(14.15)

(14.16)

(14.17)

(14.18)

(14.19)

45											(y1000	(/	(-	year	1000)	100L0))	

46											(c500	(*	1/86400	

47																				(poly	y1000	

48																										(list	1574.2L0	-556.01L0	71.23472L0	0.319781L0

49																																-0.8503463L0	-0.005050998L0

50																																0.0083572073L0))))	

51											(y0	(/	year	100L0))	

52											(c0	(*	1/86400	

53																		(poly	y0	

54																								(list	10583.6L0	-1014.41L0	33.78311L0

55																														-5.952053L0	-0.1798452L0	0.022174192L0

56																														0.0090316521L0))))	

57											(y1820	(/	(-	year	1820)	100L0))	

58											(other	(*	1/86400	

59																					(poly	y1820	(list	-20	0	32)))))	

60						(cond	((<=	2051	year	2150)	c2051)	

61												((<=	2006	year	2050)	c2006)	

62												((<=	1987	year	2005)	c1987)	

63												((<=	1900	year	1986)	c1900)	

64												((<=	1800	year	1899)	c1800)	

65												((<=	1700	year	1799)	c1700)	

66												((<=	1600	year	1699)	c1600)	

67												((<=	500	year	1599)	c500)	

68												((<	-500	year	500)	c0)	

69												(t	other))))

	1		(defun	dynamical-from-universal	(tee_rom-u)

	2				;;	TYPE	moment	->	moment	

	3				;;	Dynamical	time	at	Universal	moment	tee_rom-u.	

	4				(+	tee_rom-u	(ephemeris-correction	tee_rom-u)))

	1		(defun	universal-from-dynamical	(tee)

	2				;;	TYPE	moment	->	moment	

	3				;;	Universal	moment	from	Dynamical	time	tee.	

	4				(-	tee	(ephemeris-correction	tee)))

	1		(defun	julian-centuries	(tee)

	2				;;	TYPE	moment	->	century	

	3				;;	Julian	centuries	since	2000	at	moment	tee.	

	4				(/	(-	(dynamical-from-universal	tee)	j2000)	

	5							36525))

	1		(defconstant	j2000

	2				;;	TYPE	moment	

	3				;;	Noon	at	start	of	Gregorian	year	2000.	

	4				(+	(hr	12L0)	(gregorian-new-year	2000)))



(14.21)

(14.22)

(14.20)

	1		(defun	equation-of-time	(tee)

	2				;;	TYPE	moment	->	fraction-of-day	

	3				;;	Equation	of	time	(as	fraction	of	day)	for	moment	tee.

	4				;;	Adapted	from	"Astronomical	Algorithms"	by	Jean	Meeus,

	5				;;	Willmann-Bell,	2nd	edn.,	1998,	p.	185.	

	6				(let*	((c	(julian-centuries	tee))	

	7											(lambda	

	8													(poly	c	

	9																			(deg	(list	280.46645L0	36000.76983L0

10																														0.0003032L0))))	

11											(anomaly	

12												(poly	c	

13																		(deg	(list	357.52910L0	35999.05030L0	

14																													-0.0001559L0	-0.00000048L0))))

15											(eccentricity	

16												(poly	c	

17																		(list	0.016708617L0	-0.000042037L0	

18																								-0.0000001236L0)))	

19											(varepsilon	(obliquity	tee))	

20											(y	(expt	(tan-degrees	(/	varepsilon	2))	2))	

21											(equation	

22												(*	(/	1	2	pi)	

23															(+	(*	y	(sin-degrees	(*	2	lambda)))	

24																		(*	-2	eccentricity	(sin-

degrees	anomaly))	

25																		(*	4	eccentricity	y	(sin-

degrees	anomaly)	

26																					(cos-degrees	(*	2	lambda)))	

27																		(*	-0.5L0	y	y	(sin-

degrees	(*	4	lambda)))	

28																		(*	-1.25L0	eccentricity	eccentricity	

29																					(sin-degrees	(*	2	anomaly)))))))	

30						(*	(sign	equation)	(min	(abs	equation)	(hr	12L0)))))

	1		(defun	apparent-from-local	(tee_ell	location)

	2				;;	TYPE	(moment	location)	->	moment	

	3				;;	Sundial	time	from	local	time	tee_ell	at	location.

	4				(+	tee_ell	(equation-of-time	

	5																(universal-from-

local	tee_ell	location))))

	1		(defun	local-from-apparent	(tee	location)

	2				;;	TYPE	(moment	location)	->	moment	

	3				;;	Local	time	from	sundial	time	tee	at	location.	

	4				(-	tee	(equation-of-time	(universal-from-

local	tee	location))))



(14.23)

(14.24)

(14.25)

(14.26)

(14.27)

	1		(defun	apparent-from-universal	(tee_rom-u	location)

	2				;;	TYPE	(moment	location)	->	moment	

	3				;;	True	(apparent)	time	at	universal	time	tee	at	location.

	4				(apparent-from-local	

	5					(local-from-universal	tee_rom-u	location)	

	6					location))

	1		(defun	universal-from-apparent	(tee	location)

	2				;;	TYPE	(moment	location)	->	moment	

	3				;;	Universal	time	from	sundial	time	tee	at	location.

	4				(universal-from-local	

	5					(local-from-apparent	tee	location)	

	6					location))

	1		(defun	midnight	(date	location)

	2				;;	TYPE	(fixed-date	location)	->	moment	

	3				;;	Universal	time	of	true	(apparent)	

	4				;;	midnight	of	fixed	date	at	location.	

	5				(universal-from-apparent	date	location))

	1		(defun	midday	(date	location)

	2				;;	TYPE	(fixed-date	location)	->	moment	

	3				;;	Universal	time	on	fixed	date	of	midday	at	location.

	4				(universal-from-

apparent	(+	date	(hr	12))	location))

	1		(defun	sidereal-from-moment	(tee)

	2				;;	TYPE	moment	->	angle	

	3				;;	Mean	sidereal	time	of	day	from	moment	tee	expressed

	4				;;	as	hour	angle.		Adapted	from	"Astronomical	Algorithms"

	5				;;	by	Jean	Meeus,	Willmann-

Bell,	Inc.,	2nd	edn.,	1998,	p.	88.	

	6				(let*	((c	(/	(-	tee	j2000)	36525)))	

	7						(mod	(poly	c	

	8																	(deg	(list	280.46061837L0	

	9																												(*	36525	360.98564736629L0)

10																												0.000387933L0	-1/38710000)))

11											360)))

Additional	solar	and	lunar	astronomical	functions	are:

	1		(defun	obliquity	(tee)

	2				;;	TYPE	moment	->	angle	

	3				;;	Obliquity	of	ecliptic	at	moment	tee.	

	4				(let*	((c	(julian-centuries	tee)))	

	5						(+	(angle	23	26	21.448L0)	



(14.28)

(14.29)

(14.30)

(14.31)

	6									(poly	c	(list	0L0	

	7																							(angle	0	0	-46.8150L0)	

	8																							(angle	0	0	-0.00059L0)	

	9																							(angle	0	0	0.001813L0))))))

	1		(defun	declination	(tee	beta	lambda)

	2				;;	TYPE	(moment	half-circle	circle)	->	angle	

	3				;;	Declination	at	moment	UT	tee	of	object	at	

	4				;;	latitude	beta	and	longitude	lambda.	

	5				(let*	((varepsilon	(obliquity	tee)))	

	6						(arcsin-degrees	(+	(*	(sin-degrees	beta)	

	7																												(cos-degrees	varepsilon))	

	8																									(*	(cos-degrees	beta)	

	9																												(sin-degrees	varepsilon)	

10																												(sin-degrees	lambda))))))

	1		(defun	right-ascension	(tee	beta	lambda)

	2				;;	TYPE	(moment	half-circle	circle)	->	angle	

	3				;;	Right	ascension	at	moment	UT	tee	of	object	at	

	4				;;	latitude	beta	and	longitude	lambda.	

	5				(let*	((varepsilon	(obliquity	tee)))	

	6						(arctan-degrees	;	Cannot	be	bogus	

	7							(-	(*	(sin-degrees	lambda)	

	8													(cos-degrees	varepsilon))	

	9										(*	(tan-degrees	beta)	

10													(sin-degrees	varepsilon)))	

11							(cos-degrees	lambda))))

	1		(defconstant	mean-tropical-year

	2				;;	TYPE	duration	

	3				365.242189L0)



(14.32)

	1		(defconstant	mean-sidereal-year

	2				;;	TYPE	duration	

	3				365.25636L0)

	1		(defun	solar-longitude	(tee)

	2				;;	TYPE	moment	->	season	

	3				;;	Longitude	of	sun	at	moment	tee.	

	4				;;	Adapted	from	"Planetary	Programs	and	Tables	from	-4000

	5				;;	to	+2800"	by	Pierre	Bretagnon	and	Jean-

Louis	Simon,	

	6				;;	Willmann-Bell,	1986.	

	7				(let*	((c							;	moment	in	Julian	centuries	

	8												(julian-centuries	tee))	

	9											(coefficients	

10												(list	403406	195207	119433	112392	3891	2819	1721

11																		660	350	334	314	268	242	234	158	132	129	114

12																		99	93	86	78	72	68	64	46	38	37	32	29	28	27	27

13																		25	24	21	21	20	18	17	14	13	13	13	12	10	10	10

14																		10))	

15											(multipliers	

16												(list	0.9287892L0	35999.1376958L0	35999.4089666L0

17																		35998.7287385L0	71998.20261L0	71998.4403L0

18																		36000.35726L0	71997.4812L0	32964.4678L0

19																		-19.4410L0	445267.1117L0	45036.8840L0	3.1008L0

20																		22518.4434L0	-19.9739L0	65928.9345L0	

21																		9038.0293L0	3034.7684L0	33718.148L0	3034.448L0

22																		-2280.773L0	29929.992L0	31556.493L0	149.588L0

23																		9037.750L0	107997.405L0	-4444.176L0	151.771L0

24																		67555.316L0	31556.080L0	-4561.540L0	

25																		107996.706L0	1221.655L0	62894.167L0	

26																		31437.369L0	14578.298L0	-31931.757L0	

27																		34777.243L0	1221.999L0	62894.511L0	

28																		-4442.039L0	107997.909L0	119.066L0	16859.071L0

29																		-4.578L0	26895.292L0	-39.127L0	12297.536L0

30																		90073.778L0))	

31											(addends	

32												(list	270.54861L0	340.19128L0	63.91854L0	331.26220L0

33																		317.843L0	86.631L0	240.052L0	310.26L0	247.23L0

34																		260.87L0	297.82L0	343.14L0	166.79L0	81.53L0

35																		3.50L0	132.75L0	182.95L0	162.03L0	29.8L0

36																		266.4L0	249.2L0	157.6L0	257.8L0	185.1L0	69.9L0

37																		8.0L0	197.1L0	250.4L0	65.3L0	162.7L0	341.5L0

38																		291.6L0	98.5L0	146.7L0	110.0L0	5.2L0	342.6L0

39																		230.9L0	256.1L0	45.3L0	242.9L0	115.2L0	151.8L0

40																		285.3L0	53.3L0	126.6L0	205.7L0	85.9L0

41																		146.1L0))	



(14.33)

(14.35)

(14.34)

42											(lambda	

43													(+	(deg	282.7771834L0)	

44																(*	(deg	36000.76953744L0)	c)	

45																(*	(deg	0.000005729577951308232L0)	

46																			(sigma	((x	coefficients)	

47																											(y	addends)	

48																											(z	multipliers))	

49																										(*	x	(sin-

degrees	(+	y	(*	z	c)))))))))	

50						(mod	(+	lambda	(aberration	tee)	(nutation	tee))	

51											360)))

	1		(defun	nutation	(tee)

	2				;;	TYPE	moment	->	circle	

	3				;;	Longitudinal	nutation	at	moment	tee.	

	4				(let*	((c							;	moment	in	Julian	centuries	

	5												(julian-centuries	tee))	

	6											(cap-

A	(poly	c	(deg	(list	124.90L0	-1934.134L0	

	7																																					0.002063L0))))	

	8											(cap-

B	(poly	c	(deg	(list	201.11L0	72001.5377L0	

	9																																					0.00057L0)))))	

10						(+	(*	(deg	-0.004778L0)	(sin-degrees	cap-A))	

11									(*	(deg	-0.0003667L0)	(sin-degrees	cap-B)))))

	1		(defun	aberration	(tee)

	2				;;	TYPE	moment	->	circle	

	3				;;	Aberration	at	moment	tee.	

	4				(let*	((c							;	moment	in	Julian	centuries	

	5												(julian-centuries	tee)))	

	6						(-	(*	(deg	0.0000974L0)	

	7												(cos-degrees	

	8													(+	(deg	177.63L0)	(*	(deg	35999.01848L0)	c))))

	9									(deg	0.005575L0))))

	1		(defun	solar-longitude-after	(lambda	tee)

	2				;;	TYPE	(season	moment)	->	moment	

	3				;;	Moment	UT	of	the	first	time	at	or	after	tee	

	4				;;	when	the	solar	longitude	will	be	lambda	degrees.

	5				(let*	((rate	;	Mean	days	for	1	degree	change.	

	6												(/	mean-tropical-year	(deg	360)))	

	7											(tau	;	Estimate	(within	5	days).	

	8												(+	tee	

	9															(*	rate	

10																		(mod	(-	lambda	(solar-

longitude	tee))	360))))	



(14.36)

(14.37)

(14.39)

(14.40)

11											(a	(max	tee	(-	tau	5)))	;	At	or	after	tee.	

12											(b	(+	tau	5)))	

13						(invert-angular	solar-longitude	lambda	

14																						(interval-closed	a	b))))

	1		(defun	season-in-gregorian	(season	g-year)

	2				;;	TYPE	(season	gregorian-year)	->	moment	

	3				;;	Moment	UT	of	season	in	Gregorian	year	g-year.	

	4				(let*	((jan1	(gregorian-new-year	g-year)))	

	5						(solar-longitude-after	season	jan1)))

	1		(defun	precession	(tee)

	2				;;	TYPE	moment	->	angle	

	3				;;	Precession	at	moment	tee	using	0,0	as	J2000	coordinates.

	4				;;	Adapted	from	"Astronomical	Algorithms"	by	Jean	Meeus,

	5				;;	Willmann-Bell,	2nd	edn.,	1998,	pp.	136-137.	

	6				(let*	((c	(julian-centuries	tee))	

	7											(eta	(mod	

	8																	(poly	c	(list	0	(secs	47.0029L0)	

	9																															(secs	-0.03302L0)	

10																															(secs	0.000060L0)))	

11																	360))	

12											(cap-P	(mod	(poly	c	(list	(deg	174.876384L0)

13																																					(secs	-869.8089L0)

14																																					(secs	0.03536L0)))

15																							360))	

16											(p	(mod	(poly	c	(list	0	(secs	5029.0966L0)	

17																																	(secs	1.11113L0)	

18																																	(secs	0.000006L0)))	

19																			360))	

20											(cap-A	(*	(cos-degrees	eta)	(sin-

degrees	cap-P)))	

21											(cap-B	(cos-degrees	cap-P))	

22											(arg	(arctan-degrees	cap-A	cap-B)))	

23						(mod	(-	(+	p	cap-P)	arg)	360)))

	1		(defun	sidereal-solar-longitude	(tee)

	2				;;	TYPE	moment	->	angle	

	3				;;	Sidereal	solar	longitude	at	moment	tee	

	4				(mod	(+	(solar-longitude	tee)	

	5												(-	(precession	tee))	

	6												sidereal-start)	

	7									360))

	1		(defun	solar-altitude	(tee	location)

	2				;;	TYPE	(moment	location)	->	half-circle	

	3				;;	Geocentric	altitude	of	sun	at	tee	at	location,	
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	4				;;	as	a	positive/negative	angle	in	degrees,	ignoring

	5				;;	parallax	and	refraction.	

	6				(let*	((phi	;	Local	latitude.	

	7												(latitude	location))	

	8											(psi	;	Local	longitude.	

	9												(longitude	location))	

10											(lambda	;	Solar	longitude.	

11													(solar-longitude	tee))	

12											(alpha	;	Solar	right	ascension.	

13												(right-ascension	tee	0	lambda))	

14											(delta	;	Solar	declination.	

15												(declination	tee	0	lambda))	

16											(theta0	;	Sidereal	time.	

17												(sidereal-from-moment	tee))	

18											(cap-H	;	Local	hour	angle.	

19												(mod	(-	theta0	(-	psi)	alpha)	360))	

20											(altitude	

21												(arcsin-degrees	(+	(*	(sin-degrees	phi)	

22																																		(sin-degrees	delta))	

23																															(*	(cos-degrees	phi)	

24																																		(cos-degrees	delta)	

25																																		(cos-degrees	cap-

H))))))	

26						(mod3	altitude	-180	180)))

	1		(defun	estimate-prior-solar-longitude	(lambda	tee)

	2				;;	TYPE	(season	moment)	->	moment	

	3				;;	Approximate	moment	at	or	before	tee	

	4				;;	when	solar	longitude	just	exceeded	lambda	degrees.

	5				(let*	((rate	;	Mean	change	of	one	degree.	

	6												(/	mean-tropical-year	(deg	360)))	

	7											(tau	;	First	approximation.	

	8												(-	tee	

	9															(*	rate	(mod	(-	(solar-longitude	tee)	

10																															lambda)	

11																												360))))	

12											(cap-Delta	;	Difference	in	longitude.	

13												(mod3	(-	(solar-longitude	tau)	lambda)	

14																		-180	180)))	

15						(min	tee	(-	tau	(*	rate	cap-Delta)))))

	1		(defconstant	mean-synodic-month

	2				;;	TYPE	duration	

	3				29.530588861L0)

	1		(defun	nth-new-moon	(n)

	2				;;	TYPE	integer	->	moment	



	3				;;	Moment	of	n-

th	new	moon	after	(or	before)	the	new	moon	

	4				;;	of	January	11,	1.		Adapted	from	"Astronomical	Algorithms"

	5				;;	by	Jean	Meeus,	Willmann-

Bell,	corrected	2nd	edn.,	2005.	

	6				(let*	((n0	24724)	;	Months	from	RD	0	until	j2000.	

	7											(k	(-	n	n0))	;	Months	since	j2000.	

	8											(c	(/	k	1236.85L0))	;	Julian	centuries.	

	9											(approx	(+	j2000	

10																						(poly	c	(list	5.09766L0	

11																																				(*	mean-synodic-

month	

12																																							1236.85L0)	

13																																				0.00015437L0	

14																																				-0.000000150L0	

15																																				0.00000000073L0))))

16											(cap-

E	(poly	c	(list	1	-0.002516L0	-0.0000074L0)))	

17											(solar-anomaly	

18												(poly	c	(deg	(list	2.5534L0	

19																															(*	1236.85L0	29.10535670L0)

20																															-0.0000014L0	-0.00000011L0))))

21											(lunar-anomaly	

22												(poly	c	(deg	(list	201.5643L0	(*	385.81693528L0

23																																													1236.85L0)

24																															0.0107582L0	0.00001238L0

25																															-0.000000058L0))))	

26											(moon-

argument	;	Moon’s	argument	of	latitude.	

27												(poly	c	(deg	(list	160.7108L0	(*	390.67050284L0

28																																													1236.85L0)

29																															-0.0016118L0	-0.00000227L0

30																															0.000000011L0))))	

31											(cap-omega	;	Longitude	of	ascending	node.	

32												(poly	c	(deg	(list	124.7746L0	(*	-1.56375588L0	1236.85L0)

33																										0.0020672L0	0.00000215L0))))	

34											(E-

factor	(list	0	1	0	0	1	1	2	0	0	1	0	1	1	1	0	0	0	0	

35																											0	0	0	0	0	0))	

36											(solar-

coeff	(list	0	1	0	0	-1	1	2	0	0	1	0	1	1	-1	2	

37																														0	3	1	0	1	-1	-1	1	0))	

38											(lunar-

coeff	(list	1	0	2	0	1	1	0	1	1	2	3	0	0	2	1	2	

39																														0	1	2	1	1	1	3	4))	

40											(moon-

coeff	(list	0	0	0	2	0	0	0	-2	2	0	0	2	-2	0	0	



41																													-2	0	-2	2	2	2	-2	0	0))	

42											(sine-coeff	

43												(list	-0.40720L0	0.17241L0	0.01608L0	0.01039L0

44																		0.00739L0	-0.00514L0	0.00208L0	

45																		-0.00111L0	-0.00057L0	0.00056L0	

46																		-0.00042L0	0.00042L0	0.00038L0	

47																		-0.00024L0	-0.00007L0	0.00004L0	

48																		0.00004L0	0.00003L0	0.00003L0	

49																		-0.00003L0	0.00003L0	-0.00002L0	

50																		-0.00002L0	0.00002L0))	

51											(correction	

52												(+	(*	-0.00017L0	(sin-degrees	cap-omega))	

53															(sigma	((v	sine-coeff)	

54																							(w	E-factor)	

55																							(x	solar-coeff)	

56																							(y	lunar-coeff)	

57																							(z	moon-coeff))	

58																						(*	v	(expt	cap-E	w)	

59																									(sin-degrees	

60																										(+	(*	x	solar-anomaly)	

61																													(*	y	lunar-anomaly)	

62																													(*	z	moon-argument)))))))	

63											(add-const	

64												(list	251.88L0	251.83L0	349.42L0	84.66L0	

65																		141.74L0	207.14L0	154.84L0	34.52L0	207.19L0

66																		291.34L0	161.72L0	239.56L0	331.55L0))

67											(add-coeff	

68												(list	0.016321L0	26.651886L0	

69																		36.412478L0	18.206239L0	53.303771L0	

70																		2.453732L0	7.306860L0	27.261239L0	0.121824L0

71																		1.844379L0	24.198154L0	25.513099L0	

72																		3.592518L0))	

73											(add-factor	

74												(list	0.000165L0	0.000164L0	0.000126L0	

75																		0.000110L0	0.000062L0	0.000060L0	0.000056L0

76																		0.000047L0	0.000042L0	0.000040L0	0.000037L0

77																		0.000035L0	0.000023L0))	

78											(extra	

79												(*	0.000325L0	

80															(sin-degrees	

81																(poly	c	

82																						(deg	(list	299.77L0	132.8475848L0

83																																	-0.009173L0))))))	

84											(additional	

85												(sigma	((i	add-const)	

86																				(j	add-coeff)	

87																				(l	add-factor))	



(14.45)

(14.46)

(14.47)

88																			(*	l	(sin-degrees	(+	i	(*	j	k)))))))

89						(universal-from-dynamical	

90							(+	approx	correction	extra	additional))))

	1		(defun	new-moon-before	(tee)

	2				;;	TYPE	moment	->	moment	

	3				;;	Moment	UT	of	last	new	moon	before	tee.	

	4				(let*	((t0	(nth-new-moon	0))	

	5											(phi	(lunar-phase	tee))	

	6											(n	(round	(-	(/	(-	tee	t0)	mean-synodic-

month)	

	7																								(/	phi	(deg	360))))))	

	8						(nth-new-moon	(final	k	(1-	n)	(<	(nth-new-

moon	k)	tee)))))

	1		(defun	new-moon-at-or-after	(tee)

	2				;;	TYPE	moment	->	moment	

	3				;;	Moment	UT	of	first	new	moon	at	or	after	tee.	

	4				(let*	((t0	(nth-new-moon	0))	

	5											(phi	(lunar-phase	tee))	

	6											(n	(round	(-	(/	(-	tee	t0)	mean-synodic-

month)	

	7																								(/	phi	(deg	360))))))	

	8						(nth-new-moon	(next	k	n	(>=	(nth-new-

moon	k)	tee)))))

	1		(defun	lunar-longitude	(tee)

	2				;;	TYPE	moment	->	angle	

	3				;;	Longitude	of	moon	(in	degrees)	at	moment	tee.	

	4				;;	Adapted	from	"Astronomical	Algorithms"	by	Jean	Meeus,

	5				;;	Willmann-Bell,	2nd	edn.,	1998,	pp.	338-342.	

	6				(let*	((c	(julian-centuries	tee))	

	7											(cap-L-prime	(mean-lunar-longitude	c))	

	8											(cap-D	(lunar-elongation	c))	

	9											(cap-M	(solar-anomaly	c))	

10											(cap-M-prime	(lunar-anomaly	c))	

11											(cap-F	(moon-node	c))	

12											(cap-

E	(poly	c	(list	1	-0.002516L0	-0.0000074L0)))	

13											(args-lunar-elongation	

14												(list	0	2	2	0	0	0	2	2	2	2	0	1	0	2	0	0	4	0	4	2	2	1

15																		1	2	2	4	2	0	2	2	1	2	0	0	2	2	2	4	0	3	2	4	0	2

16																		2	2	4	0	4	1	2	0	1	3	4	2	0	1	2))	

17											(args-solar-anomaly	

18												(list	0	0	0	0	1	0	0	-1	0	-1	1	0	1	0	0	0	0	0	0	1	1

19																		0	1	-1	0	0	0	1	0	-1	0	-2	1	2	-2	0	0	-1	0	0	1

20																		-1	2	2	1	-1	0	0	-1	0	1	0	1	0	0	-1	2	1	0))
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21											(args-lunar-anomaly	

22												(list	1	-1	0	2	0	0	-2	-1	1	0	-1	0	1	0	1	1	-1	3	-2

23																		-1	0	-1	0	1	2	0	-3	-2	-1	-2	1	0	2	0	-1	1	0

24																		-1	2	-1	1	-2	-1	-1	-2	0	1	4	0	-2	0	2	1	-2	-3

25																		2	1	-1	3))	

26											(args-moon-node	

27												(list	0	0	0	0	0	2	0	0	0	0	0	0	0	-2	2	-2	0	0	0	0	0

28																		0	0	0	0	0	0	0	2	0	0	0	0	0	0	-2	2	0	2	0	0	0	0

29																		0	0	-2	0	0	0	0	-2	-2	0	0	0	0	0	0	0))	

30											(sine-coeff	

31												(list	6288774	1274027	658314	213618	-185116	-114332

32																		58793	57066	53322	45758	-40923	-34720	-30383

33																		15327	-12528	10980	10675	10034	8548	-7888

34																		-6766	-5163	4987	4036	3994	3861	3665	-2689

35																		-2602	2390	-2348	2236	-2120	-2069	2048	-1773

36																		-1595	1215	-1110	-892	-810	759	-713	-700	691

37																		596	549	537	520	-487	-399	-381	351	-340	330

38																		327	-323	299	294))	

39											(correction	

40												(*	(deg	1/1000000)	

41															(sigma	((v	sine-coeff)	

42																							(w	args-lunar-elongation)	

43																							(x	args-solar-anomaly)	

44																							(y	args-lunar-anomaly)	

45																							(z	args-moon-node))	

46																						(*	v	(expt	cap-E	(abs	x))	

47																									(sin-degrees	

48																										(+	(*	w	cap-D)	

49																													(*	x	cap-M)	

50																													(*	y	cap-M-prime)	

51																													(*	z	cap-F)))))))	

52											(venus	(*	(deg	3958/1000000)	

53																					(sin-degrees	

54																						(+	(deg	119.75L0)	(*	c	(deg	131.849L0))))))

55											(jupiter	(*	(deg	318/1000000)	

56																							(sin-degrees	

57																								(+	(deg	53.09L0)	

58																											(*	c	(deg	479264.29L0))))))	

59											(flat-earth	

60												(*	(deg	1962/1000000)	

61															(sin-degrees	(-	cap-L-prime	cap-F)))))	

62						(mod	(+	cap-L-

prime	correction	venus	jupiter	flat-earth	

63														(nutation	tee))	

64											360)))

	1		(defun	mean-lunar-longitude	(c)
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(14.50)

(14.51)

	2				;;	TYPE	century	->	angle	

	3				;;	Mean	longitude	of	moon	(in	degrees)	at	moment	

	4				;;	given	in	Julian	centuries	c.	

	5				;;	Adapted	from	"Astronomical	Algorithms"	by	Jean	Meeus,

	6				;;	Willmann-Bell,	2nd	edn.,	1998,	pp.	337-340.	

	7				(mod	

	8					(poly	c	

	9											(deg	(list	218.3164477L0	481267.88123421L0	

10																						-0.0015786L0	1/538841	-1/65194000)))

11					360))

	1		(defun	lunar-elongation	(c)

	2				;;	TYPE	century	->	angle	

	3				;;	Elongation	of	moon	(in	degrees)	at	moment	

	4				;;	given	in	Julian	centuries	c.	

	5				;;	Adapted	from	"Astronomical	Algorithms"	by	Jean	Meeus,

	6				;;	Willmann-Bell,	2nd	edn.,	1998,	p.	338.	

	7				(mod	

	8					(poly	c	

	9											(deg	(list	297.8501921L0	445267.1114034L0	

10																						-0.0018819L0	1/545868	-1/113065000)))

11					360))

	1		(defun	solar-anomaly	(c)

	2				;;	TYPE	century	->	angle	

	3				;;	Mean	anomaly	of	sun	(in	degrees)	at	moment	

	4				;;	given	in	Julian	centuries	c.	

	5				;;	Adapted	from	"Astronomical	Algorithms"	by	Jean	Meeus,

	6				;;	Willmann-Bell,	2nd	edn.,	1998,	p.	338.	

	7				(mod	

	8					(poly	c	

	9											(deg	(list	357.5291092L0	35999.0502909L0	

10																						-0.0001536L0	1/24490000)))	

11					360))
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(14.55)

	1		(defun	lunar-anomaly	(c)

	2				;;	TYPE	century	->	angle	

	3				;;	Mean	anomaly	of	moon	(in	degrees)	at	moment	

	4				;;	given	in	Julian	centuries	c.	

	5				;;	Adapted	from	"Astronomical	Algorithms"	by	Jean	Meeus,

	6				;;	Willmann-Bell,	2nd	edn.,	1998,	p.	338.	

	7				(mod	

	8					(poly	c	

	9											(deg	(list	134.9633964L0	477198.8675055L0	

10																						0.0087414L0	1/69699	-1/14712000)))

11					360))

	1		(defun	moon-node	(c)

	2				;;	TYPE	century	->	angle	

	3				;;	Moon’s	argument	of	latitude	(in	degrees)	at	moment

	4				;;	given	in	Julian	centuries	c.	

	5				;;	Adapted	from	"Astronomical	Algorithms"	by	Jean	Meeus,

	6				;;	Willmann-Bell,	2nd	edn.,	1998,	p.	338.	

	7				(mod	

	8					(poly	c	

	9											(deg	(list	93.2720950L0	483202.0175233L0	

10																						-0.0036539L0	-1/3526000	1/863310000)))

11					360))

	1		(defun	lunar-node	(date)

	2				;;	TYPE	fixed-date	->	angle	

	3				;;	Angular	distance	of	the	lunar	node	from	the	equinoctial

	4				;;	point	on	fixed	date.	

	5				(mod3	(+	(moon-node	(julian-centuries	date)))	

	6										-90	90))

	1		(defun	sidereal-lunar-longitude	(tee)

	2				;;	TYPE	moment	->	angle	

	3				;;	Sidereal	lunar	longitude	at	moment	tee.	

	4				(mod	(+	(lunar-longitude	tee)	

	5												(-	(precession	tee))	

	6												sidereal-start)	

	7									360))

	1		(defun	lunar-phase	(tee)

	2				;;	TYPE	moment	->	phase	

	3				;;	Lunar	phase,	as	an	angle	in	degrees,	at	moment	tee.

	4				;;	An	angle	of	0	means	a	new	moon,	90	degrees	means	the

	5				;;	first	quarter,	180	means	a	full	moon,	and	270	degrees

	6				;;	means	the	last	quarter.	

	7				(let*	((phi	(mod	(-	(lunar-longitude	tee)	



(14.56)

(14.57)

(14.58)

	8																								(solar-longitude	tee))	

	9																					360))	

10											(t0	(nth-new-moon	0))	

11											(n	(round	(/	(-	tee	t0)	mean-synodic-

month)))	

12											(phi-prime	(*	(deg	360)	

13																									(mod	(/	(-	tee	(nth-new-

moon	n))	

14																																	mean-synodic-month)	

15																														1))))	

16						(if	(>	(abs	(-	phi	phi-

prime))	(deg	180))	;	close	call	

17										phi-prime	

18								phi)))

	1		(defun	lunar-phase-at-or-before	(phi	tee)

	2				;;	TYPE	(phase	moment)	->	moment	

	3				;;	Moment	UT	of	the	last	time	at	or	before	tee	

	4				;;	when	the	lunar-phase	was	phi	degrees.	

	5				(let*	((tau	;	Estimate.	

	6												(-	tee	

	7															(*	mean-synodic-month	(/	1	(deg	360))	

	8																		(mod	(-	(lunar-

phase	tee)	phi)	360))))	

	9											(a	(-	tau	2))	

10											(b	(min	tee	(+	tau	2))))	;	At	or	before	tee.

11						(invert-angular	lunar-phase	phi	

12																						(interval-closed	a	b))))

	1		(defun	lunar-phase-at-or-after	(phi	tee)

	2				;;	TYPE	(phase	moment)	->	moment	

	3				;;	Moment	UT	of	the	next	time	at	or	after	tee	

	4				;;	when	the	lunar-phase	is	phi	degrees.	

	5				(let*	((tau	;	Estimate.	

	6												(+	tee	

	7															(*	mean-synodic-month	(/	1	(deg	360))	

	8																		(mod	(-	phi	(lunar-

phase	tee))	360))))	

	9											(a	(max	tee	(-	tau	2)))	;	At	or	after	tee.	

10											(b	(+	tau	2)))	

11						(invert-angular	lunar-phase	phi	

12																						(interval-closed	a	b))))

	1		(defconstant	new

	2				;;	TYPE	phase	

	3				;;	Excess	of	lunar	longitude	over	solar	longitude	at	new

	4				;;	moon.	
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	5				(deg	0))

	1		(defconstant	full

	2				;;	TYPE	phase	

	3				;;	Excess	of	lunar	longitude	over	solar	longitude	at	full

	4				;;	moon.	

	5				(deg	180))

	1		(defconstant	first-quarter

	2				;;	TYPE	phase	

	3				;;	Excess	of	lunar	longitude	over	solar	longitude	at	first

	4				;;	quarter	moon.	

	5				(deg	90))

	1		(defconstant	last-quarter

	2				;;	TYPE	phase	

	3				;;	Excess	of	lunar	longitude	over	solar	longitude	at	last

	4				;;	quarter	moon.	

	5				(deg	270))

	1		(defun	lunar-latitude	(tee)

	2				;;	TYPE	moment	->	half-circle	

	3				;;	Latitude	of	moon	(in	degrees)	at	moment	tee.	

	4				;;	Adapted	from	"Astronomical	Algorithms"	by	Jean	Meeus,

	5				;;	Willmann-Bell,	2nd	edn.,	1998,	pp.	338-342.	

	6				(let*	((c	(julian-centuries	tee))	

	7											(cap-L-prime	(mean-lunar-longitude	c))	

	8											(cap-D	(lunar-elongation	c))	

	9											(cap-M	(solar-anomaly	c))	

10											(cap-M-prime	(lunar-anomaly	c))	

11											(cap-F	(moon-node	c))	

12											(cap-

E	(poly	c	(list	1	-0.002516L0	-0.0000074L0)))	

13											(args-lunar-elongation	

14												(list	0	0	0	2	2	2	2	0	2	0	2	2	2	2	2	2	2	0	4	0	0	0

15																		1	0	0	0	1	0	4	4	0	4	2	2	2	2	0	2	2	2	2	4	2	2

16																		0	2	1	1	0	2	1	2	0	4	4	1	4	1	4	2))	

17											(args-solar-anomaly	

18												(list	0	0	0	0	0	0	0	0	0	0	-1	0	0	1	-1	-1	-1	1	0	1

19																		0	1	0	1	1	1	0	0	0	0	0	0	0	0	-1	0	0	0	0	1	1

20																		0	-1	-2	0	1	1	1	1	1	0	-1	1	0	-1	0	0	0	-1	-2))

21											(args-lunar-anomaly	

22												(list	0	1	1	0	-1	-1	0	2	1	2	0	-2	1	0	-1	0	-1	-1	-1

23																		0	0	-1	0	1	1	0	0	3	0	-1	1	-2	0	2	1	-2	3	2	-3

24																		-1	0	0	1	0	1	1	0	0	-2	-1	1	-2	2	-2	-1	1	1	-1

25																		0	0))	

26											(args-moon-node	
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27												(list	1	1	-1	-1	1	-1	1	1	-1	-1	-1	-1	1	-1	1	1	-1	-1

28																		-1	1	3	1	1	1	-1	-1	-1	1	-1	1	-3	1	-3	-1	-1	1

29																		-1	1	-1	1	1	1	1	-1	3	-1	-1	1	-1	-1	1	-1	1	-1

30																		-1	-1	-1	-1	-1	1))	

31											(sine-coeff	

32												(list	5128122	280602	277693	173237	55413	46271	32573

33																		17198	9266	8822	8216	4324	4200	-3359	2463	2211

34																		2065	-1870	1828	-1794	-1749	-1565	-1491	-1475

35																		-1410	-1344	-1335	1107	1021	833	777	671	607

36																		596	491	-451	439	422	421	-366	-351	331	315

37																		302	-283	-229	223	223	-220	-220	-185	181

38																		-177	176	166	-164	132	-119	115	107))	

39											(beta	

40												(*	(deg	1/1000000)	

41															(sigma	((v	sine-coeff)	

42																							(w	args-lunar-elongation)	

43																							(x	args-solar-anomaly)	

44																							(y	args-lunar-anomaly)	

45																							(z	args-moon-node))	

46																						(*	v	(expt	cap-E	(abs	x))	

47																									(sin-degrees	

48																										(+	(*	w	cap-D)	

49																													(*	x	cap-M)	

50																													(*	y	cap-M-prime)	

51																													(*	z	cap-F)))))))	

52											(venus	(*	(deg	175/1000000)	

53																					(+	(sin-degrees	

54																									(+	(deg	119.75L0)	(*	c	(deg	131.849L0))

55																												cap-F))	

56																								(sin-degrees	

57																									(+	(deg	119.75L0)	(*	c	(deg	131.849L0))

58																												(-	cap-F))))))	

59											(flat-earth	

60												(+	(*	(deg	-2235/1000000)	

61																		(sin-degrees	cap-L-prime))	

62															(*	(deg	127/1000000)	(sin-degrees	

63																																					(-	cap-L-

prime	cap-M-prime)))	

64															(*	(deg	-115/1000000)	(sin-degrees	

65																																						(+	cap-L-

prime	cap-M-prime)))))	

66											(extra	(*	(deg	382/1000000)	

67																					(sin-degrees	

68																						(+	(deg	313.45L0)	

69																									(*	c	(deg	481266.484L0)))))))	

70						(+	beta	venus	flat-earth	extra)))
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	1		(defun	lunar-altitude	(tee	location)

	2				;;	TYPE	(moment	location)	->	half-circle	

	3				;;	Geocentric	altitude	of	moon	at	tee	at	location,	

	4				;;	as	a	small	positive/negative	angle	in	degrees,	ignoring

	5				;;	parallax	and	refraction.		Adapted	from	"Astronomical

	6				;;	Algorithms"	by	Jean	Meeus,	Willmann-

Bell,	2nd	edn.,	

	7				;;	1998.	

	8				(let*	((phi	;	Local	latitude.	

	9												(latitude	location))	

10											(psi	;	Local	longitude.	

11												(longitude	location))	

12											(lambda	;	Lunar	longitude.	

13													(lunar-longitude	tee))	

14											(beta	;	Lunar	latitude.	

15												(lunar-latitude	tee))	

16											(alpha	;	Lunar	right	ascension.	

17												(right-ascension	tee	beta	lambda))	

18											(delta	;	Lunar	declination.	

19												(declination	tee	beta	lambda))	

20											(theta0	;	Sidereal	time.	

21												(sidereal-from-moment	tee))	

22											(cap-H	;	Local	hour	angle.	

23												(mod	(-	theta0	(-	psi)	alpha)	360))	

24											(altitude	

25												(arcsin-degrees	(+	(*	(sin-degrees	phi)	

26																																		(sin-degrees	delta))	

27																															(*	(cos-degrees	phi)	

28																																		(cos-degrees	delta)	

29																																		(cos-degrees	cap-

H))))))	

30						(mod3	altitude	-180	180)))

	1		(defun	lunar-distance	(tee)

	2				;;	TYPE	moment	->	distance	

	3				;;	Distance	to	moon	(in	meters)	at	moment	tee.	

	4				;;	Adapted	from	"Astronomical	Algorithms"	by	Jean	Meeus,

	5				;;	Willmann-Bell,	2nd	edn.,	1998,	pp.	338-342.	

	6				(let*	((c	(julian-centuries	tee))	

	7											(cap-D	(lunar-elongation	c))	

	8											(cap-M	(solar-anomaly	c))	

	9											(cap-M-prime	(lunar-anomaly	c))	

10											(cap-F	(moon-node	c))	

11											(cap-

E	(poly	c	(list	1	-0.002516L0	-0.0000074L0)))	

12											(args-lunar-elongation	

13												(list	0	2	2	0	0	0	2	2	2	2	0	1	0	2	0	0	4	0	4	2	2	1
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14																		1	2	2	4	2	0	2	2	1	2	0	0	2	2	2	4	0	3	2	4	0	2

15																		2	2	4	0	4	1	2	0	1	3	4	2	0	1	2	2))	

16											(args-solar-anomaly	

17												(list	0	0	0	0	1	0	0	-1	0	-1	1	0	1	0	0	0	0	0	0	1	1

18																		0	1	-1	0	0	0	1	0	-1	0	-2	1	2	-2	0	0	-1	0	0	1

19																		-1	2	2	1	-1	0	0	-1	0	1	0	1	0	0	-1	2	1	0	0))

20											(args-lunar-anomaly	

21												(list	1	-1	0	2	0	0	-2	-1	1	0	-1	0	1	0	1	1	-1	3	-2

22																		-1	0	-1	0	1	2	0	-3	-2	-1	-2	1	0	2	0	-1	1	0

23																		-1	2	-1	1	-2	-1	-1	-2	0	1	4	0	-2	0	2	1	-2	-3

24																		2	1	-1	3	-1))	

25											(args-moon-node	

26												(list	0	0	0	0	0	2	0	0	0	0	0	0	0	-2	2	-2	0	0	0	0	0

27																		0	0	0	0	0	0	0	2	0	0	0	0	0	0	-2	2	0	2	0	0	0	0

28																		0	0	-2	0	0	0	0	-2	-2	0	0	0	0	0	0	0	-2))

29											(cosine-coeff	

30												(list	-20905355	-3699111	-2955968	-569925	48888	-3149

31																		246158	-152138	-170733	-204586	-129620	108743

32																		104755	10321	0	79661	-34782	-23210	-21636	24208

33																		30824	-8379	-16675	-12831	-10445	-11650	14403

34																		-7003	0	10056	6322	-9884	5751	0	-4950	4130	0

35																		-3958	0	3258	2616	-1897	-2117	2354	0	0	-1423

36																		-1117	-1571	-1739	0	-4421	0	0	0	0	1165	0	0

37																		8752))	

38											(correction	

39												(sigma	((v	cosine-coeff)	

40																				(w	args-lunar-elongation)	

41																				(x	args-solar-anomaly)	

42																				(y	args-lunar-anomaly)	

43																				(z	args-moon-node))	

44																			(*	v	(expt	cap-E	(abs	x))	

45																						(cos-degrees	

46																							(+	(*	w	cap-D)	

47																										(*	x	cap-M)	

48																										(*	y	cap-M-prime)	

49																										(*	z	cap-F)))))))	

50						(+	(mt	385000560)	correction)))

	1		(defun	lunar-parallax	(tee	location)

	2				;;	TYPE	(moment	location)	->	angle	

	3				;;	Parallax	of	moon	at	tee	at	location.	

	4				;;	Adapted	from	"Astronomical	Algorithms"	by	Jean	Meeus,

	5				;;	Willmann-Bell,	2nd	edn.,	1998.	

	6				(let*	((geo	(lunar-altitude	tee	location))	

	7											(cap-Delta	(lunar-distance	tee))	

	8											(alt	(/	(mt	6378140)	cap-Delta))	

	9											(arg	(*	alt	(cos-degrees	geo))))	
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10						(arcsin-degrees	arg)))

	1		(defun	topocentric-lunar-altitude	(tee	location)

	2				;;	TYPE	(moment	location)	->	half-circle	

	3				;;	Topocentric	altitude	of	moon	at	tee	at	location,

	4				;;	as	a	small	positive/negative	angle	in	degrees,	

	5				;;	ignoring	refraction.	

	6				(-	(lunar-altitude	tee	location)	

	7							(lunar-parallax	tee	location)))

Times	of	day	are	computed	by	the	following	functions:

	1		(defun	approx-moment-of-

depression	(tee	location	alpha	early?)

	2				;;	TYPE	(moment	location	half-circle	boolean)	-

>	moment	

	3				;;	Moment	in	local	time	near	tee	when	depression	angle

	4				;;	of	sun	is	alpha	(negative	if	above	horizon)	at	

	5				;;	location;	early?	is	true	when	morning	event	is	sought

	6				;;	and	false	for	evening.		Returns	bogus	if	depression

	7				;;	angle	is	not	reached.	

	8				(let*	((try	(sine-offset	tee	location	alpha))	

	9											(date	(fixed-from-moment	tee))	

10											(alt	(if	(>=	alpha	0)	

11																				(if	early?	date	(1+	date))	

12																		(+	date	(hr	12))))	

13											(value	(if	(>	(abs	try)	1)	

14																						(sine-offset	alt	location	alpha)	

15																				try)))	

16						(if	(<=	(abs	value)	1)	;	Event	occurs	

17										(let*	((offset	(mod3	(/	(arcsin-

degrees	value)	(deg	360))	

18																															(hr	-12)	(hr	12))))	

19												(local-from-apparent	

20													(+	date	

21																(if	early?	

22																				(-	(hr	6)	offset)	

23																		(+	(hr	18)	offset)))	

24													location))	

25								bogus)))

	1		(defun	sine-offset	(tee	location	alpha)

	2				;;	TYPE	(moment	location	half-circle)	->	real	

	3				;;	Sine	of	angle	between	position	of	sun	at	

	4				;;	local	time	tee	and	

	5				;;	when	its	depression	is	alpha	at	location.	
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	6				;;	Out	of	range	when	it	does	not	occur.	

	7				(let*	((phi	(latitude	location))	

	8											(tee-prime	(universal-from-

local	tee	location))	

	9											(delta	;	Declination	of	sun.	

10												(declination	tee-prime	(deg	0L0)	

11																									(solar-longitude	tee-prime))))

12						(+	(*	(tan-degrees	phi)	

13												(tan-degrees	delta))	

14									(/	(sin-degrees	alpha)	

15												(*	(cos-degrees	delta)	

16															(cos-degrees	phi))))))

	1		(defun	moment-of-

depression	(approx	location	alpha	early?)

	2				;;	TYPE	(moment	location	half-circle	boolean)	-

>	moment	

	3				;;	Moment	in	local	time	near	approx	when	depression

	4				;;	angle	of	sun	is	alpha	(negative	if	above	horizon)	at

	5				;;	location;	early?	is	true	when	morning	event	is	

	6				;;	sought,	and	false	for	evening.	

	7				;;	Returns	bogus	if	depression	angle	is	not	reached.

	8				(let*	((tee	(approx-moment-of-depression	

	9																	approx	location	alpha	early?)))	

10						(if	(equal	tee	bogus)	

11										bogus	

12								(if	(<	(abs	(-	approx	tee))	

13															(sec	30))	

14												tee	

15										(moment-of-

depression	tee	location	alpha	early?)))))

	1		(defconstant	morning

	2				;;	TYPE	boolean	

	3				;;	Signifies	morning.	

	4				true)

	1		(defun	dawn	(date	location	alpha)

	2				;;	TYPE	(fixed-date	location	half-circle)	->	moment

	3				;;	Standard	time	in	morning	on	fixed	date	at	

	4				;;	location	when	depression	angle	of	sun	is	alpha.	

	5				;;	Returns	bogus	if	there	is	no	dawn	on	date.	

	6				(let*	((result	(moment-of-depression	

	7																				(+	date	(hr	6))	location	alpha	morning)))

	8						(if	(equal	result	bogus)	

	9										bogus	

10								(standard-from-local	result	location))))
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	1		(defconstant	evening

	2				;;	TYPE	boolean	

	3				;;	Signifies	evening.	

	4				false)

	1		(defun	dusk	(date	location	alpha)

	2				;;	TYPE	(fixed-date	location	half-circle)	->	moment

	3				;;	Standard	time	in	evening	on	fixed	date	at	

	4				;;	location	when	depression	angle	of	sun	is	alpha.	

	5				;;	Returns	bogus	if	there	is	no	dusk	on	date.	

	6				(let*	((result	(moment-of-depression	

	7																				(+	date	(hr	18))	location	alpha	evening)))

	8						(if	(equal	result	bogus)	

	9										bogus	

10								(standard-from-local	result	location))))

	1		(defun	refraction	(tee	location)

	2				;;	TYPE	(moment	location)	->	half-circle	

	3				;;	Refraction	angle	at	moment	tee	at	location.	

	4				;;	The	moment	is	not	used.	

	5				(let*	((h	(max	(mt	0)	(elevation	location)))	

	6											(cap-R	(mt	6.372d6))	;	Radius	of	Earth.	

	7											(dip	;	Depression	of	visible	horizon.	

	8												(arccos-degrees	(/	cap-R	(+	cap-R	h)))))	

	9						(+	(mins	34)	dip	

10									(*	(secs	19)	(sqrt	h)))))

	1		(defun	sunrise	(date	location)

	2				;;	TYPE	(fixed-date	location)	->	moment	

	3				;;	Standard	time	of	sunrise	on	fixed	date	at	

	4				;;	location.	

	5				(let*	((alpha	(+	(refraction	(+	date	(hr	6))	location)

	6																					(mins	16))))	

	7						(dawn	date	location	alpha)))

	1		(defun	sunset	(date	location)

	2				;;	TYPE	(fixed-date	location)	->	moment	

	3				;;	Standard	time	of	sunset	on	fixed	date	at	

	4				;;	location.	

	5				(let*	((alpha	(+	(refraction	(+	date	(hr	18))	location)

	6																					(mins	16))))	

	7						(dusk	date	location	alpha)))

	1		(defun	jewish-sabbath-ends	(date	location)

	2				;;	TYPE	(fixed-date	location)	->	moment	

	3				;;	Standard	time	of	end	of	Jewish	sabbath	on	fixed	date

	4				;;	at	location	(as	per	Berthold	Cohn).	
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	5				(dusk	date	location	(angle	7	5	0)))

	1		(defun	jewish-dusk	(date	location)

	2				;;	TYPE	(fixed-date	location)	->	moment	

	3				;;	Standard	time	of	Jewish	dusk	on	fixed	date	

	4				;;	at	location	(as	per	Vilna	Gaon).	

	5				(dusk	date	location	(angle	4	40	0)))

	1		(defun	observed-lunar-altitude	(tee	location)

	2				;;	TYPE	(moment	location)	->	half-circle	

	3				;;	Observed	altitude	of	upper	limb	of	moon	at	tee	at	location

	4				;;	as	a	small	positive/negative	angle	in	degrees,	including

	5				;;	refraction	and	elevation.	

	6				(+	(topocentric-lunar-altitude	tee	location)	

	7							(refraction	tee	location)	

	8							(mins	16)))

	1		(defun	moonrise	(date	location)

	2				;;	TYPE	(fixed-date	location)	->	moment	

	3				;;	Standard	time	of	moonrise	on	fixed	date	at	location.

	4				;;	Returns	bogus	if	there	is	no	moonrise	on	date.	

	5				(let*	((tee	;	Midnight.	

	6												(universal-from-standard	date	location))	

	7											(waning	(>	(lunar-phase	tee)	(deg	180)))	

	8											(alt	;	Altitude	at	midnight.	

	9												(observed-lunar-altitude	tee	location))	

10											(lat	(latitude	location))	

11											(offset	(/	alt	(*	4	(-	(deg	90)	(abs	lat)))))

12											(approx	;	Approximate	rising	time.	

13												(if	waning	

14																(if	(>	offset	0)	

15																				(-	tee	-1	offset)	

16																		(-	tee	offset))	

17														(+	tee	1/2	offset)))	

18											(rise	(binary-search	

19																		l	(-	approx	(hr	6))	

20																		u	(+	approx	(hr	6))	

21																		x	(>	(observed-lunar-

altitude	x	location)	

22																							(deg	0))	

23																		(<	(-	u	l)	(mn	1)))))	

24						(if	(<	rise	(1+	tee))	

25										(max	(standard-from-universal	rise	location)	

26															date)	;	May	be	just	before	to	midnight.	

27								;;	Else	no	moonrise	this	day.	

28								bogus)))
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	1		(defun	moonset	(date	location)

	2				;;	TYPE	(fixed-date	location)	->	moment	

	3				;;	Standard	time	of	moonset	on	fixed	date	at	location.

	4				;;	Returns	bogus	if	there	is	no	moonset	on	date.	

	5				(let*	((tee	;	Midnight.	

	6												(universal-from-standard	date	location))	

	7											(waxing	(<	(lunar-phase	tee)	(deg	180)))	

	8											(alt	;	Altitude	at	midnight.	

	9												(observed-lunar-altitude	tee	location))	

10											(lat	(latitude	location))	

11											(offset	(/	alt	(*	4	(-	(deg	90)	(abs	lat)))))

12											(approx	;	Approximate	setting	time.	

13												(if	waxing	

14																(if	(>	offset	0)	

15																				(+	tee	offset)	

16																		(+	tee	1	offset))	

17														(-	tee	offset	-1/2)))	

18											(set	(binary-search	

19																	l	(-	approx	(hr	6))	

20																	u	(+	approx	(hr	6))	

21																	x	(<	(observed-lunar-

altitude	x	location)	(deg	0))	

22																	(<	(-	u	l)	(mn	1)))))	

23						(if	(<	set	(1+	tee))	

24										(max	(standard-from-universal	set	location)	

25															date)	;	May	be	just	before	to	midnight.	

26								;;	Else	no	moonset	this	day.	

27								bogus)))

	1		(defconstant	padua

	2				;;	TYPE	location	

	3				;;	Location	of	Padua,	Italy.	

	4				(location	(angle	45	24	28)	(angle	11	53	9)	(mt	18)	(hr	1)))

	1		(defun	local-zero-hour	(tee)

	2				;;	TYPE	moment	->	moment	

	3				;;	Local	time	of	dusk	in	Padua,	Italy	on	date	of	moment	tee.

	4				(let*	((date	(fixed-from-moment	tee)))	

	5						(local-from-standard	

	6							(+	(dusk	date	padua	(angle	0	16	0))	;	Sunset.	

	7										(mn	30))	;	Dusk.	

	8							padua)))

	1		(defun	local-from-italian	(tee)

	2				;;	TYPE	moment	->	moment	

	3				;;	Local	time	corresponding	to	Italian	time	tee.	



(14.87)

(14.88)

(14.89)

(14.90)

	4				(let*	((date	(fixed-from-moment	tee))	

	5											(z	(local-zero-hour	(1-	tee))))	

	6						(-	tee	(-	date	z))))

	1		(defun	italian-from-local	(tee_ell)

	2				;;	TYPE	moment	->	moment	

	3				;;	Italian	time	corresponding	to	local	time	tee_ell.

	4				(let*	((date	(fixed-from-moment	tee_ell))	

	5											(z0	(local-zero-hour	(1-	tee_ell)))	

	6											(z	(local-zero-hour	tee_ell)))	

	7						(if	(>	tee_ell	z)	;	if	after	zero	hour	

	8										(+	tee_ell	(-	date	-1	z))	;	then	next	day	

	9								(+	tee_ell	(-	date	z0)))))

	1		(defun	daytime-temporal-hour	(date	location)

	2				;;	TYPE	(fixed-date	location)	->	real	

	3				;;	Length	of	daytime	temporal	hour	on	fixed	date	at	location

	4				;;	Returns	bogus	if	there	no	sunrise	or	sunset	on	date.

	5				(if	(or	(equal	(sunrise	date	location)	bogus)	

	6												(equal	(sunset	date	location)	bogus))	

	7								bogus	

	8						(/	(-	(sunset	date	location)	

	9												(sunrise	date	location))	

10									12)))

	1		(defun	nighttime-temporal-hour	(date	location)

	2				;;	TYPE	(fixed-date	location)	->	real	

	3				;;	Length	of	nighttime	temporal	hour	on	fixed	date	at	location

	4				;;	Returns	bogus	if	there	no	sunrise	or	sunset	on	date.

	5				(if	(or	(equal	(sunrise	(1+	date)	location)	bogus)	

	6												(equal	(sunset	date	location)	bogus))	

	7								bogus	

	8						(/	(-	(sunrise	(1+	date)	location)	

	9												(sunset	date	location))	

10									12)))

	1		(defun	standard-from-sundial	(tee	location)

	2				;;	TYPE	(moment	location)	->	moment	

	3				;;	Standard	time	of	temporal	moment	tee	at	location.

	4				;;	Returns	bogus	if	temporal	hour	is	undefined	that	day.

	5				(let*	((date	(fixed-from-moment	tee))	

	6											(hour	(*	24	(time-from-moment	tee)))	

	7											(h	(cond	((<=	6	hour	18);	daytime	today	

	8																					(daytime-temporal-

hour	date	location))	

	9																				((<	hour	6)				;	early	this	morning

10																					(nighttime-temporal-
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hour	(1-	date)	location))	

11																				(t													;	this	evening	

12																					(nighttime-temporal-

hour	date	location)))))	

13						(cond	((equal	h	bogus)	bogus)	

14												((<=	6	hour	18);	daytime	today	

15													(+	(sunrise	date	location)	(*	(-	hour	6)	h)))

16												((<	hour	6)				;	early	this	morning	

17													(+	(sunset	(1-	date)	location)	(*	(+	hour	6)	h)))

18												(t													;	this	evening	

19													(+	(sunset	date	location)	(*	(-	hour	18)	h))))))

	1		(defun	jewish-morning-end	(date	location)

	2				;;	TYPE	(fixed-date	location)	->	moment	

	3				;;	Standard	time	on	fixed	date	at	location	of	end	of

	4				;;	morning	according	to	Jewish	ritual.	

	5				(standard-from-sundial	(+	date	(hr	10))	location))

	1		(defun	asr	(date	location)

	2				;;	TYPE	(fixed-date	location)	->	moment	

	3				;;	Standard	time	of	asr	on	fixed	date	at	location.	

	4				;;	According	to	Hanafi	rule.	

	5				;;	Returns	bogus	is	no	asr	occurs.	

	6				(let*	((noon	;	Time	when	sun	nearest	zenith.	

	7													(midday	date	location))	

	8											(phi	(latitude	location))	

	9											(delta	;	Solar	declination	at	noon.	

10												(declination	noon	(deg	0)	(solar-

longitude	noon)))	

11											(altitude	;	Solar	altitude	at	noon.	

12												(arcsin-degrees	

13													(+	(*	(cos-degrees	delta)	(cos-

degrees	phi))	

14																(*	(sin-degrees	delta)	(sin-

degrees	phi)))))	

15											(h	;	Sun’s	altitude	when	shadow	increases	by

16												(mod3	(arctan-

degrees	;	...	double	its	length.	

17																			(tan-degrees	altitude)	

18																			(1+	(*	2	(tan-degrees	altitude))))	

19																		-90	90)))	

20						(if	(<=	altitude	(deg	0))	;	No	shadow.	

21										bogus	

22								(dusk	date	location	(-	h)))))

	1		(defun	alt-asr	(date	location)

	2				;;	TYPE	(fixed-date	location)	->	moment	
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	3				;;	Standard	time	of	asr	on	fixed	date	at	location.	

	4				;;	According	to	Shafi’i	rule.	

	5				;;	Returns	bogus	is	no	asr	occurs.	

	6				(let*	((noon	;	Time	when	sun	nearest	zenith.	

	7												(midday	date	location))	

	8											(phi	(latitude	location))	

	9											(delta	;	Solar	declination	at	noon.	

10												(declination	noon	(deg	0)	(solar-

longitude	noon)))	

11											(altitude	;	Solar	altitude	at	noon.	

12												(arcsin-degrees	

13													(+	(*	(cos-degrees	delta)	(cos-

degrees	phi))	

14																(*	(sin-degrees	delta)	(sin-

degrees	phi)))))	

15											(h	;	Sun’s	altitude	when	shadow	increases	by

16												(mod3	(arctan-degrees	;	...	its	length.	

17																			(tan-degrees	altitude)	

18																			(1+	(tan-degrees	altitude)))	

19																		-90	90)))	

20						(if	(<=	altitude	(deg	0))	;	No	shadow.	

21										bogus	

22								(dusk	date	location	(-	h)))))

The	functions	for	lunar	visibility	are:

	1		(defun	arc-of-light	(tee)

	2				;;	TYPE	moment	->	half-circle	

	3				;;	Angular	separation	of	sun	and	moon	

	4				;;	at	moment	tee.	

	5				(arccos-degrees	

	6					(*	(cos-degrees	(lunar-latitude	tee))	

	7								(cos-degrees	(lunar-phase	tee)))))

	1		(defun	simple-best-view	(date	location)

	2				;;	TYPE	(fixed-date	location)	->	moment	

	3				;;	Best	viewing	time	(UT)	in	the	evening.	

	4				;;	Simple	version.	

	5				(let*	((dark	;	Best	viewing	time	prior	evening.	

	6												(dusk	date	location	(deg	4.5L0)))	

	7											(best	(if	(equal	dark	bogus)	

	8																					(1+	date)	;	An	arbitrary	time.	

	9																			dark)))	

10						(universal-from-standard	best	location)))

	1		(defun	shaukat-criterion	(date	location)



(14.97)

(14.98)
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	2				;;	TYPE	(fixed-date	location)	->	boolean	

	3				;;	S.	K.	Shaukat’s	criterion	for	likely	

	4				;;	visibility	of	crescent	moon	on	eve	of	date	at	location.

	5				;;	Not	intended	for	high	altitudes	or	polar	regions.

	6				(let*	((tee	(simple-best-view	(1-	date)	location))	

	7											(phase	(lunar-phase	tee))	

	8											(h	(lunar-altitude	tee	location))	

	9											(cap-ARCL	(arc-of-light	tee)))	

10						(and	(<	new	phase	first-quarter)	

11											(<=	(deg	10.6L0)	cap-ARCL	(deg	90))	

12											(>	h	(deg	4.1L0)))))

	1		(defun	arc-of-vision	(tee	location)

	2				;;	TYPE	(moment	location)	->	half-circle	

	3				;;	Angular	difference	in	altitudes	of	sun	and	moon	

	4				;;	at	moment	tee	at	location.	

	5				(-	(lunar-altitude	tee	location)	

	6							(solar-altitude	tee	location)))

	1		(defun	bruin-best-view	(date	location)

	2				;;	TYPE	(fixed-date	location)	->	moment	

	3				;;	Best	viewing	time	(UT)	in	the	evening.	

	4				;;	Yallop	version,	per	Bruin	(1977).	

	5				(let*	((sun	(sunset	date	location))	

	6											(moon	(moonset	date	location))	

	7											(best	;	Best	viewing	time	prior	evening.	

	8												(if	(or	(equal	sun	bogus)	(equal	moon	bogus))

	9																(1+	date)	;	An	arbitrary	time.	

10														(+	(*	5/9	sun)	(*	4/9	moon)))))	

11						(universal-from-standard	best	location)))

	1		(defun	yallop-criterion	(date	location)

	2				;;	TYPE	(fixed-date	location)	->	boolean	

	3				;;	B.	D.	Yallop’s	criterion	for	possible	

	4				;;	visibility	of	crescent	moon	on	eve	of	date	at	location.

	5				;;	Not	intended	for	high	altitudes	or	polar	regions.

	6				(let*	((tee	;	Best	viewing	time	prior	evening.	

	7												(bruin-best-view	(1-	date)	location))	

	8											(phase	(lunar-phase	tee))	

	9											(cap-D	(lunar-semi-diameter	tee	location))	

10											(cap-ARCL	(arc-of-light	tee))	

11											(cap-W	(*	cap-D	(-	1	(cos-degrees	cap-

ARCL))))	

12											(cap-ARCV	(arc-of-vision	tee	location))	

13											(e	-0.14L0)	;	Crescent	visible	under	perfect	conditions.

14											(q1	(poly	cap-W	

15																					(list	11.8371L0	-6.3226L0	0.7319L0	-0.1018L0))))



(14.100)
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16						(and	(<	new	phase	first-quarter)	

17											(>	cap-ARCV	(+	q1	e)))))

	1		(defun	lunar-semi-diameter	(tee	location)

	2				;;	TYPE	(moment	location)	->	half-circle	

	3				;;	Topocentric	lunar	semi-

diameter	at	moment	tee	and	location.	

	4				(let*	((h	(lunar-altitude	tee	location))	

	5											(p	(lunar-parallax	tee	location)))	

	6						(*	0.27245L0	p	(1+	(*	(sin-degrees	h)	(sin-

degrees	p))))))

	1		(defun	lunar-diameter	(tee)

	2				;;	TYPE	moment	->	angle	

	3				;;	Geocentric	apparent	lunar	diameter	of	the	moon	(in

	4				;;	degrees)	at	moment	tee.		Adapted	from	"Astronomical

	5				;;	Algorithms"	by	Jean	Meeus,	Willmann-

Bell,	2nd	edn.,	

	6				;;	1998.	

	7				(/	(deg	1792367000/9)	(lunar-distance	tee)))

	1		(defun	visible-crescent	(date	location)

	2				;;	TYPE	(fixed-date	location)	->	boolean	

	3				;;	Criterion	for	possible	visibility	of	crescent	moon

	4				;;	on	eve	of	date	at	location.	

	5				;;	Shaukat’s	criterion	may	be	replaced	with	another.

	6				(shaukat-criterion	date	location))

	1		(defun	phasis-on-or-before	(date	location)

	2				;;	TYPE	(fixed-date	location)	->	fixed-date	

	3				;;	Closest	fixed	date	on	or	before	date	when	crescent

	4				;;	moon	first	became	visible	at	location.	

	5				(let*	((moon	;	Prior	new	moon.	

	6												(fixed-from-moment	

	7													(lunar-phase-at-or-before	new	date)))	

	8											(age	(-	date	moon))	

	9											(tau	;	Check	if	not	visible	yet	on	eve	of	date.

10												(if	(and	(<=	age	3)	

11																					(not	(visible-

crescent	date	location)))	

12																(-	moon	30)	;	Must	go	back	a	month.	

13														moon)))	

14						(next	d	tau	(visible-crescent	d	location))))

	1		(defun	phasis-on-or-after	(date	location)

	2				;;	TYPE	(fixed-date	location)	->	fixed-date	

	3				;;	Closest	fixed	date	on	or	after	date	on	the	eve	
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	4				;;	of	which	crescent	moon	first	became	visible	at	location.

	5				(let*	((moon	;	Prior	new	moon.	

	6												(fixed-from-moment	

	7													(lunar-phase-at-or-before	new	date)))	

	8											(age	(-	date	moon))	

	9											(tau	;	Check	if	not	visible	yet	on	eve	of	date.

10												(if	(or	(<=	4	age)	

11																				(visible-

crescent	(1-	date)	location))	

12																(+	moon	29)	;	Next	new	moon	

13														date)))	

14						(next	d	tau	(visible-crescent	d	location))))

D.15	 The	Persian	Calendar
	1		(defun	persian-date	(year	month	day)	

	2				;;	TYPE	(persian-year	persian-month	persian-day)	

	3				;;	TYPE		->	persian-date	

	4				(list	year	month	day))

	1		(defconstant	persian-epoch

	2				;;	TYPE	fixed-date	

	3				;;	Fixed	date	of	start	of	the	Persian	calendar.	

	4				(fixed-from-julian	(julian-

date	(ce	622)	march	19)))

	1		(defconstant	tehran

	2				;;	TYPE	location	

	3				;;	Location	of	Tehran,	Iran.	

	4				(location	(deg	35.68L0)	(deg	51.42L0)	

	5														(mt	1100)	(hr	(+	3	1/2))))

	1		(defun	midday-in-tehran	(date)

	2				;;	TYPE	fixed-date	->	moment	

	3				;;	Universal	time	of	true	noon	on	fixed	date	in	Tehran.

	4				(midday	date	tehran))

	1		(defun	persian-new-year-on-or-before	(date)

	2				;;	TYPE	fixed-date	->	fixed-date	

	3				;;	Fixed	date	of	Astronomical	Persian	New	Year	on	or

	4				;;	before	fixed	date.	

	5				(let*	((approx	;	Approximate	time	of	equinox.	

	6												(estimate-prior-solar-longitude	

	7													spring	(midday-in-tehran	date))))	
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	8						(next	day	(-	(floor	approx)	1)	

	9												(<=	(solar-longitude	(midday-in-

tehran	day))	

10																(+	spring	(deg	2))))))

	1		(defun	fixed-from-persian	(p-date)

	2				;;	TYPE	persian-date	->	fixed-date	

	3				;;	Fixed	date	of	Astronomical	Persian	date	p-date.	

	4				(let*	((month	(standard-month	p-date))	

	5											(day	(standard-day	p-date))	

	6											(year	(standard-year	p-date))	

	7											(new-year	

	8												(persian-new-year-on-or-before	

	9													(+	persian-epoch	180;	Fall	after	epoch.	

10																(floor	

11																	(*	mean-tropical-year	

12																				(if	(<	0	year)	

13																								(1-	year)	

14																						year)))))));	No	year	zero.	

15						(+	(1-	new-year)					;	Days	in	prior	years.	

16									(if	(<=	month	7)		;	Days	in	prior	months	this	year.

17													(*	31	(1-	month))	

18											(+	(*	30	(1-	month))	6))	

19									day)))												;	Days	so	far	this	month.

	1		(defun	persian-from-fixed	(date)

	2				;;	TYPE	fixed-date	->	persian-date	

	3				;;	Astronomical	Persian	date	(year	month	day)	

	4				;;	corresponding	to	fixed	date.	

	5				(let*	((new-year	

	6												(persian-new-year-on-or-before	date))	

	7											(y	(1+	(round	(/	(-	new-year	persian-epoch)	

	8																												mean-tropical-year))))	

	9											(year	(if	(<	0	y)	

10																					y	

11																			(1-	y)));	No	year	zero	

12											(day-of-year	(1+	(-	date	

13																															(fixed-from-persian	

14																																(persian-

date	year	1	1)))))	

15											(month	(if	(<=	day-of-year	186)	

16																						(ceiling	(/	day-of-year	31))	

17																				(ceiling	(/	(-	day-of-

year	6)	30))))	

18											(day											;	Calculate	the	day	by	subtraction

19												(-	date	(1-	(fixed-from-persian	

20																									(persian-



(15.6)

(15.7)

(15.8)

date	year	month	1))))))	

21						(persian-date	year	month	day)))

	1		(defun	arithmetic-persian-leap-year?	(p-year)

	2				;;	TYPE	persian-year	->	boolean	

	3				;;	True	if	p-

year	is	a	leap	year	on	the	Persian	calendar.	

	4				(let*	((y	;	Years	since	start	of	2820-year	cycles	

	5												(if	(<	0	p-year)	

	6																(-	p-year	474)	

	7														(-	p-year	473)));	No	year	zero	

	8											(year	;	Equivalent	year	in	the	range	474..3263

	9												(+	(mod	y	2820)	474)))	

10						(<	(mod	(*	(+	year	38)	

11																	31)	

12														128)	

13									31)))

	1		(defun	fixed-from-arithmetic-persian	(p-date)

	2				;;	TYPE	persian-date	->	fixed-date	

	3				;;	Fixed	date	equivalent	to	Persian	date	p-date.	

	4				(let*	((day	(standard-day	p-date))	

	5											(month	(standard-month	p-date))	

	6											(p-year	(standard-year	p-date))	

	7											(y	;	Years	since	start	of	2820-year	cycle	

	8												(if	(<	0	p-year)	

	9																(-	p-year	474)	

10														(-	p-year	473)));	No	year	zero	

11											(year	;	Equivalent	year	in	the	range	474..3263

12												(+	(mod	y	2820)	474)))	

13						(+	(1-	persian-epoch);	Days	before	epoch	

14									(*	1029983								;	Days	in	2820-year	cycles	

15																																										;	before	Persian	year	474

16												(quotient	y	2820))	

17									(*	365	(1-	year))	;	Nonleap	days	in	prior	years	this

18																																										;	2820-

year	cycle	

19									(quotient									;	Leap	days	in	prior	years	this

20																																										;	2820-

year	cycle	

21										(-	(*	31	year)	5)	128)	

22									(if	(<=	month	7)		;	Days	in	prior	months	this	year

23													(*	31	(1-	month))	

24											(+	(*	30	(1-	month))	6))	

25									day)))												;	Days	so	far	this	month

	1		(defun	arithmetic-persian-year-from-fixed	(date)



(15.9)

	2				;;	TYPE	fixed-date	->	persian-year	

	3				;;	Persian	year	corresponding	to	the	fixed	date.	

	4				(let*	((d0						;	Prior	days	since	start	of	2820-

year	cycle	

	5																				;	beginning	in	Persian	year	474	

	6												(-	date	(fixed-from-arithmetic-persian	

	7																					(persian-date	475	1	1))))	

	8											(n2820			;	Completed	prior	2820-year	cycles	

	9												(quotient	d0	1029983))	

10											(d1						;	Prior	days	not	in	n2820--

that	is,	days	

11																				;	since	start	of	last	2820-

year	cycle	

12												(mod	d0	1029983))	

13											(y2820	;	Years	since	start	of	last	2820-

year	cycle	

14												(if	(=	d1	1029982)	

15																;;	Last	day	of	2820-year	cycle	

16																2820	

17														;;	Otherwise	use	cycle	of	years	formula	

18														(quotient	(+	(*	128	d1)	46878)	

19																								46751)))	

20											(year				;	Years	since	Persian	epoch	

21												(+	474					;	Years	before	start	of	2820-

year	cycles	

22															(*	2820	n2820)	;	Years	in	prior	2820-

year	cycles	

23															y2820)));	Years	since	start	of	last	2820-

year	

24																																										;	cycle	

25						(if	(<	0	year)	

26										year	

27								(1-	year))));	No	year	zero

	1		(defun	arithmetic-persian-from-fixed	(date)

	2				;;	TYPE	fixed-date	->	persian-date	

	3				;;	Persian	date	corresponding	to	fixed	date.	

	4				(let*	((year	(arithmetic-persian-year-from-

fixed	date))	

	5											(day-of-year	(1+	(-	date	

	6																															(fixed-from-arithmetic-

persian	

	7																																(persian-

date	year	1	1)))))	

	8											(month	(if	(<=	day-of-year	186)	

	9																						(ceiling	(/	day-of-year	31))	

10																				(ceiling	(/	(-	day-of-



(15.10)

(15.11)

year	6)	30))))	

11											(day											;	Calculate	the	day	by	subtraction

12												(-	date	(1-	(fixed-from-arithmetic-persian	

13																									(persian-

date	year	month	1))))))	

14						(persian-date	year	month	day)))

	1		(defun	nowruz	(g-year)

	2				;;	TYPE	gregorian-year	->	fixed-date	

	3				;;	Fixed	date	of	Persian	New	Year	(Nowruz)	in	Gregorian

	4				;;	year	g-year.	

	5				(let*	((persian-year	

	6												(1+	(-	g-year	

	7																			(gregorian-year-from-fixed	

	8																				persian-epoch))))	

	9											(y	(if	(<=	persian-year	0)	

10																		;;	No	Persian	year	0	

11																		(1-	persian-year)	

12																persian-year)))	

13						(fixed-from-persian	(persian-date	y	1	1))))



(16.1)

(16.2)

D.16	 	The	Bahá’í	Calendar
	1		(defun	bahai-date	(major	cycle	year	month	day)	

	2				;;	TYPE	(bahai-major	bahai-cycle	bahai-year	

	3				;;	TYPE		bahai-month	bahai-day)	->	bahai-date	

	4				(list	major	cycle	year	month	day))

	1		(defun	bahai-major	(date)	

	2				;;	TYPE	bahai-date	->	bahai-major	

	3				(first	date))

	1		(defun	bahai-cycle	(date)	

	2				;;	TYPE	bahai-date	->	bahai-cycle	

	3				(second	date))

	1		(defun	bahai-year	(date)	

	2				;;	TYPE	bahai-date	->	bahai-year	

	3				(third	date))

	1		(defun	bahai-month	(date)	

	2				;;	TYPE	bahai-date	->	bahai-month	

	3				(fourth	date))

	1		(defun	bahai-day	(date)	

	2				;;	TYPE	bahai-date	->	bahai-day	

	3				(fifth	date))

	1		(defconstant	ayyam-i-ha

	2				;;	TYPE	bahai-month	

	3				;;	Signifies	intercalary	period	of	4	or	5	days.	

	4				0)

	1		(defconstant	bahai-epoch

	2				;;	TYPE	fixed-date	

	3				;;	Fixed	date	of	start	of	Baha’i	calendar.	

	4				(fixed-from-gregorian	(gregorian-

date	1844	march	21)))

	1		(defun	fixed-from-bahai	(b-date)

	2				;;	TYPE	bahai-date	->	fixed-date	

	3				;;	Fixed	date	equivalent	to	the	Baha’i	date	b-date.

	4				(let*	((major	(bahai-major	b-date))	

	5											(cycle	(bahai-cycle	b-date))	
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	6											(year	(bahai-year	b-date))	

	7											(month	(bahai-month	b-date))	

	8											(day	(bahai-day	b-date))	

	9											(g-year;	Corresponding	Gregorian	year.	

10												(+	(*	361	(1-	major))	

11															(*	19	(1-	cycle))	year	-1	

12															(gregorian-year-from-fixed	bahai-

epoch))))	

13						(+	(fixed-from-gregorian	;	Prior	years.	

14										(gregorian-date	g-year	march	20))	

15									(cond	((=	month	ayyam-i-

ha)	;	Intercalary	period.	

16																342)	;	18	months	have	elapsed.	

17															((=	month	19);	Last	month	of	year.	

18																(if	(gregorian-leap-year?	(1+	g-year))	

19																				347		;	Long	ayyam-i-ha.	

20																		346));	Ordinary	ayyam-i-ha.	

21															(t	(*	19	(1-	month))));	Elapsed	months.	

22									day)))	;	Days	of	current	month.

	1		(defun	bahai-from-fixed	(date)

	2				;;	TYPE	fixed-date	->	bahai-date	

	3				;;	Baha’i	(major	cycle	year	month	day)	corresponding	to	fixed

	4				;;	date.	

	5				(let*	((g-year	(gregorian-year-from-fixed	date))	

	6											(start			;	1844	

	7												(gregorian-year-from-fixed	bahai-epoch))	

	8											(years	;	Since	start	of	Baha’i	calendar.	

	9												(-	g-year	start	

10															(if	(<=	date	

11																							(fixed-from-gregorian	

12																								(gregorian-date	g-

year	march	20)))	

13																			1	0)))	

14											(major	(1+	(quotient	years	361)))	

15											(cycle	(1+	(quotient	(mod	years	361)	19)))	

16											(year	(1+	(mod	years	19)))	

17											(days;	Since	start	of	year	

18												(-	date	(fixed-from-bahai	

19																					(bahai-

date	major	cycle	year	1	1))))	

20											(month	

21												(cond	((>=	date	

22																							(fixed-from-bahai	

23																								(bahai-

date	major	cycle	year	19	1)))	

24																			19)	;	Last	month	of	year.	



(16.4)

(16.5)

(16.6)

(16.7)

25																		((>=	date	;	Intercalary	days.	

26																							(fixed-from-bahai	

27																								(bahai-date	major	cycle	year	

28																																				ayyam-i-ha	1)))	

29																			ayyam-i-ha)	;	Intercalary	period.	

30																		(t	(1+	(quotient	days	19)))))	

31											(day	(-	date	-1	

32																			(fixed-from-bahai	

33																				(bahai-

date	major	cycle	year	month	1)))))	

34						(bahai-date	major	cycle	year	month	day)))

	1		(defconstant	bahai-location

	2				;;	TYPE	location	

	3				;;	Location	of	Tehran	for	astronomical	Baha’i	calendar.

	4				(location	(deg	35.696111L0)	(deg	51.423056L0)	

	5														(mt	0)	(hr	(+	3	1/2))))

	1		(defun	bahai-sunset	(date)

	2				;;	TYPE	fixed-date	->	moment	

	3				;;	Universal	time	of	sunset	on	fixed	date	

	4				;;	in	Bahai-Location.	

	5				(universal-from-standard	

	6					(sunset	date	bahai-location)	

	7					bahai-location))

	1		(defun	astro-bahai-new-year-on-or-before	(date)

	2				;;	TYPE	fixed-date	->	fixed-date	

	3				;;	Fixed	date	of	astronomical	Bahai	New	Year	on	or	before	fixed

	4				;;	date.	

	5				(let*	((approx	;	Approximate	time	of	equinox.	

	6												(estimate-prior-solar-longitude	

	7													spring	(bahai-sunset	date))))	

	8						(next	day	(1-	(floor	approx))	

	9												(<=	(solar-longitude	(bahai-sunset	day))	

10																(+	spring	(deg	2))))))

	1		(defun	fixed-from-astro-bahai	(b-date)

	2				;;	TYPE	bahai-date	->	fixed-date	

	3				;;	Fixed	date	of	Baha’i	date	b-date.	

	4				(let*	((major	(bahai-major	b-date))	

	5											(cycle	(bahai-cycle	b-date))	

	6											(year	(bahai-year	b-date))	

	7											(month	(bahai-month	b-date))	

	8											(day	(bahai-day	b-date))	

	9											(years;	Years	from	epoch	

10												(+	(*	361	(1-	major))	
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11															(*	19	(1-	cycle))	

12															year)))	

13						(cond	((=	month	19);	last	month	of	year	

14													(+	(astro-bahai-new-year-on-or-before	

15																	(+	bahai-epoch	

16																				(floor	(*	mean-tropical-year	

17																														(+	years	1/2)))))	

18																-20	day))	

19												((=	month	ayyam-i-ha)	

20													;;	intercalary	month,	between	18th	&	19th	

21													(+	(astro-bahai-new-year-on-or-before	

22																	(+	bahai-epoch	

23																				(floor	(*	mean-tropical-year	

24																														(-	years	1/2)))))	

25																341	day))	

26												(t	(+	(astro-bahai-new-year-on-or-before	

27																			(+	bahai-epoch	

28																						(floor	(*	mean-tropical-year	

29																																(-	years	1/2)))))	

30																		(*	(1-	month)	19)	

31																		day	-1)))))

	1		(defun	astro-bahai-from-fixed	(date)

	2				;;	TYPE	fixed-date	->	bahai-date	

	3				;;	Astronomical	Baha’i	date	corresponding	to	fixed	date.

	4				(let*	((new-year	(astro-bahai-new-year-on-or-

before	date))	

	5											(years	(round	(/	(-	new-year	bahai-epoch)	

	6																												mean-tropical-year)))	

	7											(major	(1+	(quotient	years	361)))	

	8											(cycle	(1+	(quotient	(mod	years	361)	19)))	

	9											(year	(1+	(mod	years	19)))	

10											(days;	Since	start	of	year	

11												(-	date	new-year))	

12											(month	

13												(cond	

14													((>=	date	(fixed-from-astro-bahai	

15																								(bahai-

date	major	cycle	year	19	1)))	

16																																										;	last	month	of	year

17														19)	

18													((>=	date	

19																		(fixed-from-astro-bahai	

20																			(bahai-date	major	cycle	year	ayyam-

i-ha	1)))	

21																																										;	intercalary	month

22														ayyam-i-ha)	
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(16.11)

(16.12)

(16.12)

(16.13)

23													(t	(1+	(quotient	days	19)))))	

24											(day	(-	date	-1	

25																			(fixed-from-astro-bahai	

26																				(bahai-

date	major	cycle	year	month	1)))))	

27						(bahai-date	major	cycle	year	month	day)))

	1		(defun	bahai-new-year	(g-year)

	2				;;	TYPE	gregorian-year	->	fixed-date	

	3				;;	Fixed	date	of	Baha’i	New	Year	in	Gregorian	year	g-

year.	

	4				(fixed-from-gregorian	

	5					(gregorian-date	g-year	march	21)))

	1		(defun	naw-ruz	(g-year)

	2				;;	TYPE	gregorian-year	->	fixed-date	

	3				;;	Fixed	date	of	Baha’i	New	Year	(Naw-

Ruz)	in	Gregorian	

	4				;;	year	g-year.	

	5				(astro-bahai-new-year-on-or-before	

	6					(gregorian-new-year	(1+	g-year))))

	1		(defun	feast-of-ridvan	(g-year)

	2				;;	TYPE	gregorian-year	->	fixed-date	

	3				;;	Fixed	date	of	Feast	of	Ridvan	in	Gregorian	year	g-

year.	

	4				(+	(naw-ruz	g-year)	31))

	1		(defun	birth-of-the-bab	(g-year)

	2				;;	TYPE	gregorian-year	->	fixed-date	

	3				;;	Fixed	date	of	the	Birthday	of	the	Bab	

	4				;;	in	Gregorian	year	g-year.	

	5				(let*	((ny	;	Beginning	of	Baha’i	year.	

	6												(naw-ruz	g-year))	

	7											(set1	(bahai-sunset	ny))	

	8											(m1	(new-moon-at-or-after	set1))	

	9											(m8	(new-moon-at-or-after	(+	m1	190)))	

10											(day	(fixed-from-moment	m8))	

11											(set8	(bahai-sunset	day)))	

12						(if	(<	m8	set8)	

13										(1+	day)	

14								(+	day	2))))

D.17	 The	French	Revolutionary	Calendar



(17.2)

(17.3)

(17.4)

(17.1)

	1		(defun	french-date	(year	month	day)	

	2				;;	TYPE	(french-year	french-month	french-day)	-

>	french-date	

	3				(list	year	month	day))

	1		(defconstant	paris

	2				;;	TYPE	location	

	3				;;	Location	of	Paris	Observatory.		Longitude	corresponds

	4				;;	to	difference	of	9m	21s	between	Paris	time	zone	and

	5				;;	Universal	Time.	

	6				(location	(angle	48	50	11)	(angle	2	20	15)	(mt	27)	(hr	1)))

	1		(defun	midnight-in-paris	(date)

	2				;;	TYPE	fixed-date	->	moment	

	3				;;	Universal	time	of	true	midnight	at	end	of	fixed	date

	4				;;	in	Paris.	

	5				(midnight	(+	date	1)	paris))

	1		(defun	french-new-year-on-or-before	(date)

	2				;;	TYPE	fixed-date	->	fixed-date	

	3				;;	Fixed	date	of	French	Revolutionary	New	Year	on	or

	4				;;	before	fixed	date.	

	5				(let*	((approx	;	Approximate	time	of	solstice.	

	6												(estimate-prior-solar-longitude	

	7													autumn	(midnight-in-paris	date))))	

	8						(next	day	(-	(floor	approx)	1)	

	9												(<=	autumn	(solar-longitude	

10																								(midnight-in-paris	day))))))

	1		(defconstant	french-epoch

	2				;;	TYPE	fixed-date	

	3				;;	Fixed	date	of	start	of	the	French	Revolutionary	

	4				;;	calendar.	

	5				(fixed-from-gregorian	(gregorian-

date	1792	september	22)))

	1		(defun	fixed-from-french	(f-date)

	2				;;	TYPE	french-date	->	fixed-date	

	3				;;	Fixed	date	of	French	Revolutionary	date.	

	4				(let*	((month	(standard-month	f-date))	

	5											(day	(standard-day	f-date))	

	6											(year	(standard-year	f-date))	

	7											(new-year	

	8												(french-new-year-on-or-before	

	9													(floor	(+	french-

epoch	180;	Spring	after	epoch.	

10																							(*	mean-tropical-year	
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11																										(1-	year)))))))	

12						(+	new-year	-1						;		Days	in	prior	years	

13									(*	30	(1-	month));		Days	in	prior	months	

14									day)))											;		Days	this	month

	1		(defun	french-from-fixed	(date)

	2				;;	TYPE	fixed-date	->	french-date	

	3				;;	French	Revolutionary	date	of	fixed	date.	

	4				(let*	((new-year	

	5												(french-new-year-on-or-before	date))	

	6											(year	(1+	(round	(/	(-	new-year	french-

epoch)	

	7																															mean-tropical-year))))	

	8											(month	(1+	(quotient	(-	date	new-year)	30)))

	9											(day	(1+	(mod	(-	date	new-year)	30))))	

10						(french-date	year	month	day)))

	1		(defun	french-leap-year?	(f-year)

	2				;;	TYPE	french-year	->	boolean	

	3				;;	True	if	f-year	is	a	leap	year	on	the	

	4				;;	French	Revolutionary	calendar.	

	5				(>	(-	(fixed-from-french	

	6											(french-date	(1+	f-year)	1	1))	

	7										(fixed-from-french	

	8											(french-date	f-year	1	1)))	

	9							365))

	1		(defun	arithmetic-french-leap-year?	(f-year)

	2				;;	TYPE	french-year	->	boolean	

	3				;;	True	if	f-year	is	a	leap	year	on	the	

	4				;;	Arithmetic	French	Revolutionary	calendar.	

	5				(and	(=	(mod	f-year	4)	0)	

	6									(not	(member	(mod	f-

year	400)	(list	100	200	300)))	

	7									(not	(=	(mod	f-year	4000)	0))))

	1		(defun	fixed-from-arithmetic-french	(f-date)

	2				;;	TYPE	french-date	->	fixed-date	

	3				;;	Fixed	date	of	Arithmetic	French	Revolutionary	

	4				;;	date	f-date.	

	5				(let*	((month	(standard-month	f-date))	

	6											(day	(standard-day	f-date))	

	7											(year	(standard-year	f-date)))	

	8						(+	french-

epoch	-1;	Days	before	start	of	calendar.	

	9									(*	365	(1-	year));	Ordinary	days	in	prior	years.

10																										;	Leap	days	in	prior	years.	
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11									(quotient	(1-	year)	4)	

12									(-	(quotient	(1-	year)	100))	

13									(quotient	(1-	year)	400)	

14									(-	(quotient	(1-	year)	4000))	

15									(*	30	(1-	month));	Days	in	prior	months	this	year.

16									day)));	Days	this	month.

	1		(defun	arithmetic-french-from-fixed	(date)

	2				;;	TYPE	fixed-date	->	french-date	

	3				;;	Arithmetic	French	Revolutionary	date	(year	month	day)

	4				;;	of	fixed	date.	

	5				(let*	((approx			;	Approximate	year	(may	be	off	by	1).

	6												(1+	(quotient	(-	date	french-epoch	-2)	

	7																										1460969/4000)))	

	8											(year	(if	(<	date	

	9																								(fixed-from-arithmetic-french	

10																									(french-date	approx	1	1)))	

11																					(1-	approx)	

12																			approx))	

13											(month				;	Calculate	the	month	by	division.

14												(1+	(quotient	

15																	(-	date	(fixed-from-arithmetic-french	

16																										(french-date	year	1	1)))	

17																	30)))	

18											(day						;	Calculate	the	day	by	subtraction.

19												(1+	(-	date	

20																			(fixed-from-arithmetic-french	

21																				(french-date	year	month	1))))))	

22						(french-date	year	month	day)))

D.18	 Astronomical	Lunar	Calendars
	1		(defun	babylonian-date	(year	month	leap	day)	

	2				;;	TYPE	(babylonian-year	babylonian-month	

	3				;;	TYPE		babylonian-leap	babylonian-day)	

	4				;;	TYPE		->	babylonian-date	

	5				(list	year	month	leap	day))

	1		(defun	babylonian-year	(date)	

	2				;;	TYPE	babylonian-date	->	babylonian-year	

	3				(first	date))

	1		(defun	babylonian-month	(date)	

	2				;;	TYPE	babylonian-date	->	babylonian-month	



(18.1)

(18.2)

(18.3)

	3				(second	date))

	1		(defun	babylonian-leap	(date)	

	2				;;	TYPE	babylonian-date	->	babylonian-leap	

	3				(third	date))

	1		(defun	babylonian-day	(date)	

	2				;;	TYPE	babylonian-date	->	babylonian-day	

	3				(fourth	date))

	1		(defun	moonlag	(date	location)

	2				;;	TYPE	(fixed-date	location)	->	duration	

	3				;;	Time	between	sunset	and	moonset	on	date	at	location.

	4				;;	Returns	bogus	if	there	is	no	sunset	on	date.	

	5				(let*	((sun	(sunset	date	location))	

	6											(moon	(moonset	date	location)))	

	7						(cond	((equal	sun	bogus)	bogus)	

	8												((equal	moon	bogus)	(hr	24))	;	Arbitrary.	

	9												(t	(-	moon	sun)))))

	1		(defconstant	babylon

	2				;;	TYPE	location	

	3				;;	Location	of	Babylon.	

	4				(location	(deg	32.4794L0)	(deg	44.4328L0)	

	5														(mt	26)	(hr	(+	3	1/2))))

	1		(defun	babylonian-criterion	(date)

	2				;;	TYPE	(fixed-date	location)	->	boolean	

	3				;;	Moonlag	criterion	for	visibility	of	crescent	moon	on

	4				;;	eve	of	date	in	Babylon.	

	5				(let*	((set	(sunset	(1-	date)	babylon))	

	6											(tee	(universal-from-standard	set	babylon))	

	7											(phase	(lunar-phase	tee)))	

	8						(and	(<	new	phase	first-quarter)	

	9											(<=	(new-moon-before	tee)	(-	tee	(hr	24)))	

10											(>	(moonlag	(1-	date)	babylon)	(mn	48)))))

	1		(defun	babylonian-new-month-on-or-before	(date)

	2				;;	TYPE	fixed-date	->	fixed-date	

	3				;;	Fixed	date	of	start	of	Babylonian	month	on	or	before

	4				;;	Babylonian	date.		Using	lag	of	moonset	criterion.

	5				(let*	((moon	;	Prior	new	moon.	

	6												(fixed-from-moment	

	7													(lunar-phase-at-or-before	new	date)))	

	8											(age	(-	date	moon))	

	9											(tau	;	Check	if	not	visible	yet	on	eve	of	date.

10												(if	(and	(<=	age	3)	



(18.4)

(18.5)

(18.6)

(18.7)

11																					(not	(babylonian-criterion	date)))

12																(-	moon	30)	;	Must	go	back	a	month.	

13														moon)))	

14						(next	d	tau	(babylonian-criterion	d))))

	1		(defconstant	babylonian-epoch

	2				;;	TYPE	fixed-date	

	3				;;	Fixed	date	of	start	of	the	Babylonian	calendar	

	4				;;	(Seleucid	era).		April	3,	311	BCE	(Julian).	

	5				(fixed-from-julian	(julian-

date	(bce	311)	april	3)))

	1		(defun	babylonian-leap-year?	(b-year)

	2				;;	TYPE	babylonian-year	->	boolean	

	3				;;	True	if	b-

year	is	a	leap	year	on	Babylonian	calendar.	

	4				(<	(mod	(+	(*	7	b-year)	13)	19)	7))

	1		(defun	fixed-from-babylonian	(b-date)

	2				;;	TYPE	babylonian-date	->	fixed-date	

	3				;;	Fixed	date	equivalent	to	Babylonian	date.	

	4				(let*	((month	(babylonian-month	b-date))	

	5											(leap	(babylonian-leap	b-date))	

	6											(day	(babylonian-day	b-date))	

	7											(year	(babylonian-year	b-date))	

	8											(month1	;		Elapsed	months	this	year.	

	9												(if	(or	leap	

10																				(and	(=	(mod	year	19)	18)	

11																									(>	month	6)))	

12																month	(1-	month)))	

13											(months	;	Elapsed	months	since	epoch.	

14												(+	(quotient	(+	(*	(1-	year)	235)	13)	19)	

15															month1))	

16											(midmonth	;	Middle	of	given	month.	

17												(+	babylonian-epoch	

18															(round	(*	mean-synodic-

month	months))	15)))	

19						(+	(babylonian-new-month-on-or-before	midmonth)	

20									day	-1)))

	1		(defun	babylonian-from-fixed	(date)

	2				;;	TYPE	fixed-date	->	babylonian-date	

	3				;;	Babylonian	date	corresponding	to	fixed	date.	

	4				(let*	((crescent	;	Most	recent	new	month.	

	5												(babylonian-new-month-on-or-before	date))	

	6											(months	;	Elapsed	months	since	epoch.	

	7												(round	(/	(-	crescent	babylonian-epoch)	



(18.8)

(18.9)

(18.10)

	8																						mean-synodic-month)))	

	9											(year	(1+	(quotient	(+	(*	19	months)	5)	235)))

10											(approx	;	Approximate	date	of	new	year.	

11												(+	babylonian-epoch	

12															(round	(*	(quotient	(+	(*	(1-	year)	235)	13)	19)

13																									mean-synodic-month))))	

14											(new-year	(babylonian-new-month-on-or-before

15																						(+	approx	15)))	

16											(month1	(1+	(round	(/	(-	crescent	new-

year)	29.5L0))))	

17											(special	(=	(mod	year	19)	18))	

18											(leap	(if	special	(=	month1	7)	(=	month1	13)))

19											(month	(if	(or	leap	(and	special	(>	month1	6)))

20																						(1-	month1)	

21																				month1))	

22											(day	(-	date	crescent	-1)))	

23						(babylonian-date	year	month	leap	day)))

	1		(defun	astronomical-easter	(g-year)

	2				;;	TYPE	gregorian-year	->	fixed-date	

	3				;;	Date	of	(proposed)	astronomical	Easter	in	Gregorian

	4				;;	year	g-year.	

	5				(let*	((equinox	;	Spring	equinox.	

	6												(season-in-gregorian	spring	g-year))	

	7											(paschal-moon	;	Date	of	next	full	moon.	

	8												(floor	(apparent-from-universal	

	9																				(lunar-phase-at-or-

after	full	equinox)	

10																				jerusalem))))	

11						;;	Return	the	Sunday	following	the	Paschal	moon.	

12						(kday-after	sunday	paschal-moon)))

	1		(defconstant	islamic-location

	2				;;	TYPE	location	

	3				;;	Sample	location	for	Observational	Islamic	calendar

	4				;;	(Cairo,	Egypt).	

	5				(location	(deg	30.1L0)	(deg	31.3L0)	(mt	200)	(hr	2)))

	1		(defun	fixed-from-observational-islamic	(i-date)

	2				;;	TYPE	islamic-date	->	fixed-date	

	3				;;	Fixed	date	equivalent	to	Observational	Islamic	date

	4				;;	i-date.	

	5				(let*	((month	(standard-month	i-date))	

	6											(day	(standard-day	i-date))	

	7											(year	(standard-year	i-date))	

	8											(midmonth	;	Middle	of	given	month.	

	9												(+	islamic-epoch	



(18.11)

(18.12)

(18.13)

(18.14)

10															(floor	(*	(+	(*	(1-	year)	12)	

11																												month	-1/2)	

12																									mean-synodic-month)))))	

13						(+	(phasis-on-or-before	;	First	day	of	month.	

14										midmonth	islamic-location)	

15									day	-1)))

	1		(defun	observational-islamic-from-fixed	(date)

	2				;;	TYPE	fixed-date	->	islamic-date	

	3				;;	Observational	Islamic	date	(year	month	day)	

	4				;;	corresponding	to	fixed	date.	

	5				(let*	((crescent	;	Most	recent	new	moon.	

	6												(phasis-on-or-before	date	islamic-

location))	

	7											(elapsed-months	

	8												(round	(/	(-	crescent	islamic-epoch)	

	9																						mean-synodic-month)))	

10											(year	(1+	(quotient	elapsed-months	12)))	

11											(month	(1+	(mod	elapsed-months	12)))	

12											(day	(1+	(-	date	crescent))))	

13						(islamic-date	year	month	day)))

	1		(defun	month-length	(date	location)

	2				;;	TYPE	(fixed-date	location)	->	1..31	

	3				;;	Length	of	lunar	month	based	on	observability	at	location,

	4				;;	which	includes	date.	

	5				(let*	((moon	(phasis-on-or-

after	(1+	date)	location))	

	6											(prev	(phasis-on-or-before	date	location)))	

	7						(-	moon	prev)))

	1		(defun	early-month?	(date	location)

	2				;;	TYPE	(fixed-date	location)	->	boolean	

	3				;;	Fixed	date	in	location	is	in	a	month	that	was	forced	to

	4				;;	start	early.	

	5				(let*	((start	(phasis-on-or-before	date	location))	

	6											(prev	(-	start	15)))	

	7						(or	(>=	(-	date	start)	30)	

	8										(>	(month-length	prev	location)	30)	

	9										(and	(=	(month-length	prev	location)	30)	

10															(early-month?	prev	location)))))



(18.15)

(18.16)

	1		(defun	alt-fixed-from-observational-islamic	(i-date)

	2				;;	TYPE	islamic-date	->	fixed-date	

	3				;;	Fixed	date	equivalent	to	Observational	Islamic	i-

date.	

	4				;;	Months	are	never	longer	than	30	days.	

	5				(let*	((month	(standard-month	i-date))	

	6											(day	(standard-day	i-date))	

	7											(year	(standard-year	i-date))	

	8											(midmonth	;	Middle	of	given	month.	

	9												(+	islamic-epoch	

10															(floor	(*	(+	(*	(1-	year)	12)	

11																												month	-1/2)	

12																									mean-synodic-month))))	

13											(moon	(phasis-on-or-

before	;	First	day	of	month.	

14																		midmonth	islamic-location))	

15											(date	(+	moon	day	-1)))	

16						(if	(early-month?	midmonth	islamic-

location)	(1-	date)	date)))

	1		(defun	alt-observational-islamic-from-fixed	(date)

	2				;;	TYPE	fixed-date	->	islamic-date	

	3				;;	Observational	Islamic	date	(year	month	day)	

	4				;;	corresponding	to	fixed	date.	

	5				;;	Months	are	never	longer	than	30	days.	

	6				(let*	((early	(early-month?	date	islamic-location))

	7											(long	(and	early	

	8																						(>	(month-length	date	islamic-

location)	29)))	

	9											(date-prime	

10												(if	long	(1+	date)	date))	

11											(moon	;	Most	recent	new	moon.	

12												(phasis-on-or-before	date-prime	islamic-

location))	

13											(elapsed-months	

14												(round	(/	(-	moon	islamic-epoch)	

15																						mean-synodic-month)))	

16											(year	(1+	(quotient	elapsed-months	12)))	

17											(month	(1+	(mod	elapsed-months	12)))	

18											(day	(-	date-prime	moon	

19																			(if	(and	early	(not	long))	-2	-1))))

20						(islamic-date	year	month	day)))

	1		(defun	saudi-criterion	(date)

	2				;;	TYPE	fixed-date	->	boolean	

	3				;;	Saudi	visibility	criterion	on	eve	of	fixed	date	in	Mecca.



(18.17)

(18.18)

(18.19)

	4				(let*	((set	(sunset	(1-	date)	mecca))	

	5											(tee	(universal-from-standard	set	mecca))	

	6											(phase	(lunar-phase	tee)))	

	7						(and	(<	new	phase	first-quarter)	

	8											(>	(moonlag	(1-	date)	mecca)	0))))

	1		(defun	saudi-new-month-on-or-before	(date)

	2				;;	TYPE	fixed-date	->	fixed-date	

	3				;;	Closest	fixed	date	on	or	before	date	when	Saudi	

	4				;;	visibility	criterion	held.	

	5				(let*	((moon	;	Prior	new	moon.	

	6												(fixed-from-moment	

	7													(lunar-phase-at-or-before	new	date)))	

	8											(age	(-	date	moon))	

	9											(tau	;	Check	if	not	visible	yet	on	eve	of	date.

10												(if	(and	(<=	age	3)	

11																					(not	(saudi-criterion	date)))	

12																(-	moon	30)	;	Must	go	back	a	month.	

13														moon)))	

14						(next	d	tau	(saudi-criterion	d))))

	1		(defun	fixed-from-saudi-islamic	(s-date)

	2				;;	TYPE	islamic-date	->	fixed-date	

	3				;;	Fixed	date	equivalent	to	Saudi	Islamic	date	s-

date.	

	4				(let*	((month	(standard-month	s-date))	

	5											(day	(standard-day	s-date))	

	6											(year	(standard-year	s-date))	

	7											(midmonth	;	Middle	of	given	month.	

	8												(+	islamic-epoch	

	9															(floor	(*	(+	(*	(1-	year)	12)	

10																												month	-1/2)	

11																									mean-synodic-month)))))	

12						(+	(saudi-new-month-on-or-

before	;	First	day	of	month.	

13										midmonth)	

14									day	-1)))

	1		(defun	saudi-islamic-from-fixed	(date)

	2				;;	TYPE	fixed-date	->	islamic-date	

	3				;;	Saudi	Islamic	date	(year	month	day)	corresponding	to

	4				;;	fixed	date.	

	5				(let*	((crescent	;	Most	recent	new	moon.	

	6												(saudi-new-month-on-or-before	date))	

	7											(elapsed-months	

	8												(round	(/	(-	crescent	islamic-epoch)	

	9																						mean-synodic-month)))	



(18.20)

(18.21)

(18.22)

10											(year	(1+	(quotient	elapsed-months	12)))	

11											(month	(1+	(mod	elapsed-months	12)))	

12											(day	(1+	(-	date	crescent))))	

13						(islamic-date	year	month	day)))

	1		(defconstant	hebrew-location

	2				;;	TYPE	location	

	3				;;	Sample	location	for	Observational	Hebrew	calendar

	4				;;	(Haifa,	Israel).	

	5				(location	(deg	32.82L0)	(deg	35)	(mt	0)	(hr	2)))

	1		(defun	observational-hebrew-first-of-nisan	(g-year)

	2				;;	TYPE	gregorian-year	->	fixed-date	

	3				;;	Fixed	date	of	Observational	(classical)	

	4				;;	Nisan	1	occurring	in	Gregorian	year	g-year.	

	5				(let*	((equinox	;	Spring	equinox.	

	6												(season-in-gregorian	spring	g-year))	

	7											(set	;	Moment	(UT)	of	sunset	on	day	of	equinox.

	8												(universal-from-standard	

	9													(sunset	(floor	equinox)	hebrew-location)	

10													hebrew-location)))	

11						(phasis-on-or-after	

12							(-	(floor	equinox)	;	Day	of	equinox	

13										(if	;	Spring	starts	before	sunset.	

14														(<	equinox	set)	14	13))	

15							hebrew-location)))

	1		(defun	observational-hebrew-from-fixed	(date)

	2				;;	TYPE	fixed-date	->	hebrew-date	

	3				;;	Observational	Hebrew	date	(year	month	day)	

	4				;;	corresponding	to	fixed	date.	

	5				(let*	((crescent	;	Most	recent	new	moon.	

	6												(phasis-on-or-before	date	hebrew-location))

	7											(g-year	(gregorian-year-from-fixed	date))	

	8											(ny	(observational-hebrew-first-of-nisan	g-

year))	

	9											(new-year	(if	(<	date	ny)	

10																									(observational-hebrew-first-

of-nisan	

11																										(1-	g-year))	

12																							ny))	

13											(month	(1+	(round	(/	(-	crescent	new-

year)	29.5L0))))	

14											(year	(+	(standard-year	(hebrew-from-

fixed	new-year))	

15																				(if	(>=	month	tishri)	1	0)))	

16											(day	(-	date	crescent	-1)))	



(18.23)

(18.24)

(18.25)

17						(hebrew-date	year	month	day)))

	1		(defun	fixed-from-observational-hebrew	(h-date)

	2				;;	TYPE	hebrew-date	->	fixed-date	

	3				;;	Fixed	date	equivalent	to	Observational	Hebrew	date.

	4				(let*	((month	(standard-month	h-date))	

	5											(day	(standard-day	h-date))	

	6											(year	(standard-year	h-date))	

	7											(year1	(if	(>=	month	tishri)	(1-	year)	year))

	8											(start	(fixed-from-hebrew	

	9																			(hebrew-date	year1	nisan	1)))	

10											(g-year	(gregorian-year-from-fixed	

11																				(+	start	60)))	

12											(new-year	(observational-hebrew-first-of-

nisan	g-year))	

13											(midmonth	;	Middle	of	given	month.	

14												(+	new-

year	(round	(*	29.5L0	(1-	month)))	15)))	

15						(+	(phasis-on-or-before	;	First	day	of	month.	

16										midmonth	hebrew-location)	

17									day	-1)))

	1		(defun	classical-passover-eve	(g-year)

	2				;;	TYPE	gregorian-year	->	fixed-date	

	3				;;	Fixed	date	of	Classical	(observational)	Passover	Eve

	4				;;	(Nisan	14)	occurring	in	Gregorian	year	g-year.	

	5				(+	(observational-hebrew-first-of-nisan	g-

year)	13))

	1		(defun	alt-observational-hebrew-from-fixed	(date)

	2				;;	TYPE	fixed-date	->	hebrew-date	

	3				;;	Observational	Hebrew	date	(year	month	day)	

	4				;;	corresponding	to	fixed	date.	

	5				;;	Months	are	never	longer	than	30	days.	

	6				(let*	((early	(early-month?	date	hebrew-location))	

	7											(long	(and	early	(>	(month-

length	date	hebrew-location)	29)))	

	8											(date-prime	

	9												(if	long	(1+	date)	date))	

10											(moon	;	Most	recent	new	moon.	

11												(phasis-on-or-before	date-prime	hebrew-

location))	

12											(g-year	(gregorian-year-from-fixed	date-

prime))	

13											(ny	(observational-hebrew-first-of-nisan	g-

year))	

14											(new-year	(if	(<	date-prime	ny)	



(18.26)

(18.27)

(18.29)

(18.28)

15																									(observational-hebrew-first-

of-nisan	

16																										(1-	g-year))	

17																							ny))	

18											(month	(1+	(round	(/	(-	moon	new-

year)	29.5L0))))	

19											(year	(+	(standard-year	(hebrew-from-

fixed	new-year))	

20																				(if	(>=	month	tishri)	1	0)))	

21											(day	(-	date-prime	moon	

22																			(if	(and	early	(not	long))	-2	-1))))

23						(hebrew-date	year	month	day)))

	1		(defun	alt-fixed-from-observational-hebrew	(h-date)

	2				;;	TYPE	hebrew-date	->	fixed-date	

	3				;;	Fixed	date	equivalent	to	Observational	Hebrew	h-

date.	

	4				;;	Months	are	never	longer	than	30	days.	

	5				(let*	((month	(standard-month	h-date))	

	6											(day	(standard-day	h-date))	

	7											(year	(standard-year	h-date))	

	8											(year1	(if	(>=	month	tishri)	(1-	year)	year))

	9											(start	(fixed-from-hebrew	

10																			(hebrew-date	year1	nisan	1)))	

11											(g-year	(gregorian-year-from-fixed	

12																				(+	start	60)))	

13											(new-year	(observational-hebrew-first-of-

nisan	g-year))	

14											(midmonth	;	Middle	of	given	month.	

15												(+	new-

year	(round	(*	29.5L0	(1-	month)))	15))	

16											(moon	(phasis-on-or-

before	;	First	day	of	month.	

17																		midmonth	hebrew-location))	

18											(date	(+	moon	day	-1)))	

19						(if	(early-month?	midmonth	hebrew-

location)	(1-	date)	date)))

	1		(defconstant	samaritan-location

	2				;;	TYPE	location	

	3				;;	Location	of	Mt.	Gerizim.	

	4					(location	(deg	32.1994)	(deg	35.2728)	(mt	881)	(hr	2)))

	1		(defun	samaritan-noon	(date)

	2				;;	TYPE	fixed-date	->	moment	

	3				;;	Universal	time	of	true	noon	on	date	at	Samaritan	location.

	4				(midday	date	samaritan-location))



(18.30)

(18.31)

(18.32)

(18.33)

	1		(defun	samaritan-new-moon-after	(tee)

	2				;;	TYPE	moment	->	fixed-date	

	3				;;	Fixed	date	of	first	new	moon	after	UT	moment	tee.

	4				;;	Modern	calculation.	

	5				(ceiling	

	6					(-	(apparent-from-universal	(new-moon-at-or-

after	tee)	

	7																																	samaritan-location)	

	8								(hr	12))))

	1		(defun	samaritan-new-moon-at-or-before	(tee)

	2				;;	TYPE	moment	->	fixed-date	

	3				;;	Fixed-

date	of	last	new	moon	before	UT	moment	tee.	

	4				;;	Modern	calculation.	

	5				(ceiling	

	6					(-	(apparent-from-universal	(new-moon-before	tee)	

	7																																	samaritan-location)	

	8								(hr	12))))

	1		(defconstant	samaritan-epoch

	2				;;	TYPE	fixed-date	

	3				;;	Fixed	date	of	start	of	the	Samaritan	Entry	Era.	

	4				(fixed-from-julian	(julian-

date	(bce	1639)	march	15)))

	1		(defun	samaritan-new-year-on-or-before	(date)

	2				;;	TYPE	fixed-date	->	fixed-date	

	3				;;	Fixed	date	of	Samaritan	New	Year	on	or	before	fixed

	4				;;	date.	

	5				(let*	((g-year	(gregorian-year-from-fixed	date))	

	6											(dates	;	All	possible	March	11’s.	

	7												(append	

	8													(julian-in-gregorian	march	11	(1-	g-year))

	9													(julian-in-gregorian	march	11	g-year)	

10													(list	(1+	date))))	;	Extra	to	stop	search.

11											(n	

12												(final	i	0	

13																			(<=	(samaritan-new-moon-after	

14																								(samaritan-noon	(nth	i	dates)))

15																							date))))	

16							(samaritan-new-moon-after	(samaritan-

noon	(nth	n	dates)))))

	1		(defun	fixed-from-samaritan	(s-date)

	2				;;	TYPE	hebrew-date	->	fixed-date	

	3				;;	Fixed	date	of	Samaritan	date	h-date.	



(18.34)

(18.35)

	4				(let*	((month	(standard-month	s-date))	

	5											(day	(standard-day	s-date))	

	6											(year	(standard-year	s-date))	

	7											(ny	(samaritan-new-year-on-or-before	

	8																(floor	(+	samaritan-epoch	50	

	9																										(*	365.25L0	(-	year	

10																																							(ceiling	(-	month	5)	8)))))))

11											(nm	(samaritan-new-moon-at-or-before	

12																(+	ny	(*	29.5L0	(1-	month))	15))))	

13						(+	nm	day	-1)))

	1		(defun	samaritan-from-fixed	(date)

	2				;;	TYPE	fixed-date	->	hebrew-date	

	3				;;	Samaritan	date	corresponding	to	fixed	date.	

	4				(let*	((moon	;	First	of	month	

	5												(samaritan-new-moon-at-or-before	

	6													(samaritan-noon	date)))	

	7											(new-year	(samaritan-new-year-on-or-

before	moon))	

	8											(month	(1+	(round	(/	(-	moon	new-

year)	29.5L0))))	

	9											(year	(+	(round	(/	(-	new-year	samaritan-

epoch)	365.25L0))	

10																				(ceiling	(-	month	5)	8)))	

11											(day	(-	date	moon	-1)))	

12						(hebrew-date	year	month	day)))

D.19	 The	Chinese	Calendar
	1		(defun	chinese-date	(cycle	year	month	leap	day)	

	2				;;	TYPE	(chinese-cycle	chinese-year	chinese-month	

	3				;;	TYPE		chinese-leap	chinese-day)	->	chinese-date	

	4				(list	cycle	year	month	leap	day))

	1		(defun	chinese-cycle	(date)	

	2				;;	TYPE	chinese-date	->	chinese-cycle	

	3				(first	date))

	1		(defun	chinese-year	(date)	

	2				;;	TYPE	chinese-date	->	chinese-year	

	3				(second	date))

	1		(defun	chinese-month	(date)	

	2				;;	TYPE	chinese-date	->	chinese-month	



(19.1)

(19.2)

(19.3)

	3				(third	date))

	1		(defun	chinese-leap	(date)	

	2				;;	TYPE	chinese-date	->	chinese-leap	

	3				(fourth	date))

	1		(defun	chinese-day	(date)	

	2				;;	TYPE	chinese-date	->	chinese-day	

	3				(fifth	date))

	1		(defun	current-major-solar-term	(date)	

	2				;;	TYPE	fixed-date	->	integer	

	3				;;	Last	Chinese	major	solar	term	(zhongqi)	before	fixed

	4				;;	date.	

	5				(let*	((s	(solar-longitude	

	6															(universal-from-standard	

	7																date	

	8																(chinese-location	date)))))	

	9						(amod	(+	2	(quotient	s	(deg	30)))	12)))

	1		(defun	chinese-location	(tee)	

	2				;;	TYPE	moment	->	location	

	3				;;	Location	of	Beijing;	time	zone	varies	with	tee.	

	4				(let*	((year	(gregorian-year-from-

fixed	(floor	tee))))	

	5						(if	(<	year	1929)	

	6										(location	(angle	39	55	0)	(angle	116	25	0)	

	7																				(mt	43.5)	(hr	1397/180))	

	8								(location	(angle	39	55	0)	(angle	116	25	0)	

	9																		(mt	43.5)	(hr	8)))))

	1		(defun	chinese-solar-longitude-on-or-

after	(lambda	tee)	

	2				;;	TYPE	(season	moment)	->	moment	

	3				;;	Moment	(Beijing	time)	of	the	first	time	at	or	after

	4				;;	tee	(Beijing	time)	when	the	solar	longitude	

	5				;;	will	be	lambda	degrees.	

	6				(let*	((sun	(solar-longitude-after	

	7																	lambda	

	8																	(universal-from-standard	

	9																		tee	

10																		(chinese-location	tee)))))	

11						(standard-from-universal	

12							sun	

13							(chinese-location	sun))))

	1		(defun	major-solar-term-on-or-after	(date)	



(19.4)

(19.5)

(19.6)

(19.7)

	2				;;	TYPE	fixed-date	->	moment	

	3				;;	Moment	(in	Beijing)	of	the	first	Chinese	major	

	4				;;	solar	term	(zhongqi)	on	or	after	fixed	date.		The

	5				;;	major	terms	begin	when	the	sun’s	longitude	is	a	

	6				;;	multiple	of	30	degrees.	

	7				(let*	((s	(solar-longitude	(midnight-in-

china	date)))	

	8											(l	(mod	(*	30	(ceiling	(/	s	30)))	360)))	

	9						(chinese-solar-longitude-on-or-after	l	date)))

	1		(defun	current-minor-solar-term	(date)	

	2				;;	TYPE	fixed-date	->	integer	

	3				;;	Last	Chinese	minor	solar	term	(jieqi)	before	date.

	4				(let*	((s	(solar-longitude	

	5															(universal-from-standard	

	6																date	

	7																(chinese-location	date)))))	

	8						(amod	(+	3	(quotient	(-	s	(deg	15))	(deg	30)))	

	9												12)))

	1		(defun	minor-solar-term-on-or-after	(date)	

	2				;;	TYPE	fixed-date	->	moment	

	3				;;	Moment	(in	Beijing)	of	the	first	Chinese	minor	solar

	4				;;	term	(jieqi)	on	or	after	fixed	date.		The	minor	terms

	5				;;	begin	when	the	sun’s	longitude	is	an	odd	multiple	of	15

	6				;;	degrees.	

	7				(let*	((s	(solar-longitude	(midnight-in-

china	date)))	

	8											(l	(mod	

	9															(+	(*	30	

10																					(ceiling	

11																						(/	(-	s	(deg	15))	30)))	

12																		(deg	15))	

13															360)))	

14						(chinese-solar-longitude-on-or-after	l	date)))

	1		(defun	midnight-in-china	(date)	

	2				;;	TYPE	fixed-date	->	moment	

	3				;;	Universal	time	of	(clock)	midnight	at	start	of	fixed

	4				;;	date	in	China.	

	5				(universal-from-standard	date	(chinese-

location	date)))

	1		(defun	chinese-winter-solstice-on-or-before	(date)	

	2				;;	TYPE	fixed-date	->	fixed-date	

	3				;;	Fixed	date,	in	the	Chinese	zone,	of	winter	solstice

	4				;;	on	or	before	fixed	date.	



(19.8)

(19.9)

(19.10)

(19.11)

	5				(let*	((approx	;	Approximate	time	of	solstice.	

	6												(estimate-prior-solar-longitude	

	7													winter	(midnight-in-china	(+	date	1)))))	

	8						(next	day	(1-	(floor	approx))	

	9												(<	winter	(solar-longitude	

10																							(midnight-in-

china	(1+	day)))))))

	1		(defun	chinese-new-moon-on-or-after	(date)	

	2				;;	TYPE	fixed-date	->	fixed-date	

	3				;;	Fixed	date	(Beijing)	of	first	new	moon	on	or	after

	4				;;	fixed	date.	

	5				(let*	((tee	(new-moon-at-or-after	

	6																	(midnight-in-china	date))))	

	7						(floor	

	8							(standard-from-universal	

	9								tee	

10								(chinese-location	tee)))))

	1		(defun	chinese-new-moon-before	(date)	

	2				;;	TYPE	fixed-date	->	fixed-date	

	3				;;	Fixed	date	(Beijing)	of	first	new	moon	before	fixed

	4				;;	date.	

	5				(let*	((tee	(new-moon-before	

	6																	(midnight-in-china	date))))	

	7						(floor	

	8							(standard-from-universal	

	9								tee	

10								(chinese-location	tee)))))

	1		(defun	chinese-no-major-solar-term?	(date)	

	2				;;	TYPE	fixed-date	->	boolean	

	3				;;	True	if	Chinese	lunar	month	starting	on	date	

	4				;;	has	no	major	solar	term.	

	5				(=	(current-major-solar-term	date)	

	6							(current-major-solar-term	

	7								(chinese-new-moon-on-or-after	(+	date	1)))))

	1		(defun	chinese-prior-leap-month?	(m-prime	m)	

	2				;;	TYPE	(fixed-date	fixed-date)	->	boolean	

	3				;;	True	if	there	is	a	Chinese	leap	month	on	or	after	lunar

	4				;;	month	starting	on	fixed	day	m-

prime	and	at	or	before	

	5				;;	lunar	month	starting	at	fixed	date	m.	

	6				(and	(>=	m	m-prime)	

	7									(or	(chinese-no-major-solar-term?	m)	

	8													(chinese-prior-leap-month?	



(19.12)

(19.13)

(19.14)

	9														m-prime	

10														(chinese-new-moon-before	m)))))

	1		(defun	chinese-new-year-in-sui	(date)	

	2				;;	TYPE	fixed-date	->	fixed-date	

	3				;;	Fixed	date	of	Chinese	New	Year	in	sui	(period	from

	4				;;	solstice	to	solstice)	containing	date.	

	5				(let*	((s1;	prior	solstice	

	6												(chinese-winter-solstice-on-or-

before	date))	

	7											(s2;	following	solstice	

	8												(chinese-winter-solstice-on-or-before	

	9													(+	s1	370)))	

10											(m12	;	month	after	11th	month--

either	12	or	leap	11	

11												(chinese-new-moon-on-or-after	(1+	s1)))	

12											(m13	;	month	after	m12--

either	12	(or	leap	12)	or	1	

13												(chinese-new-moon-on-or-after	(1+	m12)))	

14											(next-m11	;	next	11th	month	

15												(chinese-new-moon-before	(1+	s2))))	

16						(if	;	Either	m12	or	m13	is	a	leap	month	if	there	are

17										;	13	new	moons	(12	full	lunar	months)	and	

18										;	either	m12	or	m13	has	no	major	solar	term	

19										(and	(=	(round	(/	(-	next-m11	m12)	

20																												mean-synodic-month))	

21																		12)	

22															(or	(chinese-no-major-solar-term?	m12)	

23																			(chinese-no-major-solar-term?	m13)))

24										(chinese-new-moon-on-or-after	(1+	m13))	

25								m13)))

	1		(defun	chinese-new-year-on-or-before	(date)	

	2				;;	TYPE	fixed-date	->	fixed-date	

	3				;;	Fixed	date	of	Chinese	New	Year	on	or	before	fixed	date.

	4				(let*	((new-year	(chinese-new-year-in-sui	date)))	

	5						(if	(>=	date	new-year)	

	6										new-year	

	7								;;	Got	the	New	Year	after--

this	happens	if	date	is	

	8								;;	after	the	solstice	but	before	the	new	year.	

	9								;;	So,	go	back	half	a	year.	

10								(chinese-new-year-in-sui	(-	date	180)))))

	1		(defconstant	chinese-epoch	

	2				;;	TYPE	fixed-date	

	3				;;	Fixed	date	of	start	of	the	Chinese	calendar.	



(19.15)

	4				(fixed-from-gregorian	(gregorian-

date	-2636	february	15)))

	1		(defun	chinese-from-fixed	(date)	

	2				;;	TYPE	fixed-date	->	chinese-date	

	3				;;	Chinese	date	(cycle	year	month	leap	day)	of	fixed	date.

	4				(let*	((s1;	Prior	solstice	

	5												(chinese-winter-solstice-on-or-

before	date))	

	6											(s2;	Following	solstice	

	7												(chinese-winter-solstice-on-or-

before	(+	s1	370)))	

	8											(m12					;	month	after	last	11th	month	

	9												(chinese-new-moon-on-or-after	(1+	s1)))	

10											(next-m11;	next	11th	month	

11												(chinese-new-moon-before	(1+	s2)))	

12											(m						;	start	of	month	containing	date	

13												(chinese-new-moon-before	(1+	date)))	

14											(leap-

year;	if	there	are	13	new	moons	(12	full	

15																																										;	lunar	months)

16												(=	(round	(/	(-	next-m11	m12)	

17																									mean-synodic-month))	

18															12))	

19											(month		;	month	number	

20												(amod	

21													(-	

22														;;	ordinal	position	of	month	in	year	

23														(round	(/	(-	m	m12)	mean-synodic-month))	

24														;;	minus	1	during	or	after	a	leap	month	

25														(if	(and	leap-year	

26																							(chinese-prior-leap-

month?	m12	m))	

27																		1	

28																0))	

29													12))	

30											(leap-month				;	it’s	a	leap	month	if...	

31												(and	

32													leap-year;	...there	are	13	months	

33													(chinese-no-major-solar-term?	

34														m)																										;	no	major	solar	term

35													(not	(chinese-prior-leap-

month?	;	and	no	prior	leap	

36																																										;	month	

37																			m12	(chinese-new-moon-before	m)))))	

38											(elapsed-

years		;	Approximate	since	the	epoch	



(19.16)

39												(floor	(+	1.5L0		;	18	months	(because	of	truncation)

40																						(-	(/	month	12));	after	at	start	of	year

41																						(/	(-	date	chinese-epoch)	

42																									mean-tropical-year))))	

43											(cycle	(1+	(quotient	(1-	elapsed-

years)	60)))	

44											(year	(amod	elapsed-years	60))	

45											(day	(1+	(-	date	m))))	

46						(chinese-date	cycle	year	month	leap-month	day)))



(19.17)

	1		(defun	fixed-from-chinese	(c-date)	

	2				;;	TYPE	chinese-date	->	fixed-date	

	3				;;	Fixed	date	of	Chinese	date	c-date.	

	4				(let*	((cycle	(chinese-cycle	c-date))	

	5											(year	(chinese-year	c-date))	

	6											(month	(chinese-month	c-date))	

	7											(leap	(chinese-leap	c-date))	

	8											(day	(chinese-day	c-date))	

	9											(mid-year						;		Middle	of	the	Chinese	year

10												(floor	

11													(+	chinese-epoch	

12																(*	(+	(*	(1-	cycle)	60);	years	in	prior	cycles

13																						(1-	year)								;	prior	years	this	cycle

14																						1/2)													;	half	a	year	

15																			mean-tropical-year))))	

16											(new-year	(chinese-new-year-on-or-

before	mid-year))	

17											(p		;	new	moon	before	date--

a	month	too	early	if	

18															;	there	was	prior	leap	month	that	year	

19												(chinese-new-moon-on-or-after	

20													(+	new-year	(*	(1-	month)	29))))	

21											(d	(chinese-from-fixed	p))	

22											(prior-new-moon	

23												(if		;	If	the	months	match...	

24																(and	(=	month	(chinese-month	d))	

25																					(equal	leap	(chinese-leap	d)))	

26																p;	...that’s	the	right	month	

27														;;	otherwise,	there	was	a	prior	leap	month	that

28														;;	year,	so	we	want	the	next	month	

29														(chinese-new-moon-on-or-after	(1+	p)))))	

30						(+	prior-new-moon	day	-1)))

	1		(defun	chinese-name	(stem	branch)	

	2				;;	TYPE	(chinese-stem	chinese-branch)	->	chinese-

name	

	3				;;	Combination	is	impossible	if	stem	and	branch	

	4				;;	are	not	the	equal	mod	2.	

	5				(list	stem	branch))

	1		(defun	chinese-stem	(name)	

	2				;;	TYPE	chinese-name	->	chinese-stem	

	3				(first	name))

	1		(defun	chinese-branch	(name)	

	2				;;	TYPE	chinese-name	->	chinese-branch	



(19.18)

(19.19)

(19.20)

(19.21)

(19.22)

	3				(second	name))

	1		(defun	chinese-sexagesimal-name	(n)	

	2				;;	TYPE	integer	->	chinese-name	

	3				;;	The	n-th	name	of	the	Chinese	sexagesimal	cycle.	

	4				(chinese-name	(amod	n	10)	

	5																		(amod	n	12)))

	1		(defun	chinese-name-difference	(c-name1	c-name2)	

	2				;;	TYPE	(chinese-name	chinese-name)	->	nonnegative-

integer	

	3				;;	Number	of	names	from	Chinese	name	c-name1	to	the

	4				;;	next	occurrence	of	Chinese	name	c-name2.	

	5				(let*	((stem1	(chinese-stem	c-name1))	

	6											(stem2	(chinese-stem	c-name2))	

	7											(branch1	(chinese-branch	c-name1))	

	8											(branch2	(chinese-branch	c-name2))	

	9											(stem-difference	(-	stem2	stem1))	

10											(branch-difference	(-	branch2	branch1)))	

11						(amod	(+	stem-difference	

12															(*	25	(-	branch-difference	

13																								stem-difference)))	

14												60)))

	1		(defun	chinese-year-name	(year)	

	2				;;	TYPE	chinese-year	->	chinese-name	

	3				;;	Sexagesimal	name	for	Chinese	year	of	any	cycle.	

	4				(chinese-sexagesimal-name	year))

	1		(defconstant	chinese-month-name-epoch	

	2				;;	TYPE	integer	

	3				;;	Elapsed	months	at	start	of	Chinese	sexagesimal	month

	4				;;	cycle.	

	5				57)

	1		(defun	chinese-month-name	(month	year)	

	2				;;	TYPE	(chinese-month	chinese-year)	->	chinese-

name	

	3				;;	Sexagesimal	name	for	month	month	of	Chinese	year

	4				;;	year.	

	5				(let*	((elapsed-months	(+	(*	12	(1-	year))	

	6																														(1-	month))))	

	7						(chinese-sexagesimal-name	

	8							(-	elapsed-months	chinese-month-name-epoch))))

	1		(defconstant	chinese-day-name-epoch	

	2				;;	TYPE	integer	



(19.23)

(19.24)

(19.25)

(19.26)

(19.27)

(19.28)

	3				;;	RD	date	of	a	start	of	Chinese	sexagesimal	day	cycle.

	4				(rd	45))

	1		(defun	chinese-day-name	(date)	

	2				;;	TYPE	fixed-date	->	chinese-name	

	3				;;	Chinese	sexagesimal	name	for	date.	

	4				(chinese-sexagesimal-name	

	5					(-	date	chinese-day-name-epoch)))

	1		(defun	chinese-day-name-on-or-before	(name	date)	

	2				;;	TYPE	(chinese-name	fixed-date)	->	fixed-date	

	3				;;	Fixed	date	of	latest	date	on	or	before	fixed	date

	4				;;	that	has	Chinese	name.	

	5				(mod3	(chinese-name-difference	

	6											(chinese-day-name	0)	name)	

	7										date	(-	date	60)))

	1		(defun	chinese-new-year	(g-year)	

	2				;;	TYPE	gregorian-year	->	fixed-date	

	3				;;	Fixed	date	of	Chinese	New	Year	in	Gregorian	year	g-

year.	

	4				(chinese-new-year-on-or-before	

	5					(fixed-from-gregorian	

	6						(gregorian-date	g-year	july	1))))

	1		(defun	dragon-festival	(g-year)	

	2				;;	TYPE	gregorian-year	->	fixed-date	

	3				;;	Fixed	date	of	the	Dragon	Festival	occurring	in	

	4				;;	Gregorian	year	g-year.	

	5				(let*	((elapsed-years	

	6												(1+	(-	g-year	

	7																			(gregorian-year-from-fixed	

	8																				chinese-epoch))))	

	9											(cycle	(1+	(quotient	(1-	elapsed-

years)	60)))	

10											(year	(amod	elapsed-years	60)))	

11						(fixed-from-chinese	(chinese-

date	cycle	year	5	false	5))))

	1		(defun	qing-ming	(g-year)	

	2				;;	TYPE	gregorian-year	->	fixed-date	

	3				;;	Fixed	date	of	Qingming	occurring	in	Gregorian	year

	4				;;	g-year.	

	5				(floor	

	6					(minor-solar-term-on-or-after	

	7						(fixed-from-gregorian	

	8							(gregorian-date	g-year	march	30)))))



(19.29)

(19.30)

(19.31)

(19.32)

(19.33)

	1		(defun	chinese-age	(birthdate	date)	

	2				;;	TYPE	(chinese-date	fixed-date)	->	nonnegative-

integer	

	3				;;	Age	at	fixed	date,	given	Chinese	birthdate,	

	4				;;	according	to	the	Chinese	custom.		Returns	bogus	if

	5				;;	date	is	before	birthdate.	

	6				(let*	((today	(chinese-from-fixed	date)))	

	7						(if	(>=	date	(fixed-from-chinese	birthdate))	

	8										(+	(*	60	(-	(chinese-cycle	today)	

	9																						(chinese-cycle	birthdate)))	

10													(-	(chinese-year	today)	

11																(chinese-year	birthdate))	

12													1)	

13								bogus)))

	1		(defconstant	double-bright	

	2				;;	TYPE	augury	

	3				;;	Lichun	occurs	twice	(double-happiness).	

	4				3)

	1		(defconstant	bright	

	2				;;	TYPE	augury	

	3				;;	Lichun	occurs	once	at	the	start.	

	4				2)

	1		(defconstant	blind	

	2				;;	TYPE	augury	

	3				;;	Lichun	occurs	once	at	the	end.	

	4				1)

	1		(defconstant	widow	

	2				;;	TYPE	augury	

	3				;;	Lichun	does	not	occur	(double-blind	year).	

	4				0)

	1		(defun	chinese-year-marriage-augury	(cycle	year)	

	2				;;	TYPE	(chinese-cycle	chinese-year)	->	augury	

	3				;;	The	marriage	augury	type	of	Chinese	year	in	cycle.

	4				(let*	((new-year	(fixed-from-chinese	

	5																						(chinese-

date	cycle	year	1	false	1)))	

	6											(c	(if	(=	year	60);	next	year’s	cycle	

	7																		(1+	cycle)	

	8																cycle))	

	9											(y	(if	(=	year	60);	next	year’s	number	

10																		1	

11																(1+	year)))	



(19.34)

(19.35)

12											(next-new-year	(fixed-from-chinese	

13																											(chinese-

date	c	y	1	false	1)))	

14											(first-minor-term	

15												(current-minor-solar-term	new-year))	

16											(next-first-minor-term	

17												(current-minor-solar-term	next-new-year)))	

18						(cond	

19							((and	

20									(=	first-minor-

term	1)								;	no	lichun	at	start...	

21									(=	next-first-minor-term	12))	;	...or	at	end	

22								widow)	

23							((and	

24									(=	first-minor-

term	1)								;	no	lichun	at	start...	

25									(/=	next-first-minor-term	12));	...only	at	end

26								blind)	

27							((and	

28									(/=	first-minor-

term	1)							;	lichun	at	start...	

29									(=	next-first-minor-term	12))	;	...	not	at	end

30								bright)	

31							(t	double-

bright))))												;	lichun	at	start	and	end

	1		(defun	japanese-location	(tee)	

	2				;;	TYPE	moment	->	location	

	3				;;	Location	for	Japanese	calendar;	varies	with	tee.

	4				(let*	((year	(gregorian-year-from-

fixed	(floor	tee))))	

	5						(if	(<	year	1888)	

	6										;;	Tokyo	(139	deg	46	min	east)	local	time	

	7										(location	(deg	35.7L0)	(angle	139	46	0)	

	8																				(mt	24)	(hr	(+	9	143/450)))	

	9																																										;	Longitude	135	time	zone

10								(location	(deg	35)	(deg	135)	(mt	0)	(hr	9)))))

	1		(defun	korean-location	(tee)	

	2				;;	TYPE	moment	->	location	

	3				;;	Location	for	Korean	calendar;	varies	with	tee.	

	4				;;	Seoul	city	hall	at	a	varying	time	zone.	

	5				(let*	((z	(cond	

	6															((<	tee	

	7																			(fixed-from-gregorian	

	8																				(gregorian-date	1908	april	1)))	

	9																;;	local	mean	time	for	longitude	126	deg	58	min



(19.36)

(19.37)

(19.38)

10																3809/450)	

11															((<	tee	

12																			(fixed-from-gregorian	

13																				(gregorian-date	1912	january	1)))	

14																8.5)	

15															((<	tee	

16																			(fixed-from-gregorian	

17																				(gregorian-date	1954	march	21)))	

18																9)	

19															((<	tee	

20																			(fixed-from-gregorian	

21																				(gregorian-date	1961	august	10)))	

22																8.5)	

23															(t	9))))	

24						(location	(angle	37	34	0)	(angle	126	58	0)	

25																(mt	0)	(hr	z))))

	1		(defun	korean-year	(cycle	year)	

	2				;;	TYPE	(chinese-cycle	chinese-year)	->	integer	

	3				;;	Equivalent	Korean	year	to	Chinese	cycle	and	year

	4				(+	(*	60	cycle)	year	-364))

	1		(defun	vietnamese-location	(tee)	

	2				;;	TYPE	moment	->	location	

	3				;;	Location	for	Vietnamese	calendar	is	Hanoi;	varies	with

	4				;;	tee.		Time	zone	has	changed	over	the	years.	

	5				(let*	((z	(if	(<	tee	

	6																					(gregorian-new-year	1968))	

	7																		8	

	8																7)))	

	9						(location	(angle	21	2	0)	(angle	105	51	0)	

10																(mt	12)	(hr	z))))

D.20	 The	Modern	Hindu	Calendars

Common	Lisp	supplies	arithmetic	with	arbitrary	rational	numbers,	and	we	take
advantage	of	 this	for	 implementing	the	Hindu	calendars.	With	other	languages,
64-bit	arithmetic	is	required	for	many	of	the	calculations.

	1		(defconstant	hindu-sidereal-year

	2				;;	TYPE	rational	

	3				;;	Mean	length	of	Hindu	sidereal	year.	



(20.1)

(20.2)

(20.3)

(20.4)

(20.5)

(20.6)

	4				(+	365	279457/1080000))

	1		(defconstant	hindu-sidereal-month

	2				;;	TYPE	rational	

	3				;;	Mean	length	of	Hindu	sidereal	month.	

	4				(+	27	4644439/14438334))

	1		(defconstant	hindu-synodic-month

	2				;;	TYPE	rational	

	3				;;	Mean	time	from	new	moon	to	new	moon.	

	4				(+	29	7087771/13358334))

	1		(defun	hindu-sine-table	(entry)

	2				;;	TYPE	integer	->	rational-amplitude	

	3				;;	This	simulates	the	Hindu	sine	table.	

	4				;;	entry	is	an	angle	given	as	a	multiplier	of	225’.

	5				(let*	((exact	(*	3438	(sin-degrees	

	6																											(*	entry	(angle	0	225	0)))))

	7											(error	(*	0.215L0	(sign	exact)	

	8																					(sign	(-	(abs	exact)	1716)))))	

	9						(/	(round	(+	exact	error))	3438)))

	1		(defun	hindu-sine	(theta)

	2				;;	TYPE	rational-angle	->	rational-amplitude	

	3				;;	Linear	interpolation	for	theta	in	Hindu	table.	

	4				(let*	((entry	

	5												(/	theta	(angle	0	225	0)));	Interpolate	in	table.

	6											(fraction	(mod	entry	1)))	

	7						(+	(*	fraction	

	8												(hindu-sine-table	(ceiling	entry)))	

	9									(*	(-	1	fraction)	

10												(hindu-sine-table	(floor	entry))))))

	1		(defun	hindu-arcsin	(amp)

	2				;;	TYPE	rational-amplitude	->	rational-angle	

	3				;;	Inverse	of	Hindu	sine	function	of	amp.	

	4				(if	(<	amp	0)	(-	(hindu-arcsin	(-	amp)))	

	5						(let*	((pos	(next	k	0	(<=	amp	(hindu-sine-

table	k))))	

	6													(below	;	Lower	value	in	table.	

	7														(hindu-sine-table	(1-	pos))))	

	8								(*	(angle	0	225	0)	

	9											(+	pos	-1		;	Interpolate.	

10														(/	(-	amp	below)	

11																	(-	(hindu-sine-table	pos)	below)))))))

	1		(defun	hindu-mean-position	(tee	period)



(20.7)

(20.9)

(20.10)

(20.11)

(20.8)

	2				;;	TYPE	(rational-moment	rational)	->	rational-

angle	

	3				;;	Position	in	degrees	at	moment	tee	in	uniform	circular

	4				;;	orbit	of	period	days.	

	5				(*	(deg	360)	(mod	(/	(-	tee	hindu-

creation)	period)	1)))

	1		(defconstant	hindu-creation

	2				;;	TYPE	fixed-date	

	3				;;	Fixed	date	of	Hindu	creation.	

	4				(-	hindu-epoch	(*	1955880000	hindu-sidereal-year)))

	1		(defconstant	hindu-anomalistic-year

	2				;;	TYPE	rational	

	3				;;	Time	from	aphelion	to	aphelion.	

	4				(/	1577917828000	(-	4320000000	387)))

	1		(defconstant	hindu-anomalistic-month

	2				;;	TYPE	rational	

	3				;;	Time	from	apogee	to	apogee,	with	bija	correction.

	4				(/	1577917828	(-	57753336	488199)))

	1		(defun	hindu-true-

position	(tee	period	size	anomalistic	change)

	2				;;	TYPE	(rational-moment	rational	rational	rational

	3				;;	TYPE		rational)	->	rational-angle	

	4				;;	Longitudinal	position	at	moment	tee.		period	is	

	5				;;	period	of	mean	motion	in	days.		size	is	ratio	of

	6				;;	radii	of	epicycle	and	deferent.		anomalistic	is	the

	7				;;	period	of	retrograde	revolution	about	epicycle.	

	8				;;	change	is	maximum	decrease	in	epicycle	size.	

	9				(let*	((lambda	;	Position	of	epicycle	center	

10													(hindu-mean-position	tee	period))	

11											(offset	;	Sine	of	anomaly	

12												(hindu-sine	(hindu-mean-

position	tee	anomalistic)))	

13											(contraction	(*	(abs	offset)	change	size))	

14											(equation	;	Equation	of	center	

15												(hindu-

arcsin	(*	offset	(-	size	contraction)))))	

16						(mod	(-	lambda	equation)	360)))

	1		(defun	hindu-solar-longitude	(tee)

	2				;;	TYPE	rational-moment	->	rational-angle	

	3				;;	Solar	longitude	at	moment	tee.	

	4				(hindu-true-position	tee	hindu-sidereal-year	

	5																									14/360	hindu-anomalistic-



(20.12)

(20.13)

(20.14)

(20.15)

(20.16)

(20.17)

year	1/42))

	1		(defun	hindu-zodiac	(tee)

	2				;;	TYPE	rational-moment	->	hindu-solar-month	

	3				;;	Zodiacal	sign	of	the	sun,	as	integer	in	range	1..12,

	4				;;	at	moment	tee.	

	5				(1+	(quotient	(hindu-solar-

longitude	tee)	(deg	30))))

	1		(defun	hindu-lunar-longitude	(tee)

	2				;;	TYPE	rational-moment	->	rational-angle	

	3				;;	Lunar	longitude	at	moment	tee.	

	4				(hindu-true-position	tee	hindu-sidereal-month	

	5																									32/360	hindu-anomalistic-

month	1/96))

	1		(defun	hindu-lunar-phase	(tee)

	2				;;	TYPE	rational-moment	->	rational-angle	

	3				;;	Longitudinal	distance	between	the	sun	and	moon	

	4				;;	at	moment	tee.	

	5				(mod	(-	(hindu-lunar-longitude	tee)	

	6												(hindu-solar-longitude	tee))	

	7									360))

	1		(defun	hindu-lunar-day-from-moment	(tee)

	2				;;	TYPE	rational-moment	->	hindu-lunar-day	

	3				;;	Phase	of	moon	(tithi)	at	moment	tee,	as	an	integer	in

	4				;;	the	range	1..30.	

	5				(1+	(quotient	(hindu-lunar-phase	tee)	(deg	12))))

	1		(defun	hindu-new-moon-before	(tee)

	2				;;	TYPE	rational-moment	->	rational-moment	

	3				;;	Approximate	moment	of	last	new	moon	preceding	moment

	4				;;	tee,	close	enough	to	determine	zodiacal	sign.	

	5				(let*	((varepsilon	(expt	2	-1000))	;	Safety	margin.

	6											(tau		;	Can	be	off	by	almost	a	day.	

	7												(-	tee	(*	(/	1	(deg	360))	(hindu-lunar-

phase	tee)	

	8																						hindu-synodic-month))))	

	9						(binary-search	;	Search	for	phase	start.	

10							l	(1-	tau)	

11							u	(min	tee	(1+	tau))	

12							x	(<	(hindu-lunar-phase	x)	(deg	180))	

13							(or	(=	(hindu-zodiac	l)	(hindu-zodiac	u))	

14											(<	(-	u	l)	varepsilon)))))

	1		(defun	hindu-solar-date	(year	month	day)	



(20.18)

(20.19)

(20.20)

	2				;;	TYPE	(hindu-solar-year	hindu-solar-month	hindu-

solar-day)	

	3				;;	TYPE		->	hindu-solar-date	

	4				(list	year	month	day))

	1		(defun	hindu-calendar-year	(tee)

	2				;;	TYPE	rational-moment	->	hindu-solar-year	

	3				;;	Determine	solar	year	at	given	moment	tee.	

	4				(round	(-	(/	(-	tee	hindu-epoch)	

	5																	hindu-sidereal-year)	

	6														(/	(hindu-solar-longitude	tee)	

	7																	(deg	360)))))

	1		(defconstant	hindu-solar-era

	2				;;	TYPE	standard-year	

	3				;;	Years	from	Kali	Yuga	until	Saka	era.	

	4				3179)

	1		(defun	hindu-solar-from-fixed	(date)

	2				;;	TYPE	fixed-date	->	hindu-solar-date	

	3				;;	Hindu	(Orissa)	solar	date	equivalent	to	fixed	date.

	4				(let*	((critical				;	Sunrise	on	Hindu	date.	

	5												(hindu-sunrise	(1+	date)))	

	6											(month	(hindu-zodiac	critical))	

	7											(year	(-	(hindu-calendar-year	critical)	

	8																				hindu-solar-era))	

	9											(approx	;	3	days	before	start	of	mean	month.

10												(-	date	3	

11															(mod	(floor	(hindu-solar-

longitude	critical))	

12																				(deg	30))))	

13											(start	;	Search	forward	for	beginning...	

14												(next	i	approx	;	...	of	month.	

15																		(=	(hindu-zodiac	(hindu-

sunrise	(1+	i)))	

16																					month)))	

17											(day	(-	date	start	-1)))	

18						(hindu-solar-date	year	month	day)))

	1		(defun	fixed-from-hindu-solar	(s-date)

	2				;;	TYPE	hindu-solar-date	->	fixed-date	

	3				;;	Fixed	date	corresponding	to	Hindu	solar	date	s-

date	

	4				;;	(Saka	era;	Orissa	rule.)	

	5				(let*	((month	(standard-month	s-date))	

	6											(day	(standard-day	s-date))	

	7											(year	(standard-year	s-date))	



(20.21)

(20.22)

	8											(start	;	Approximate	start	of	month	

	9																																										;	by	adding	days...

10												(+	(floor	(*	(+	year	hindu-solar-era	

11																												(/	(1-	month)	12))			;	in	months...

12																									hindu-sidereal-

year))			;	...	and	years	

13															hindu-epoch)))			;	and	days	before	RD	0.

14						;;	Search	forward	to	correct	month	

15						(+	day	-1	

16									(next	d	(-	start	3)	

17															(=	(hindu-zodiac	(hindu-sunrise	(1+	d)))

18																		month)))))

	1		(defun	hindu-lunar-date	(year	month	leap-

month	day	leap-day)	

	2				;;	TYPE	(hindu-lunar-year	hindu-lunar-month	

	3				;;	TYPE		hindu-lunar-leap-month	hindu-lunar-day	

	4				;;	TYPE		hindu-lunar-leap-day)	->	hindu-lunar-date	

	5				(list	year	month	leap-month	day	leap-day))

	1		(defun	hindu-lunar-month	(date)	

	2				;;	TYPE	hindu-lunar-date	->	hindu-lunar-month	

	3				(second	date))

	1		(defun	hindu-lunar-leap-month	(date)	

	2				;;	TYPE	hindu-lunar-date	->	hindu-lunar-leap-month	

	3				(third	date))

	1		(defun	hindu-lunar-day	(date)	

	2				;;	TYPE	hindu-lunar-date	->	hindu-lunar-day	

	3				(fourth	date))

	1		(defun	hindu-lunar-leap-day	(date)	

	2				;;	TYPE	hindu-lunar-date	->	hindu-lunar-leap-day	

	3				(fifth	date))

	1		(defun	hindu-lunar-year	(date)	

	2				;;	TYPE	hindu-lunar-date	->	hindu-lunar-year	

	3				(first	date))

	1		(defconstant	hindu-lunar-era

	2				;;	TYPE	standard-year	

	3				;;	Years	from	Kali	Yuga	until	Vikrama	era.	

	4				3044)

	1		(defun	hindu-lunar-from-fixed	(date)



(20.23)

	2				;;	TYPE	fixed-date	->	hindu-lunar-date	

	3				;;	Hindu	lunar	date,	new-moon	scheme,	

	4				;;	equivalent	to	fixed	date.	

	5				(let*	((critical	(hindu-

sunrise	date))	;	Sunrise	that	day.	

	6											(day	(hindu-lunar-day-from-moment	

	7																	critical));	Day	of	month.	

	8											(leap-day								;	If	previous	day	the	same.

	9												(=	day	(hindu-lunar-day-from-moment	

10																				(hindu-sunrise	(-	date	1)))))	

11											(last-new-moon	

12												(hindu-new-moon-before	critical))	

13											(next-new-moon	

14												(hindu-new-moon-before	

15													(+	(floor	last-new-moon)	35)))	

16											(solar-month									;	Solar	month	name.	

17												(hindu-zodiac	last-new-moon))	

18											(leap-

month							;	If	begins	and	ends	in	same	sign.	

19												(=	solar-month	(hindu-zodiac	next-new-

moon)))	

20											(month																					;	Month	of	lunar	year.

21												(amod	(1+	solar-month)	12))	

22											(year	;	Solar	year	at	end	of	month.	

23												(-	(hindu-calendar-year	

24																(if	(<=	month	2)	;	date	might	precede	solar

25																																										;	new	year.	

26																				(+	date	180)	

27																		date))	

28															hindu-lunar-era)))	

29						(hindu-lunar-date	year	month	leap-month	day	leap-

day)))

	1		(defun	fixed-from-hindu-lunar	(l-date)

	2				;;	TYPE	hindu-lunar-date	->	fixed-date	

	3				;;	Fixed	date	corresponding	to	Hindu	lunar	date	l-

date.	

	4				(let*	((year	(hindu-lunar-year	l-date))	

	5											(month	(hindu-lunar-month	l-date))	

	6											(leap-month	(hindu-lunar-leap-month	l-date))

	7											(day	(hindu-lunar-day	l-date))	

	8											(leap-day	(hindu-lunar-leap-day	l-date))	

	9											(approx	

10												(+	hindu-epoch	

11															(*	hindu-sidereal-year	

12																		(+	year	hindu-lunar-era	

13																					(/	(1-	month)	12)))))	
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(20.25)

14											(s	(floor	

15															(-	approx	

16																		(*	hindu-sidereal-year	

17																					(mod3	(-	(/	(hindu-solar-

longitude	approx)	

18																																	(deg	360))	

19																														(/	(1-	month)	12))	

20																											-1/2	1/2)))))	

21											(k	(hindu-lunar-day-from-

moment	(+	s	(hr	6))))	

22											(est	

23												(-	s	(-	day)	

24															(cond	

25																((<	3	k	27)	;	Not	borderline	case.	

26																	k)	

27																((let*	((mid	;	Middle	of	preceding	solar	month.

28																									(hindu-lunar-from-fixed	

29																										(-	s	15))))	

30																			(or	;	In	month	starting	near	s.	

31																				(/=	(hindu-lunar-month	mid)	month)	

32																				(and	(hindu-lunar-leap-month	mid)	

33																									(not	leap-month))))	

34																	(mod3	k	-15	15))	

35																(t	;	In	preceding	month.	

36																	(mod3	k	15	45)))))	

37											(tau	;	Refined	estimate.	

38												(-	est	(mod3	(-	(hindu-lunar-day-from-

moment	

39																													(+	est	(hr	6)))	

40																												day)	

41																									-15	15)))	

42											(date	(next	d	(1-	tau)	

43																							(member	(hindu-lunar-day-from-

moment	

44																																(hindu-sunrise	d))	

45																															(list	day	(amod	(1+	day)	30))))))

46						(if	leap-day	(1+	date)	date)))

	1		(defconstant	ujjain

	2				;;	TYPE	location	

	3				;;	Location	of	Ujjain.	

	4				(location	(angle	23	9	0)	(angle	75	46	6)	

	5														(mt	0)	(hr	(+	5	461/9000))))

	1		(defconstant	hindu-location

	2				;;	TYPE	location	

	3				;;	Location	(Ujjain)	for	determining	Hindu	calendar.
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	1		(defun	hindu-ascensional-difference	(date	location)

	2				;;	TYPE	(fixed-date	location)	->	rational-angle	

	3				;;	Difference	between	right	and	oblique	ascension	

	4				;;	of	sun	on	date	at	location.	

	5				(let*	((sin_delta	

	6												(*	1397/3438	;	Sine	of	inclination.	

	7															(hindu-sine	(hindu-tropical-

longitude	date))))	

	8											(phi	(latitude	location))	

	9											(diurnal-radius	

10												(hindu-sine	(+	(deg	90)	(hindu-

arcsin	sin_delta))))	

11											(tan_phi	;	Tangent	of	latitude	as	rational	number.

12												(/	(hindu-sine	phi)	

13															(hindu-sine	(+	(deg	90)	phi))))	

14											(earth-sine	(*	sin_delta	tan_phi)))	

15						(hindu-arcsin	(-	(/	earth-sine	diurnal-

radius)))))

	1		(defun	hindu-tropical-longitude	(date)

	2				;;	TYPE	fixed-date	->	rational-angle	

	3				;;	Hindu	tropical	longitude	on	fixed	date.	

	4				;;	Assumes	precession	with	maximum	of	27	degrees	

	5				;;	and	period	of	7200	sidereal	years	

	6				;;	(=	1577917828/600	days).	

	7				(let*	((days	(-	date	hindu-epoch))	;	Whole	days.	

	8											(precession	

	9												(-	(deg	27)	

10															(abs	

11																(*	(deg	108)	

12																			(mod3	(-	(*	600/1577917828	days)	

13																												1/4)	

14																									-1/2	1/2))))))	

15						(mod	(-	(hindu-solar-longitude	date)	precession)	

16											360)))

	1		(defun	hindu-solar-sidereal-difference	(date)

	2				;;	TYPE	fixed-date	->	rational-angle	

	3				;;	Difference	between	solar	and	sidereal	day	on	date.

	4				(*	(hindu-daily-motion	date)	(hindu-rising-

sign	date)))

	1		(defun	hindu-daily-motion	(date)

	2				;;	TYPE	fixed-date	->	rational-angle	

	3				;;	Sidereal	daily	motion	of	sun	on	date.	

	4				(let*	((mean-motion	;	Mean	daily	motion	in	degrees.
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	5												(/	(deg	360)	hindu-sidereal-year))	

	6											(anomaly	

	7												(hindu-mean-position	date	hindu-

anomalistic-year))	

	8											(epicycle	;	Current	size	of	epicycle.	

	9												(-	14/360	(/	(abs	(hindu-

sine	anomaly))	1080)))	

10											(entry	(quotient	anomaly	(angle	0	225	0)))	

11											(sine-table-

step	;	Marginal	change	in	anomaly	

12												(-	(hindu-sine-table	(1+	entry))	

13															(hindu-sine-table	entry)))	

14											(factor	

15												(*	-3438/225	sine-table-step	epicycle)))	

16						(*	mean-motion	(1+	factor))))

	1		(defun	hindu-rising-sign	(date)

	2				;;	TYPE	fixed-date	->	rational-amplitude	

	3				;;	Tabulated	speed	of	rising	of	current	zodiacal	sign	on

	4				;;	date.	

	5				(let*	((i		;	Index.	

	6												(quotient	(hindu-tropical-longitude	date)	

	7																						(deg	30))))	

	8						(nth	(mod	i	6)	

	9											(list	1670/1800	1795/1800	1935/1800	1935/1800

10																	1795/1800	1670/1800))))

	1		(defun	hindu-equation-of-time	(date)

	2				;;	TYPE	fixed-date	->	rational-moment	

	3				;;	Time	from	true	to	mean	midnight	of	date.	

	4				;;	(This	is	a	gross	approximation	to	the	correct	value.)

	5				(let*	((offset	(hindu-sine	

	6																				(hindu-mean-position	

	7																					date	

	8																					hindu-anomalistic-year)))	

	9											(equation-sun	;	Sun’s	equation	of	center	

10												;;	Arcsin	is	not	needed	since	small	

11												(*	offset	(angle	57	18	0)	

12															(-	14/360	(/	(abs	offset)	1080)))))	

13						(*	(/	(hindu-daily-motion	date)	(deg	360))	

14									(/	equation-sun	(deg	360))	

15									hindu-sidereal-year)))

	1		(defun	hindu-sunrise	(date)

	2				;;	TYPE	fixed-date	->	rational-moment	

	3				;;	Sunrise	at	hindu-location	on	date.	

	4				(+	date	(hr	6)	;	Mean	sunrise.	
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	5							(/	(-	(longitude	ujjain)	(longitude	hindu-

location))	

	6										(deg	360))	;	Difference	from	longitude.	

	7							(-	(hindu-equation-of-

time	date))	;	Apparent	midnight.	

	8							(*	;	Convert	sidereal	angle	to	fraction	of	civil	day.

	9								(/	1577917828/1582237828	(deg	360))	

10								(+	(hindu-ascensional-difference	date	hindu-

location)	

11											(*	1/4	(hindu-solar-sidereal-

difference	date))))))

	1		(defun	hindu-sunset	(date)

	2				;;	TYPE	fixed-date	->	rational-moment	

	3				;;	Sunset	at	hindu-location	on	date.	

	4				(+	date	(hr	18)	;	Mean	sunset.	

	5							(/	(-	(longitude	ujjain)	(longitude	hindu-

location))	

	6										(deg	360))	;	Difference	from	longitude.	

	7							(-	(hindu-equation-of-

time	date))	;	Apparent	midnight.	

	8							(*	;	Convert	sidereal	angle	to	fraction	of	civil	day.

	9								(/	1577917828/1582237828	(deg	360))	

10								(+	(-	(hindu-ascensional-difference	date	hindu-

location))	

11											(*	3/4	(hindu-solar-sidereal-

difference	date))))))

	1		(defun	hindu-standard-from-sundial	(tee)

	2				;;	TYPE	rational-moment	->	rational-moment	

	3				;;	Hindu	local	time	of	temporal	moment	tee.	

	4				(let*	((date	(fixed-from-moment	tee))	

	5											(time	(time-from-moment	tee))	

	6											(q	(floor	(*	4	time)))	;	quarter	of	day	

	7											(a	(cond	((=	q	0)				;	early	this	morning	

	8																					(hindu-sunset	(1-	date)))	

	9																				((=	q	3)				;	this	evening	

10																					(hindu-sunset	date))	

11																				(t	;		daytime	today	

12																					(hindu-sunrise	date))))	

13											(b	(cond	((=	q	0)	(hindu-sunrise	date))	

14																				((=	q	3)	(hindu-sunrise	(1+	date)))

15																				(t	(hindu-sunset	date)))))	

16						(+	a	(*	2	(-	b	a)	(-	time	

17																											(cond	((=	q	3)	(hr	18))	

18																																	((=	q	0)	(hr	-6))	

19																																	(t	(hr	6))))))))
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	1		(defun	hindu-fullmoon-from-fixed	(date)

	2				;;	TYPE	fixed-date	->	hindu-lunar-date	

	3				;;	Hindu	lunar	date,	full-moon	scheme,	

	4				;;	equivalent	to	fixed	date.	

	5				(let*	((l-date	(hindu-lunar-from-fixed	date))	

	6											(year	(hindu-lunar-year	l-date))	

	7											(month	(hindu-lunar-month	l-date))	

	8											(leap-month	(hindu-lunar-leap-month	l-date))

	9											(day	(hindu-lunar-day	l-date))	

10											(leap-day	(hindu-lunar-leap-day	l-date))	

11											(m	(if	(>=	day	16)	

12																		(hindu-lunar-month	

13																			(hindu-lunar-from-

fixed	(+	date	20)))	

14																month)))	

15						(hindu-lunar-date	year	m	leap-month	day	leap-

day)))

	1		(defun	fixed-from-hindu-fullmoon	(l-date)

	2				;;	TYPE	hindu-lunar-date	->	fixed-date	

	3				;;	Fixed	date	equivalent	to	Hindu	lunar	l-date	

	4				;;	in	full-moon	scheme.	

	5				(let*	((year	(hindu-lunar-year	l-date))	

	6											(month	(hindu-lunar-month	l-date))	

	7											(leap-month	(hindu-lunar-leap-month	l-date))

	8											(day	(hindu-lunar-day	l-date))	

	9											(leap-day	(hindu-lunar-leap-day	l-date))	

10											(m	(cond	((or	leap-month	(<=	day	15))	

11																					month)	

12																				((hindu-

expunged?	year	(amod	(1-	month)	12))	

13																					(amod	(-	month	2)	12))	

14																				(t	(amod	(1-	month)	12)))))	

15						(fixed-from-hindu-lunar	

16							(hindu-lunar-date	year	m	leap-month	day	leap-

day))))

	1		(defun	hindu-expunged?	(l-year	l-month)

	2				;;	TYPE	(hindu-lunar-year	hindu-lunar-month)	->	

	3				;;	TYPE		boolean	

	4				;;	True	of	Hindu	lunar	month	l-month	in	l-year	

	5				;;	is	expunged.	

	6				(/=	l-month	

	7								(hindu-lunar-month	

	8									(hindu-lunar-from-fixed	

	9										(fixed-from-hindu-lunar	

10											(list	l-year	l-month	false	15	false))))))
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	1		(defun	alt-hindu-sunrise	(date)

	2				;;	TYPE	fixed-date	->	rational-moment	

	3				;;	Astronomical	sunrise	at	Hindu	location	on	date,	

	4				;;	per	Lahiri,	

	5				;;	rounded	to	nearest	minute,	as	a	rational	number.

	6				(let*	((rise	(dawn	date	hindu-

location	(angle	0	47	0))))	

	7						(*	1/24	1/60	(round	(*	rise	24	60)))))

	1		(defun	ayanamsha	(tee)

	2				;;	TYPE	moment	->	angle	

	3				;;	Difference	between	tropical	and	sidereal	solar	longitude.

	4				(-	(solar-longitude	tee)	

	5							(sidereal-solar-longitude	tee)))

	1		(defconstant	sidereal-start

	2				;;	TYPE	angle	

	3				(precession	(universal-from-local	

	4																	(mesha-samkranti	(ce	285))	

	5																	hindu-location)))

	1		(defun	astro-hindu-sunset	(date)

	2				;;	TYPE	fixed-date	->	moment	

	3				;;	Geometrical	sunset	at	Hindu	location	on	date.	

	4				(dusk	date	hindu-location	(deg	0)))

	1		(defun	sidereal-zodiac	(tee)

	2				;;	TYPE	moment	->	hindu-solar-month	

	3				;;	Sidereal	zodiacal	sign	of	the	sun,	as	integer	in	range

	4				;;	1..12,	at	moment	tee.	

	5				(1+	(quotient	(sidereal-solar-

longitude	tee)	(deg	30))))

	1		(defun	astro-hindu-calendar-year	(tee)

	2				;;	TYPE	moment	->	hindu-solar-year	

	3				;;	Astronomical	Hindu	solar	year	KY	at	given	moment	tee.

	4				(round	(-	(/	(-	tee	hindu-epoch)	

	5																	mean-sidereal-year)	

	6														(/	(sidereal-solar-longitude	tee)	

	7																	(deg	360)))))

	1		(defun	astro-hindu-solar-from-fixed	(date)

	2				;;	TYPE	fixed-date	->	hindu-solar-date	

	3				;;	Astronomical	Hindu	(Tamil)	solar	date	equivalent	to

	4				;;	fixed	date.	

	5				(let*	((critical				;	Sunrise	on	Hindu	date.	

	6												(astro-hindu-sunset	date))	
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	7											(month	(sidereal-zodiac	critical))	

	8											(year	(-	(astro-hindu-calendar-

year	critical)	

	9																				hindu-solar-era))	

10											(approx	;	3	days	before	start	of	mean	month.

11												(-	date	3	

12															(mod	(floor	(sidereal-solar-

longitude	critical))	

13																				(deg	30))))	

14											(start	;	Search	forward	for	beginning...	

15												(next	i	approx	;	...	of	month.	

16																		(=	(sidereal-zodiac	(astro-hindu-

sunset	i))	

17																					month)))	

18											(day	(-	date	start	-1)))	

19						(hindu-solar-date	year	month	day)))

	1		(defun	fixed-from-astro-hindu-solar	(s-date)

	2				;;	TYPE	hindu-solar-date	->	fixed-date	

	3				;;	Fixed	date	corresponding	to	Astronomical	

	4				;;	Hindu	solar	date	(Tamil	rule;	Saka	era).	

	5				(let*	((month	(standard-month	s-date))	

	6											(day	(standard-day	s-date))	

	7											(year	(standard-year	s-date))	

	8											(approx	;	3	days	before	start	of	mean	month.

	9												(+	hindu-epoch	-3	

10															(floor	(*	(+	(+	year	hindu-solar-era)	

11																												(/	(1-	month)	12))	

12																									mean-sidereal-year))))	

13											(start	;	Search	forward	for	beginning...	

14												(next	i	approx	;	...	of	month.	

15																		(=	(sidereal-zodiac	(astro-hindu-

sunset	i))	

16																					month))))	

17						(+	start	day	-1)))

	1		(defun	astro-lunar-day-from-moment	(tee)

	2				;;	TYPE	moment	->	hindu-lunar-day	

	3				;;	Phase	of	moon	(tithi)	at	moment	tee,	as	an	integer	in

	4				;;	the	range	1..30.	

	5				(1+	(quotient	(lunar-phase	tee)	(deg	12))))

	1		(defun	astro-hindu-lunar-from-fixed	(date)

	2				;;	TYPE	fixed-date	->	hindu-lunar-date	

	3				;;	Astronomical	Hindu	lunar	date	equivalent	to	fixed	date.

	4				(let*	((critical	

	5												(alt-hindu-
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sunrise	date))	;	Sunrise	that	day.	

	6											(day	

	7												(astro-lunar-day-from-

moment	critical));	Day	of	month	

	8											(leap-

day													;	If	previous	day	the	same.	

	9												(=	day	(astro-lunar-day-from-moment	

10																				(alt-hindu-sunrise	(-	date	1)))))	

11											(last-new-moon	

12												(new-moon-before	critical))	

13											(next-new-moon	

14												(new-moon-at-or-after	critical))	

15											(solar-month									;	Solar	month	name.	

16												(sidereal-zodiac	last-new-moon))	

17											(leap-

month							;	If	begins	and	ends	in	same	sign.	

18												(=	solar-month	(sidereal-zodiac	next-new-

moon)))	

19											(month																					;	Month	of	lunar	year.

20												(amod	(1+	solar-month)	12))	

21											(year	;	Solar	year	at	end	of	month.	

22												(-	(astro-hindu-calendar-year	

23																(if	(<=	month	2)	;	date	might	precede	solar

24																																										;	new	year.	

25																				(+	date	180)	

26																		date))	

27															hindu-lunar-era)))	

28						(hindu-lunar-date	year	month	leap-month	day	leap-

day)))

	1		(defun	fixed-from-astro-hindu-lunar	(l-date)

	2				;;	TYPE	hindu-lunar-date	->	fixed-date	

	3				;;	Fixed	date	corresponding	to	Hindu	lunar	date	l-

date.	

	4				(let*	((year	(hindu-lunar-year	l-date))	

	5											(month	(hindu-lunar-month	l-date))	

	6											(leap-month	(hindu-lunar-leap-month	l-date))

	7											(day	(hindu-lunar-day	l-date))	

	8											(leap-day	(hindu-lunar-leap-day	l-date))	

	9											(approx	

10												(+	hindu-epoch	

11															(*	mean-sidereal-year	

12																		(+	year	hindu-lunar-era	

13																					(/	(1-	month)	12)))))	

14											(s	(floor	

15															(-	approx	

16																		(*	hindu-sidereal-year	
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17																					(mod3	(-	(/	(sidereal-solar-

longitude	approx)	

18																																	(deg	360))	

19																														(/	(1-	month)	12))	

20																											-1/2	1/2)))))	

21											(k	(astro-lunar-day-from-

moment	(+	s	(hr	6))))	

22											(est	

23												(-	s	(-	day)	

24															(cond	

25																((<	3	k	27)	;	Not	borderline	case.	

26																	k)	

27																((let*	((mid	;	Middle	of	preceding	solar	month.

28																									(astro-hindu-lunar-from-fixed	

29																										(-	s	15))))	

30																			(or	;	In	month	starting	near	s.	

31																				(/=	(hindu-lunar-month	mid)	month)	

32																				(and	(hindu-lunar-leap-month	mid)	

33																									(not	leap-month))))	

34																	(mod3	k	-15	15))	

35																(t	;	In	preceding	month.	

36																	(mod3	k	15	45)))))	

37											(tau	;	Refined	estimate.	

38												(-	est	(mod3	(-	(astro-lunar-day-from-

moment	

39																													(+	est	(hr	6)))	

40																												day)	

41																									-15	15)))	

42											(date	(next	d	(1-	tau)	

43																							(member	(astro-lunar-day-from-

moment	

44																																(alt-hindu-sunrise	d))	

45																															(list	day	(amod	(1+	day)	30))))))

46						(if	leap-day	(1+	date)	date)))

	1		(defun	hindu-solar-longitude-at-or-after	(lambda	tee)

	2				;;	TYPE	(season	moment)	->	moment	

	3				;;	Moment	of	the	first	time	at	or	after	tee	

	4				;;	when	Hindu	solar	longitude	will	be	lambda	degrees.

	5				(let*	((tau	;	Estimate	(within	5	days).	

	6												(+	tee	

	7															(*	hindu-sidereal-year	(/	1	(deg	360))	

	8																		(mod	(-	lambda	(hindu-solar-

longitude	tee))	

	9																							360))))	

10											(a	(max	tee	(-	tau	5)))	;	At	or	after	tee.	

11											(b	(+	tau	5)))	



(20.50)

(20.51)

(20.52)

12						(invert-angular	hindu-solar-longitude	lambda	

13																						(interval-closed	a	b))))

	1		(defun	mesha-samkranti	(g-year)

	2				;;	TYPE	gregorian-year	->	rational-moment	

	3				;;	Fixed	moment	of	Mesha	samkranti	(Vernal	equinox)

	4				;;	in	Gregorian	g-year.	

	5				(let*	((jan1	(gregorian-new-year	g-year)))	

	6						(hindu-solar-longitude-at-or-

after	(deg	0)	jan1)))

	1		(defun	hindu-lunar-day-at-or-after	(k	tee)

	2				;;	TYPE	(rational	rational-moment)	->	rational-

moment	

	3				;;	Time	lunar-

day	(tithi)	number	k	begins	at	or	after	

	4				;;	moment	tee.		k	can	be	fractional	(for	karanas).	

	5				(let*	((phase	;	Degrees	corresponding	to	k.	

	6												(*	(1-	k)	(deg	12)))	

	7											(tau	;	Mean	occurrence	of	lunar-day.	

	8												(+	tee	(*	(/	1	(deg	360))	

	9																						(mod	(-	phase	(hindu-lunar-

phase	tee))	

10																											360)	

11																						hindu-synodic-month)))	

12											(a	(max	tee	(-	tau	2)))	

13											(b	(+	tau	2)))	

14						(invert-angular	hindu-lunar-phase	phase	

15																						(interval-closed	a	b))))

	1		(defun	hindu-lunar-new-year	(g-year)

	2				;;	TYPE	gregorian-year	->	fixed-date	

	3				;;	Fixed	date	of	Hindu	lunisolar	new	year	in	Gregorian

	4				;;	g-year.	

	5				(let*	((jan1	(gregorian-new-year	g-year))	

	6											(mina	;	Fixed	moment	of	solar	longitude	330.

	7												(hindu-solar-longitude-at-or-

after	(deg	330)	jan1))	

	8											(new-moon	;	Next	new	moon.	

	9												(hindu-lunar-day-at-or-after	1	mina))	

10											(h-day	(floor	new-moon))	

11											(critical	;	Sunrise	that	day.	

12												(hindu-sunrise	h-day)))	

13						(+	h-day	

14									;;	Next	day	if	new	moon	after	sunrise,	

15									;;	unless	lunar	day	ends	before	next	sunrise.	

16									(if	(or	(<	new-moon	critical)	



(20.53)

(20.54)

17																	(=	(hindu-lunar-day-from-moment	

18																					(hindu-sunrise	(1+	h-day)))	2))	

19													0	1))))

	1		(defun	hindu-lunar-on-or-before?	(l-date1	l-date2)

	2				;;	TYPE	(hindu-lunar-date	hindu-lunar-date)	-

>	boolean	

	3				;;	True	if	Hindu	lunar	date	l-date1	is	on	or	before

	4				;;	Hindu	lunar	date	l-date2.	

	5				(let*	((month1	(hindu-lunar-month	l-date1))	

	6											(month2	(hindu-lunar-month	l-date2))	

	7											(leap1	(hindu-lunar-leap-month	l-date1))	

	8											(leap2	(hindu-lunar-leap-month	l-date2))	

	9											(day1	(hindu-lunar-day	l-date1))	

10											(day2	(hindu-lunar-day	l-date2))	

11											(leap-day1	(hindu-lunar-leap-day	l-date1))	

12											(leap-day2	(hindu-lunar-leap-day	l-date2))	

13											(year1	(hindu-lunar-year	l-date1))	

14											(year2	(hindu-lunar-year	l-date2)))	

15						(or	(<	year1	year2)	

16										(and	(=	year1	year2)	

17															(or	(<	month1	month2)	

18																			(and	(=	month1	month2)	

19																								(or	(and	leap1	(not	leap2))	

20																												(and	(equal	leap1	leap2)	

21																																	(or	(<	day1	day2)	

22																																					(and	(=	day1	day2)

23																																										(or	(not	leap-

day1)	

24																																														leap-

day2)))))	

25																								))))))

	1		(defun	hindu-date-occur	(l-year	l-month	l-day)

	2				;;	TYPE	(hindu-lunar-year	hindu-lunar-month	

	3				;;	TYPE		hindu-lunar-day)	->	fixed-date	

	4				;;	Fixed	date	of	occurrence	of	Hindu	lunar	l-month,

	5				;;	l-day	in	Hindu	lunar	year	l-

year,	taking	leap	and	

	6				;;	expunged	days	into	account.		When	the	month	is	

	7				;;	expunged,	then	the	following	month	is	used.	

	8				(let*	((lunar	(hindu-lunar-date	l-year	l-

month	false	

	9																																				l-day	false))	

10											(try	(fixed-from-hindu-lunar	lunar))	

11											(mid	(hindu-lunar-from-fixed	

12																	(if	(>	l-day	15)	(-	try	5)	try)))	



(20.55)

(20.56)

(20.57)

13											(expunged?	(/=	l-month	(hindu-lunar-

month	mid)))	

14											(l-date	;	day	in	next	month	

15												(hindu-lunar-date	(hindu-lunar-year	mid)	

16																														(hindu-lunar-month	mid)	

17																														(hindu-lunar-leap-

month	mid)	

18																														l-day	false)))	

19						(cond	(expunged?	

20													(1-	(next	d	try	

21																							(not	

22																								(hindu-lunar-on-or-before?	

23																									(hindu-lunar-from-fixed	d)	l-

date)))))	

24												((/=	l-day	(hindu-lunar-day	

25																								(hindu-lunar-from-fixed	try)))	

26													(1-	try))	

27												(t	try))))

	1		(defun	hindu-lunar-holiday	(l-month	l-day	g-year)

	2				;;	TYPE	(hindu-lunar-month	hindu-lunar-day	

	3				;;	TYPE		gregorian-year)	->	list-of-fixed-dates	

	4				;;	List	of	fixed	dates	of	occurrences	of	Hindu	lunar

	5				;;	month,	day	in	Gregorian	year	g-year.	

	6				(let*	((l-year	(hindu-lunar-year	

	7																				(hindu-lunar-from-fixed	

	8																					(gregorian-new-year	g-year))))	

	9											(date0	(hindu-date-occur	l-year	l-month	l-

day))	

10											(date1	(hindu-date-occur	(1+	l-year)	l-

month	l-day)))	

11						(list-range	(list	date0	date1)	

12																		(gregorian-year-range	g-year))))

	1		(defun	diwali	(g-year)

	2				;;	TYPE	gregorian-year	->	list-of-fixed-dates	

	3				;;	List	of	fixed	date(s)	of	Diwali	in	Gregorian	year

	4				;;	g-year.	

	5				(hindu-lunar-holiday	8	1	g-year))

	1		(defun	hindu-tithi-occur	(l-month	tithi	tee	l-year)

	2				;;	TYPE	(hindu-lunar-month	rational	rational	

	3				;;	TYPE		hindu-lunar-year)	->	fixed-date	

	4				;;	Fixed	date	of	occurrence	of	Hindu	lunar	tithi	prior

	5				;;	to	sundial	time	tee,	in	Hindu	lunar	l-month,	l-

year.	

	6				(let*	((approx	



(20.58)

	7												(hindu-date-occur	l-year	l-

month	(floor	tithi)))	

	8											(lunar	

	9												(hindu-lunar-day-at-or-

after	tithi	(-	approx	2)))	

10											(try	(fixed-from-moment	lunar))	

11											(tee_h	(standard-from-

sundial	(+	try	tee)	ujjain)))	

12						(if	(or	(<=	lunar	tee_h)	

13														(>	(hindu-lunar-phase	

14																		(standard-from-

sundial	(+	try	1	tee)	ujjain))	

15																	(*	12	tithi)))	

16										try	

17								(1+	try))))



(20.59)

(20.60)

(20.61)

(20.62)

(20.63)

	1		(defun	hindu-lunar-event	(l-month	tithi	tee	g-year)

	2				;;	TYPE	(hindu-lunar-month	rational	rational	

	3				;;	TYPE		gregorian-year)	->	list-of-fixed-dates	

	4				;;	List	of	fixed	dates	of	occurrences	of	Hindu	lunar	tithi

	5				;;	prior	to	sundial	time	tee,	in	Hindu	lunar	l-

month,	

	6				;;	in	Gregorian	year	g-year.	

	7				(let*	((l-year	(hindu-lunar-year	

	8																				(hindu-lunar-from-fixed	

	9																					(gregorian-new-year	g-year))))	

10											(date0	(hindu-tithi-occur	l-

month	tithi	tee	l-year))	

11											(date1	(hindu-tithi-occur	

12																			l-month	tithi	tee	(1+	l-year))))	

13						(list-range	(list	date0	date1)	

14																		(gregorian-year-range	g-year))))

	1		(defun	shiva	(g-year)

	2				;;	TYPE	gregorian-year	->	list-of-fixed-dates	

	3				;;	List	of	fixed	date(s)	of	Night	of	Shiva	in	Gregorian

	4				;;	year	g-year.	

	5				(hindu-lunar-event	11	29	(hr	24)	g-year))

	1		(defun	rama	(g-year)

	2				;;	TYPE	gregorian-year	->	list-of-fixed-dates	

	3				;;	List	of	fixed	date(s)	of	Rama’s	Birthday	in	Gregorian

	4				;;	year	g-year.	

	5				(hindu-lunar-event	1	9	(hr	12)	g-year))

	1		(defun	hindu-lunar-station	(date)

	2				;;	TYPE	fixed-date	->	nakshatra	

	3				;;	Hindu	lunar	station	(nakshatra)	at	sunrise	on	date.

	4				(let*	((critical	(hindu-sunrise	date)))	

	5						(1+	(quotient	(hindu-lunar-longitude	critical)	

	6																				(angle	0	800	0)))))

	1		(defun	karana	(n)

	2				;;	TYPE	1-60	->	0-10	

	3				;;	Number	(0-10)	of	the	name	of	the	n-th	(1-

60)	Hindu	

	4				;;	karana.	

	5				(cond	((=	n	1)	0)	

	6										((>	n	57)	(-	n	50))	

	7										(t	(amod	(1-	n)	7))))

	1		(defun	yoga	(date)



(20.64)

(20.65)

(20.66)

	2				;;	TYPE	fixed-date	->	1-27	

	3				;;	Hindu	yoga	on	date.	

	4				(1+	(floor	(mod	(/	(+	(hindu-solar-longitude	date)	

	5																										(hindu-lunar-longitude	date))

	6																							(angle	0	800	0))	

	7																				27))))

	1		(defun	sacred-wednesdays	(g-year)

	2				;;	TYPE	gregorian-year	->	list-of-fixed-dates	

	3				;;	List	of	Wednesdays	in	Gregorian	year	g-year	

	4				;;	that	are	day	8	of	Hindu	lunar	months.	

	5				(sacred-wednesdays-in-range	

	6					(gregorian-year-range	g-year)))

	1		(defun	sacred-wednesdays-in-range	(range)

	2				;;	TYPE	range	->	list-of-fixed-dates	

	3				;;	List	of	Wednesdays	within	range	of	dates	

	4				;;	that	are	day	8	of	Hindu	lunar	months.	

	5				(let*	((a	(begin	range))	

	6											(b	(end	range))	

	7											(wed	(kday-on-or-after	wednesday	a))	

	8											(h-date	(hindu-lunar-from-fixed	wed)))	

	9						(if	(in-range?	wed	range)	

10										(append	

11											(if	(=	(hindu-lunar-day	h-date)	8)	

12															(list	wed)	

13													nil)	

14											(sacred-wednesdays-in-range	

15												(interval	(1+	wed)	b)))	

16								nil)))

D.21	 The	Tibetan	Calendar
	1		(defun	tibetan-date	(year	month	leap-month	day	leap-

day)	

	2				;;	TYPE	(tibetan-year	tibetan-month	

	3				;;	TYPE		tibetan-leap-month	tibetan-day	

	4				;;	TYPE		tibetan-leap-day)	->	tibetan-date	

	5				(list	year	month	leap-month	day	leap-day))

	1		(defun	tibetan-year	(date)	

	2				;;	TYPE	tibetan-date	->	tibetan-year	

	3				(first	date))



(21.1)

(21.2)

	1		(defun	tibetan-month	(date)	

	2				;;	TYPE	tibetan-date	->	tibetan-month	

	3				(second	date))

	1		(defun	tibetan-leap-month	(date)	

	2				;;	TYPE	tibetan-date	->	tibetan-leap-month	

	3				(third	date))

	1		(defun	tibetan-day	(date)	

	2				;;	TYPE	tibetan-date	->	tibetan-day	

	3				(fourth	date))

	1		(defun	tibetan-leap-day	(date)	

	2				;;	TYPE	tibetan-date	->	tibetan-leap-day	

	3				(fifth	date))

	1		(defconstant	tibetan-epoch

	2				;;	TYPE	fixed-date	

	3				(fixed-from-gregorian	(gregorian-

date	-127	december	7)))

	1		(defun	tibetan-sun-equation	(alpha)

	2				;;	TYPE	rational-angle	->	rational	

	3				;;	Interpolated	tabular	sine	of	solar	anomaly	alpha.

	4				(cond	((>	alpha	6)	(-	(tibetan-sun-

equation	(-	alpha	6))))	

	5										((>	alpha	3)	(tibetan-sun-

equation	(-	6	alpha)))	

	6										((integerp	alpha)	

	7											(nth	alpha	(list	(mins	0)	(mins	6)	(mins	10)	(mins	11))))

	8										(t	(+	(*	(mod	alpha	1)	

	9																			(tibetan-sun-

equation	(ceiling	alpha)))	

10																(*	(mod	(-	alpha)	1)	

11																			(tibetan-sun-

equation	(floor	alpha)))))))

	1		(defun	tibetan-moon-equation	(alpha)

	2				;;	TYPE	rational-angle	->	rational	

	3				;;	Interpolated	tabular	sine	of	lunar	anomaly	alpha.

	4				(cond	((>	alpha	14)	(-	(tibetan-moon-

equation	(-	alpha	14))))	

	5										((>	alpha	7)	(tibetan-moon-

equation	(-	14	alpha)))	

	6										((integerp	alpha)	

	7											(nth	alpha	

	8																(list	(mins	0)	(mins	5)	(mins	10)	(mins	15)



(21.3)

(21.4)

	9																						(mins	19)	(mins	22)	(mins	24)	(mins	25))))

10										(t	(+	(*	(mod	alpha	1)	

11																			(tibetan-moon-

equation	(ceiling	alpha)))	

12																(*	(mod	(-	alpha)	1)	

13																			(tibetan-moon-

equation	(floor	alpha)))))))

	1		(defun	fixed-from-tibetan	(t-date)

	2				;;	TYPE	tibetan-date	->	fixed-date	

	3				;;	Fixed	date	corresponding	to	Tibetan	lunar	date	t-

date.	

	4				(let*	((year	(tibetan-year	t-date))	

	5											(month	(tibetan-month	t-date))	

	6											(leap-month	(tibetan-leap-month	t-date))	

	7											(day	(tibetan-day	t-date))	

	8											(leap-day	(tibetan-leap-day	t-date))	

	9											(months	;	Lunar	month	count.	

10												(floor	(+	(*	804/65	(1-	year))	(*	67/65	month)

11																						(if	leap-month	-1	0)	64/65)))	

12											(days	;	Lunar	day	count.	

13												(+	(*	30	months)	day))	

14											(mean	;	Mean	civil	days	since	epoch.	

15												(+	(*	days	11135/11312)	-30	

16															(if	leap-day	0	-1)	1071/1616))	

17											(solar-anomaly	

18												(mod	(+	(*	days	13/4824)	2117/4824)	1))	

19											(lunar-anomaly	

20												(mod	(+	(*	days	3781/105840)	2837/15120)	1))

21											(sun	(-	(tibetan-sun-equation	(*	12	solar-

anomaly))))	

22											(moon	(tibetan-moon-equation	(*	28	lunar-

anomaly))))	

23						(floor	(+	tibetan-epoch	mean	sun	moon))))

	1		(defun	tibetan-from-fixed	(date)

	2				;;	TYPE	fixed-date	->	tibetan-date	

	3				;;	Tibetan	lunar	date	corresponding	to	fixed	date.	

	4				(let*	((cap-

Y	(+	365	4975/18382))	;	Average	Tibetan	year.	

	5											(years	(ceiling	(/	(-	date	tibetan-

epoch)	cap-Y)))	

	6											(year0	;	Search	for	year.	

	7												(final	y	years	

	8																			(>=	date	

	9																							(fixed-from-tibetan	

10																								(tibetan-



(21.5)

(21.6)

date	y	1	false	1	false)))))	

11											(month0	;	Search	for	month.	

12												(final	m	1	

13																			(>=	date	

14																							(fixed-from-tibetan	

15																								(tibetan-

date	year0	m	false	1	false)))))	

16											(est	;	Estimated	day.	

17												(-	date	(fixed-from-tibetan	

18																					(tibetan-

date	year0	month0	false	1	false))))	

19											(day0	;	Search	for	day.	

20												(final	

21													d	(-	est	2)	

22													(>=	date	

23																	(fixed-from-tibetan	

24																		(tibetan-

date	year0	month0	false	d	false)))))	

25											(leap-month	(>	day0	30))	

26											(day	(amod	day0	30))	

27											(month	(amod	(cond	((>	day	day0)	(1-	month0))

28																														(leap-month	(1+	month0))	

29																														(t	month0))	

30																								12))	

31											(year	(cond	((and	(>	day	day0)	(=	month0	1))

32																								(1-	year0))	

33																							((and	leap-month	(=	month0	12))	

34																								(1+	year0))	

35																							(t	year0)))	

36											(leap-day	

37												(=	date	

38															(fixed-from-tibetan	

39																(tibetan-date	year	month	leap-

month	day	true)))))	

40						(tibetan-date	year	month	leap-month	day	leap-

day)))

	1		(defun	tibetan-leap-month?	(t-year	t-month)

	2				;;	TYPE	(tibetan-year	tibetan-month)	->	boolean	

	3				;;	True	if	t-month	is	leap	in	Tibetan	year	t-year.	

	4				(=	t-month	

	5							(tibetan-month	

	6								(tibetan-from-fixed	

	7									(fixed-from-tibetan	

	8										(tibetan-date	t-year	t-

month	true	2	false))))))



(21.7)

(21.8)

(21.9)

	1		(defun	tibetan-leap-day?	(t-year	t-month	t-day)

	2				;;	TYPE	(tibetan-year	tibetan-month	tibetan-day)	-

>	boolean	

	3				;;	True	if	t-day	is	leap	in	Tibetan	

	4				;;	month	t-month	and	year	t-year.	

	5				(or	

	6					(=	t-day	

	7								(tibetan-day	

	8									(tibetan-from-fixed	

	9										(fixed-from-tibetan	

10											(tibetan-date	t-year	t-month	false	t-

day	true)))))	

11					;;	Check	also	in	leap	month	if	there	is	one.	

12					(=	t-day	

13								(tibetan-day	

14									(tibetan-from-fixed	

15										(fixed-from-tibetan	

16											(tibetan-date	t-year	t-month	

17																									(tibetan-leap-month?	t-year	t-

month)	

18																									t-day	true)))))))

	1		(defun	losar	(t-year)

	2				;;	TYPE	tibetan-year	->	fixed-date	

	3				;;	Fixed	date	of	Tibetan	New	Year	(Losar)	

	4				;;	in	Tibetan	year	t-year.	

	5				(let*	((t-leap	(tibetan-leap-month?	t-year	1)))	

	6						(fixed-from-tibetan	

	7							(tibetan-date	t-year	1	t-leap	1	false))))

	1		(defun	tibetan-new-year	(g-year)

	2				;;	TYPE	gregorian-year	->	list-of-fixed-dates	

	3				;;	List	of	fixed	dates	of	Tibetan	New	Year	in	

	4				;;	Gregorian	year	g-year.	

	5				(let*	((dec31	(gregorian-year-end	g-year))	

	6											(t-year	(tibetan-year	(tibetan-from-

fixed	dec31))))	

	7						(list-range	

	8							(list	(losar	(1-	t-year))	

	9													(losar	t-year))	

10							(gregorian-year-range	g-year))))
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…	there	will	be	few	who	will	consider	the	industry,	labor,	vigils	which	we	have	bestowed	upon
[the	index],	or	the	profit	and	utility	that	may	be	gathered	from	our	labors.	For	it	is	the	equivalent
of	a	whole	book.
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It	requires	more	scholarship	to	make	a	good	index	than	to	write	the	book	that	is	indexed.

George	Foot	Moore:	Address	at	a	reception	of	the	Harvard
Graduate	School	of	Arts	and	Sciences	(1925)

Names	 of	 functions	 and	 constants	 are	 given	 in	boldface.	 Page	 numbers	 for	 a
function	are	of	four	types:	 the	page	with	the	function	definition	is	 in	boldface;
the	page	with	 the	 type	description	 in	Appendix	A	is	underlined;	 the	page	with
the	 cross-references	 in	 Appendix	 B	 shape	 italics;	 the	 page	 with	 the
corresponding	Lisp	code	in	Appendix	D	is	shown	in	typewriter	font.

Names	of	people	 are	 indexed	according	 to	 the	guidelines	of	The	Chicago
Manual	of	Style:	The	Essential	Guide	for	Writers,	Editors,	and	Publishers,	14th
edn,	The	University	of	Chicago	Press,	Chicago,	1993.
Symbols

	(open	interval),	xxvii
	(half-open	interval),	xxvii
	(half-open	interval),	xxvii
	(closed	interval),	xxvii

	(logical	negation),	xxvii
*	(Lisp	function),	469
+	(Lisp	function),	469



-	(Lisp	function),	469
/	(Lisp	function),	469
/=	(Lisp	relation),	469
<	(Lisp	relation),	469
<=	(Lisp	relation),	469
=	(Lisp	relation),	469
>	(Lisp	relation),	469
>=	(Lisp	relation),	469
	(absolute	value	function),	xxvi,	29
	(set	intersection),	xxviii
	(set	union),	xxviii
	(set	membership),	xxviii

	(mixed-radix	notation),	xxviii,	27
	(list	construction),	xxvii,	25
	(list	element	selection),	xxvii,	25

	(ceiling	function),	xxvi,	20
	(floor	function),	xxvi,	20

	(list	concatenation),	xxvii,	26
	(set	formation),	xxviii

1+	(Lisp	function),	473
1-	(Lisp	function),	473

	(totient	function),	xxvi,	36
	(pi),	xxvi
	(product	operator),	xxvii,	23
	(summation	operator),	xxvii,	23,	30

	(mixed	radix	conversion),	xxviii,	27
	(mixed	radix	representation),	xxviii,	28

Abdali,	S.	Kamal,	253
Abdollahy,	Reza,	262



aberration,	221,	223
aberration,	223,	223,	394,	415,	520
Abraham	ben	David,	467
absolute	value	function	(|	|),	xxvi,	29
Abu’l-Faraj,	Gregory	(=	Bar	Hebræus),	107
Access®,	95
acre,	204–205,	409,	515
Acre	(Israel),	204
A.D.(=	Anno	Domini),	xxiv,	11
a.d.	(=	ante	diem),	xxiv,	79
Adam	and	Eve,	116
Adams,	John	Quincy,	281
adar,	115,	115,	122,	132,	133,	136,	139,	409,	415,	495
Adar	(Hebrew	month),	114,	115,	129,	135–137
adarii,	115,	115,	122,	136,	409,	415,	495
Adaru	(Babylonian	month),	291
Adda	bar	Ahava,	132
adda-season-in-gregorian,	133,	394,	500
adhika	month	(Hindu	calendar),	see	leap	months,	Hindu
adjusted	remainder	function	(amod),	xxvi,	22
advent,	70–71,	394,	484
Advent	Sunday	(start	of	the	Christian	year),	70,	71,	152,	454–466
Afghan	calendar,	257
Africa,	5
Afzal,	Omar,	253
age	of	a	person
Chinese,	324–325
Japanese,	327

A.H.(=	Anno	Hegiræ),	xxiv,	106



ahargaṇa	(Hindu	calendar),	156
Ahmad,	Imad	ad-Dean,	253
Akan	calendar,	12,	37–38
epoch,	17
Lisp	code,	478
sample	dates,	448

akan-day-name,	38,	38,	394,	415,	478
akan-day-name-epoch,	38,	38,	409,	415,	478
akan-day-name-on-or-before,	38,	394,	478
akan-name,	394,	478
akan-name-difference,	38,	38,	394,	415,	478
akan-name-from-fixed,	38,	38,	394,	415,	478
akan-prefix,	394,	478
akan-stem,	394,	478
Akrami,	Mūsā,	253
Al-Azhar	University,	293
Alaska,	57
Albumazar,	see	Falaki,	Abu-Ma’shar	al-
Aldana,	Geraldo,	181
Alexandria	(Egypt),	Church	of,	143
Ali,	H.	Amir,	341
Ali-Ahyaie,	Masahallah,	259
Allen,	James	P.,	49
Almagest,	30,	89,	116,	341
alt-asr,	249,	394,	533
alt-birkath-ha-hama,	132,	394,	500
alt-fixed-from-egyptian,	31,	394,	476
alt-fixed-from-gregorian,	65–66,	66,	77,	394,	482
alt-fixed-from-observational-hebrew,	299–300,	395,	548



alt-fixed-from-observational-islamic,	295,	395,	545–546
alt-gregorian-from-fixed,	66,	66,	77,	395,	482
alt-gregorian-year-from-fixed,	67,	100,	395,	482
alt-hindu-sunrise,	357,	361,	362,	395,	415,	564
alt-observational-hebrew-from-fixed,	299,	395,	548
alt-observational-islamic-from-fixed,	295–296,	395,	546
alt-orthodox-easter,	147,	395,	502–503
altitude
lunar,	237–238,	445,	453
solar,	226

A.M.

Anno	Martyrum,	xxiv,	90
Anno	Mundi,	xxiv,	116

a.m.	(=	ante	meridiem),	xxiv
amod,	395,	472
amod	function,	see	adjusted	remainder	function
Ananthasubramaniam,	Bharath,	49
Andhra	Pradesh	(India),	334
Anggara	Kasih	(Balinese	holiday),	190
angle,	395,	514
angle-from-degrees,	29,	395,	476
angles
representation,	29
solar	depression,	244

Annunciation	(Orthodox	holiday),	85
anomaly,	342–345
lunar,	233–234,	377
solar,	233,	377

Antikythera	mechanism,	82



A.P.(=	Anno	Persico	or	Anno	Persarum),	xxiv,	257
apogee,	343,	377
apparent-from-local,	217–218,	218,	395,	415,	518
apparent-from-universal,	218,	292,	300,	395,	415,	518
apply	(Lisp	function),	473
approx-moment-of-depression,	240,	241,	395,	416,	529
april,	59,	100,	146,	148,	291,	328,	409,	416,	479
Arabian	Peninsula,	273
arc	of	light,	250
arc-of-light,	250,	250,	251,	395,	416,	534
arc	of	vision,	251
arc-of-vision,	251,	251,	395,	416,	534
arccos-degrees,	395,	514
arcsin-degrees,	395,	513-514
arctan,	205,	205,	220,	225,	249,	395
arctan-degrees,	395,	513
Ari	the	Learned,	102
Aries	(constellation),	158,	219
first	point	of,	205,	218,	219

arithmetic-french-from-fixed,	285–286,	395,	542–543
arithmetic-french-leap-year?,	285,	395,	542
arithmetic-persian-from-fixed,	263–264,	395,	537
arithmetic-persian-leap-year?,	262,	395,	536–537
arithmetic-persian-year-from-fixed,	263,	263,	395,	416,	537
arithmetical	calendars,	55–201,	261–264,	271–273,	284–286
Armenian	calendar,	5–6,	12,	31–32
days,	5
epagomenæ,	32
epoch,	17,	31



Lisp	code,	476–477
months,	31–32
sample	dates,	447

armenian-date,	395,	477
armenian-epoch,	31,	31,	409,	416,	477
armenian-from-fixed,	31,	395,	477
Arouet,	François	Marie	(=	Voltaire),	59
arya-jovian-period,	157,	158,	409,	416,	503
arya-lunar-day,	160–162,	165,	409,	416,	504
arya-lunar-month,	160,	160,	162–166,	409,	416,	504
Ārya-Siddhānta	(First),	158
arya-solar-month,	158,	158–160,	162–166,	409,	416,	504
arya-solar-year,	157,	158,	159,	162–165,	409,	416,	503
Āryabhaṭa,	158
A.S.(=	Anno	Samaritanorum),	xxiv,	301
Ascension	Day	(Christian	holiday),	152
Ascension	of	‘Abdu’l-Bahā	(Bahá’í	holiday),	277
Ascension	of	the	Bahā’u’llāh	(Bahá’í	holiday),	277
ascensional	difference,	352
Ash	Wednesday	(Christian	fast),	70,	152
‘Ashūrā’	(Islamic	holiday),	109
Aslaksen,	Helmer,	323,	330
asr,	see	also	alt-asr,	249,	395,	533
asr	(Muslim	prayer	time),	248,	249
Assumption	(Christian	holiday),	71
astro-bahai-from-fixed,	275–276,	395,	540
astro-bahai-new-year-on-or-before,	274,	275,	277,	395,	416,	539
astro-hindu-calendar-year,	360,	360,	361,	395,	416,	564
astro-hindu-lunar-from-fixed,	361,	362,	395,	416,	565-566



astro-hindu-solar-from-fixed,	360,	395,	564-565
astro-hindu-sunset,	360,	360,	395,	416,	564
astro-lunar-day-from-moment,	361,	361,	362,	395,	416,	565
astronomical	calendars,	203–385
astronomical	day	numbers,	see	julian	day	numbers
astronomical	lunar	calendars,	289–303
Babylonian,	289–292
classical	Hebrew,	253,	297–300
Lisp	code,	543–549
observational	Islamic,	253,	293–297

astronomical-easter,	292–293,	395,	544-545
astronomy,	203–253,	340–346
Hindu,	340–346

Asura	Maya,	335
A.U.C.(=	Ab	Urbe	Condita),	xxiv,	56,	81
auc-year-from-julian,	81,	396,	487
august,	59,	90,	92,	177,	328,	409,	417,	479
Augustine,	Saint	(=	Aurelius	Augustinus),	206
Australia,	58
Austria,	xxxix
autumn,	83,	283,	409,	417,	488
av,	114–115,	130,	409,	417,	494
Aveni,	Anthony	F.,	181,	182
ayanamsha,	359,	396,	564
ayyam-i-ha,	271,	271,	272,	275,	276,	409,	417,	538
Ayyappa	Jyothi	Darshanam	(Hindu	holiday),	364
Aztec	calendar,	12,	34,	35,	170,	177–181
Lisp	code,	508–510
nemontemi,	177



sample	dates,	450
tonalpohualli,	177,	179–180
xihuitl,	177–179
xiuhmolpilli,	180

aztec-correlation,	177,	178,	179,	409,	417,	508
aztec-tonalpohualli-correlation,	179,	180,	181,	409,	417,	509
aztec-tonalpohualli-date,	396,	509
aztec-tonalpohualli-from-fixed,	179–180,	180,	396,	417,	509
aztec-tonalpohualli-name,	396,	509
aztec-tonalpohualli-number,	396,	509
aztec-tonalpohualli-on-or-before,	180,	396,	509
aztec-tonalpohualli-ordinal,	179,	179–181,	396,	417,	509
aztec-xihuitl-correlation,	178,	178,	179,	181,	409,	417,	508
aztec-xihuitl-date,	396,	508
aztec-xihuitl-day,	396,	508
aztec-xihuitl-from-fixed,	178,	180,	396,	417,	508
aztec-xihuitl-month,	396,	508
aztec-xihuitl-on-or-before,	179,	180,	396,	417,	508
aztec-xihuitl-ordinal,	178,	178,	179,	181,	396,	417,	508
aztec-xihuitl-tonalpohualli-on-or-before,	180–181,	510
aztec-xiuhmolpilli-designation,	396,	509
aztec-xiuhmolpilli-from-fixed,	180,	396,	509–510
aztec-xiuhmolpilli-name,	396,	509
aztec-xiuhmolpilli-number,	396,	509

Bāb	(=	Mīrzā‘Alī	Moḥammad),	268,	269
Babylon,	290,	294
babylon,	290,	290,	409,	417,	543
Babylonia,	288



Babylonian	calendar,	7,	13,	245,	289–292
epoch,	17,	291
Lisp	code,	543–544
months,	289
sample	dates,	450

babylonian-criterion,	290,	290,	291,	396,	417,	543
babylonian-date,	396,	543
babylonian-day,	396,	543
babylonian-epoch,	291,	291,	292,	409,	417,	544
babylonian-from-fixed,	291–292,	396,	544
babylonian-leap,	396,	543
babylonian-leap-year?,	291,	396,	544
babylonian-month,	396,	543
babylonian-new-month-on-or-before,	290–291,	291,	292,	396,	417,	543–544
babylonian-year,	396,	543
Bahá’í	calendar,	xxxvi,	6,	13,	212,	269–278,	445
astronomical,	221,	226,	227
days,	4,	14
epoch,	17
holidays,	277–278
implementation,	271–277
leap-year	rule,	269
Lisp	code,	538–541
months,	270
Near	Eastern,	273
new,	269–277,	278,	284
New	Year,	277
sample	dates,	449
structure,	269–271



weekdays,	269
Western,	271–273

Bahá’í	New	Year,	see	Feast	of	Naw-Rūz
bahai-cycle,	396,	538
bahai-date,	397,	538
bahai-day,	397,	538
bahai-epoch,	271,	272,	275,	409,	417,	538
bahai-from-fixed,	272–273,	397,	539
bahai-location,	274,	274,	409,	418,	539
bahai-major,	397,	538
bahai-month,	397,	538
bahai-new-year,	277,	397,	540
bahai-sunset,	274,	274,	278,	397,	418,	539
bahai-year,	397,	538
Bahā’u’llāh	(=	Mīrzā	Ḥusain	‘Alī	Nūrī),	269,	273
bahula,	see	month,	dark	fortnight
Balazs,	George	H.,	50
Bali,	5,	184,	185
bali-asatawara,	397,	510–511
bali-asatawara-from-fixed,	185,	188–189,	189,	397,	418,	512
bali-caturwara,	397,	510
bali-caturwara-from-fixed,	185,	189,	397,	418,	512
bali-dasawara,	397,	511
bali-dasawara-from-fixed,	185,	188,	188,	397,	418,	511–512
bali-day-from-fixed,	187,	187–190,	397,	418,	511
bali-dwiwara,	397,	510
bali-dwiwara-from-fixed,	185,	188,	397,	418,	512
bali-epoch,	187,	187,	410,	418,	511
bali-luang,	397,	510



bali-luang-from-fixed,	185,	188,	397,	418,	512
bali-on-or-before,	189,	397,	512–513
bali-pancawara,	397,	510
bali-pancawara-from-fixed,	185,	187,	188,	397,	418,	511
bali-pawukon-from-fixed,	185–187,	397,	511
bali-sadwara,	397,	510
bali-sadwara-from-fixed,	185,	187,	397,	418,	511
bali-sangawara,	397,	511
bali-sangawara-from-fixed,	185,	188,	397,	418,	512
bali-saptawara,	397,	510
bali-saptawara-from-fixed,	185,	187,	188,	397,	418,	511
bali-triwara,	397,	510
bali-triwara-from-fixed,	185,	187,	397,	418,	511
bali-week-from-fixed,	187,	397,	511
Balinese	Pawukon	calendar,	xxxv,	5,	13,	34,	185–192
holidays,	189–190
Lisp	code,	510–513
sample	dates,	450

balinese-date,	397,	510
Balkh	(Iran),	256
Ball,	John	A.,	71
Banaras,	see	Varanasi
Bangladesh,	293
Bar	Hebræus,	see	Abu’l-Faraj,	Gregory
Bar	Mitzvah	(Jewish	event),	134
Bargeloní,	Abraham	bar	Ḥiyya	al-	(=	Savasorda),	113,	116,	132,	141
Barry,	Ellen,	170
Bartle,	Philip	F.	W.,	49
Bat	Mitzvah	(Jewish	event),	134



Battānī,	Abū	‘abd	Allāh	Muḥammad	ibn	Jābir	ibn	Sinān	al-,	300
Bayer,	Theophilus	S.,	379
B.C.	(=	Before	Christ),	xxiv,	15
B.C.E.	(=	Before	the	Common	Era),	xxiv,	15
bce,	397,	484
B.E.	(=	Bahá’í	Era),	xxiv,	271
Beckwith,	Roger	T.,	151
Bede,	Venerable,	15,	56,	143,	227
begin,	397,	473,	475
Beijing	(China),	207,	306,	309,	310,	313
Bej,	Mark	D.,	xxxviii
Belenkiy,	Ari,	71
Belize,	169
Ben	David	Hakohen,	Jonathan,	xxxv
Ben	Meir,	Aaron,	117
Ben-Dov,	Jonathan,	102,	198
Benediktsson,	Jakob,	102
Bengal	(India),	347
Bengal	rule	(Hindu	calendar),	348,	355
Berkeley	(California),	142
Berlekamp,	Elwyn	R.,	139,	152
Bernal,	Ignacio,	181
Berzin,	Alexander,	375
Beyle,	Marie-Henri	(=	Stendhal),	283
Bhutan	calendar,	375
Bible,	see	also	Pentateuch
Acts	of	the	Apostles,	245
Chronicles	I,	198
Daniel,	446
Exodus,	115



Ezekiel,	198
Isaiah,	55
Leviticus,	114
Psalms,	4

Bien,	Reinhold,	152
Bierce,	Ambrose,	614
Bietenholz,	Wolfgang,	181
Bihar	(India),	337
binary-search,	397,	473,	473
Birashk,	Ahmad,	xxxix,	107,	109,	258,	259,	261,	262,	265,	266
Birkath	ha-Ḥama	(Jewish	event),	131–133,	454–466
birkath-ha-hama,	see	also	alt-birkath-ha-hama,	131–132,	132,	397,	499
Birth	of	the	Bāb	(Bahá’í	holiday),	277,	278,	454–466
birth-of-the-bab,	278,	397,	541
Birth	of	the	Bahā’u’llāh	(Bahá’í	holiday),	277
Birthday	of	Krishna	(Hindu	holiday),	366
Birthday	of	Rāma	(Hindu	holiday),	366,	369,	454–466
Bīrūnī,	Abū-Raiḥān	Muḥammad	ibn’Aḥmad	al-,	1,	104,	116–118,139,	155,	160,

166,	265,	335,	339,	354
bissextile	years,	see	leap	years
bissextus	(leap	day),	78
Bitsakis,	Yanis,	82
Blackburn,	Bonnie,	49,	85
Blass,	Uri,	xxxviii
blind,	325,	325,	410,	418,	555
Bloch,	Abraham	P.,	467
blue	moon,	227
Boch,	Charles	A.,	49
Bodde,	Derk,	332



bogus,	xxviii,	47,	69,	129,	176,	177,	180,	181,	205,	240–245,	247–251,	290,
325,	395,	396,	398,	399,	404–406,	408,	410,	418,	452,	453,	470

Bohras,	107
Bolshevik	revolution,	57
Bombay	(India),	334
Bonaparte,	Louis	Napoleon	(=	Napoleon	III),	281
Bonaparte,	Napoleon,	281
Boncompagni,	Ugo,	see	Gregory	XIII,	Pope
Bornstein,	Ḥayyim	Y.,	113,	140
Bowditch,	Charles	P.,	181
Bowyer,	David,	384
Boyle,	Elizabeth	L.,	324
Brady,	John,	286
Brainerd,	George	W.,	182
Bramsen,	William,	331
Brand,	Stewart,	217
Braude,	Morris,	10
Bredon,	Juliet,	331
Bresenham,	Jack	E.,	39
Bretagnon,	Pierre,	253
Brewer,	David,	xxxiii
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Buda-Keliwon	(Balinese	holiday),	190
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335,	359,	376,	385–386
Coptic,	6,	7,	10–12,	17,	89–93,	131–132,	196–197,	257
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Potrzebie,	xxxvi
Qumran,	198
Roman	nomenclature,	12,	77–81
Samaritan,	17,	289,	300–302
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Common	Lisp,	see	Lisp
Compline	(Christian	prayer	time),	248
cond	(Lisp	function),	472
conditional	expressions,	20
Congo,	5
Congress	of	the	Orthodox	Oriental	Churches,	57,	84
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Eiseman,	Fred	B.,	Jr.,	192
Eiseman,	Margaret,	192
Ekholm,	Gordon	F.,	181
Election	Day	(U.S.	event),	70,	454–466
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Ellis,	Norman	S.,	255
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Coptic	calendar,	90,	197
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Epiphany	(Christian	feast	day),	70,	71,	93,	454–465,	466
epoch	(Lisp	constant),	471
epochs,	15
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Bahá’í,	17,	271
Chinese,	17,	316
Coptic,	17,	90
Egyptian,	17,	30
Ethiopic,	xxxiv,	17,	92
French	Revolutionary,	17,	281,	283
Gregorian,	17,	58
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Hindu,	17,	155,	156,	344,	347,	349
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Islamic,	17,	106
ISO,	17,	95
Julian,	17,	76
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Mayan,	17,	171
modified	julian	day	number,	17
Persian,	17,	258
Samaritan,	17
Tibetan,	17,	376
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equal	(Lisp	relation),	470
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equation	of	motion,	345
equation	of	time,	215–218,	353,	357,	358
sample	values,	452
three-dimensional	cam,	217

equation-of-time,	216,	215–217,	217,	218,	399,	421,	517-518
equator
celestial,	219
earth,	219

equinox,	6,	25,	195,	203,	219,	221,	223,	224,	359,	445
autumnal,	131,	227,	281,	283
dynamical,	221
sample	times,	452
vernal,	57,	131,	143,	145,	150,	219,	226,	257–259,	269,	273,	274,	276,	277,

283,	292,	297,	301,	364
era
Alexandrian,	16
Ethiopic,	92
Nabonassar,	30
Seleucid,	16,	113,	291
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Escher,	Maurits	C.,	384
Esslemont,	John	E.,	269
estimate-prior-solar-longitude,	226–227,	259,	274,	283,	309,	399,	421,	

521–522
Estonia,	146
Ethiopia,	247
Ethiopic	calendar,	6,	7,	10–12,	88,	91–92,	257
days,	14,	91
epagomenæ,	88
epoch,	xxxiv,	17,	92
holidays,	93
implementation,	92
Lisp	code,	490
months,	91
sample	dates,	448
structure,	91–92

Ethiopic	time,	see	Time,	Ethiopic
ethiopic-date,	399,	490
ethiopic-epoch,	92,	92,	410,	422,	490
ethiopic-from-fixed,	92,	399,	490
Euclid,	36
Euler,	Leonhard,	36,	379
Europe,	207
Eusebius,	56,	143
Evanston	(Illinois),	94
evening,	241–242,	242,	410,	422,	530
evenp	(Lisp	function),	469
Everett,	Steven	M.,	51



Excel®,	xxxiii,	95

Falaki,	Abu-Ma’shar	al-	(=	Albumazar),	256
false,	78,	240,	410,	470
Fast	of	the	Apostles	(Orthodox	fast),	152
Fast	of	the	Repose	of	the	Virgin	Mary	(Orthodox	fast),	85
Fayyūmi,	Sa’adia	ben	Joseph	al-	(=	Sa’adia	Gaon),	113,	118
Feast	of	Naw-Rūz	(Bahá’í	New	Year),	273,	274,	277,	454–466
Feast	of	Orthodoxy	(Orthodox	holiday),	152
Feast	of	Riḍvān	(Bahá’í	holiday),	277,	454–466
feast-of-ridvan,	277,	399,	541
february,	59,	80,	156,	316,	410,	422,	479
Feinstein,	Moses,	137
Feldman,	William	M.,	140
Festival	of	Pentecost	(Samaritan	holiday),	302
Festival	of	Tabernacles	(Samaritan	holiday),	302
Festival	of	the	Seventh	Month	(Samaritan	holiday),	302
Festival	of	the	Unleavened	Bread	(Samaritan	holiday),	301,	302
Fienberg,	Richard	T.,	254
fifth	(Lisp	function),	469
Filipowski,	Herschell,	141
final,	399,	473
Finch,	Tony,	xxxviii
Finland,	146
first	(Lisp	function),	469
first-kday,	69,	69–71,	399,	422,	483
first-quarter,	236,	250,	251,	290,	296,	410,	422,	526
fixed	day	numbers,	10–15
fixed-from-arithmetic-french,	285,	285,	286,	399,	422,	542
fixed-from-arithmetic-persian,	262,	263–265,	399,	422,	537



fixed-from-armenian,	31,	399,	477
fixed-from-astro-bahai,	275,	276,	399,	422,	539–540
fixed-from-astro-hindu-lunar,	361–362,	400,	566
fixed-from-astro-hindu-solar,	360–361,	400,	565
fixed-from-babylonian,	291,	400,	544
fixed-from-bahai,	271–272,	272,	273,	400,	422,	538–539
fixed-from-chinese,	318,	324–326,	400,	422,	553
fixed-from-coptic,	90,	91–93,	400,	422,	489
fixed-from-egyptian,	see	also	alt-fixed-from-egyptian,	30,	31,	400,	422,	476
fixed-from-ethiopic,	92,	400,	490
fixed-from-french,	284,	284,	400,	422,	541–542
fixed-from-gregorian,	see	also	alt-fixed-from-gregorian,	60,	60,	62,	63,	66,

67,	69,	70,	76,	100,	148,	243,	271,	272,	277,	283,	316,	322,	324,	328,
376,	400,	422,	480

fixed-from-hebrew,	123,	123,	128–133,	135,	136,	139,	298,	300,	400,	423,	497
fixed-from-hindu-fullmoon,	356,	400,	563–564
fixed-from-hindu-lunar,	350–351,	356,	367,	400,	423,	561
fixed-from-hindu-solar,	348,	400,	559–560
fixed-from-icelandic,	100–101,	101,	400,	423,	492
fixed-from-islamic,	107,	107–109,	400,	423,	493
fixed-from-iso,	95–96,	96,	400,	423,	491
fixed-from-jd,	18,	20,	30,	171,	187,	400,	423,	471
fixed-from-julian,	76,	76,	77,	80,	84,	85,	90,	92,	106,	119,	146,	156,	177,	258,

291,	301,	400,	423,	485
fixed-from-mayan-long-count,	171,	400,	506
fixed-from-mjd,	19,	400,	471
fixed-from-molad,	43,	48,	126,	127,	400,	498
fixed-from-moment,	20,	26,	126,	132,	240,	247,	248,	252,	278,	290,	296,	355,

368,	400,	424,	474



fixed-from-observational-hebrew,	see	also	alt-fixed-from-observational-
hebrew,	298,	400,	547–548

fixed-from-observational-islamic,	see	also	alt-fixed-from-observational-
islamic,	293,	296,	400,	545

fixed-from-old-hindu-lunar,	165–166,	400,	505
fixed-from-old-hindu-solar,	158,	400,	504
fixed-from-persian,	260,	260,	265,	400,	424,	536
fixed-from-roman,	78,	80,	81,	400,	424,	486
fixed-from-samaritan,	301,	400,	549
fixed-from-saudi-islamic,	296,	296,	400,	546–547
fixed-from-tibetan?,	378,	378–381,	400,	424,	571
Fleet,	John	F.,	166
Flesner,	Molly,	xxxviii
Fliegel,	Henry	F.,	72
floor	(Lisp	function),	472
floor	function	(	 	),	xxvi,	20
Flower	Festival	(Japanese	holiday),	323
Forsythe,	George	E.,	389
Fotheringham,	John	K.,	xli,	72,	86,	152
fourth	(Lisp	function),	469
Fox,	Nili	S.,	50
fractional-part	function,	21
France,	see	also	Lunel	and	Paris,	206
Francou,	Gérard,	253
Frankfort	(Germany),	574
Franz	Josef	I	(Ferenc	József),	39
Frazer,	James	G.,	xli,	171
Freeman-Grenville,	Greville	S.	P.,	109
Freeth,	Tony,	82



French	Revolutionary	calendar,	xxxv,	6,	7,	11,	13,	215,	246,	281–286
days,	4
decades,	282
epoch,	17,	283
Lisp	code,	541–543
modified,	47,	284–286
implementation,	285–286
leap	year	rule,	284–285

months,	281
original,	221,	226,	227,	281–284
implementation,	283–284
structure,	281–283

sample	dates,	449
sansculottides,	282

French	time,	see	time,	French
french-date,	400,	541
french-epoch,	283,	284,	285,	410,	424,	541
french-from-fixed,	284,	400,	542
french-leap-year?,	284,	400,	542
french-new-year-on-or-before,	283,
284,	400,	424,	541
friday,	33,	71,	131,	138,	139,	410,	424,	470
Friday	the	Thirteenth,	71,	454–466
Friedländer,	Michael,	140
Frisch,	Christian,	150
Fritsche,	Hermann	P.	H.,	321,	331
from-radix,	400,	475
fruitloopery,	220
full,	236,	292,	410,	424,	526



function	(Lisp	function),	473

Galloway,	Thomas,	50
Galungan	(Balinese	holiday),	190
Galungan	Days	(Balinese	period),	190
Gandhi,	Upendra,	xxxviii
Ganēśa	Chaturthī	(Hindu	holiday),	366
Gangooly,	Phanindralal,	371
Ganz,	Solomon,	141,	302,	303
Gardner,	Martin,	219
Garrigues,	Damien,	144
Gauss,	Carl	F.,	xxxiv,	xl,	119,	129,	140,	143,	152
Gautama	Buddha,	323,	366,	382
gcd	function,	see	greatest	common	divisor	function
Geertz,	Clifford,	185,	190
Gelasius,	xli
generic	cyclical	calendars,	195–200
double	cycle,	198–199
Qumran,	198
single	cycle,	195–198

George,	Alan,	389
Germany,	see	also	Frankfort,	57,	150
Gerritsen,	Tess,	329
Gezer	(Israel),	113,	281
Ghana,	37
Gilbert,	Martin,	467
Gilbert,	William	S.,	55
Gilbey,	Julian,	xxxviii
Gillispie,	Charles	C.,	166,	372
Ginzel,	Friedrich	K.,	10,	50,	72,	93



G.M.T.	(=	Greenwich	Mean	Time	=	U.T.),	xxv
GNU	Emacs,	xxxi,	xl,	2,	52
Go-Chosun	(Korea),	328
Godman,	Frederick	D.,	181
Goharian,	Nazli,	xxxviii
Golb,	Norman,	140
Goldberg,	Mayer,	xxxviii
golden	number,	146
Good	Friday	(Christian	holiday),	70,	152
Goodman,	John	T.,	169,	170,	181
Goodman–Martinez–Thompson
correlation	(Mayan	calendar),	169,	170

Gordon,	Gedalya	H.	M.	R.,	xxxviii
Gordon,	Leah	S.	R.,	590
Gosden,	Thomas,	83
Graetz,	Heinrich	H.,	467
Grafton,	Anthony	T.,	xli,	18,	50
Graham,	Ronald	L.,	50
Great	Britain,	see	also	England,	Greenwich,	London,	Oxford,	and	York,	57
Great	Night	of	Shiva	(Hindu	holiday),	366,	369,	454–466
greatest	common	divisor	function,	xxvi,	21
Greaves,	John,	107,	257
Greece,	see	Hania,	84
greenwich,	204
Greenwich	(England),	xxv,	204,	206,	208,	210,	358
Gregorian	calendar,	xxxiii,	xxxv,	1,	6,	7,	11,	12,	16,	47,	55–73,	84,	118–119,

130,	271,	273,	274,	335
adoption	of,	57–58
days,	14,	56,	258
Easter,	147–149



epoch,	17,	58
history,	56–58
holidays,	69–71
implementation,	59–62
leap-year	rule,	55–56
Lisp	code,	479–484
months,	55
New	Year,	xxxii,	xxxiii,	58
sample	dates,	447
structure,	55–56
year,	58

Gregorian	reform,	55,	57,	146
gregorian-date,	400,	479
gregorian-date-difference,	62,	62,	63,	210,	212,	400,	424,	481
gregorian-epoch,	58,	60,	61,	65–67,
147,	410,	425,	479
gregorian-from-fixed,	see	also	alt-gregorian-from-fixed,	62,	63,	71,	78,	400,

425,	481
gregorian-leap-year?,	59,	60,	62,	271,	401,	425,	480
gregorian-new-year,	60,	60,	62,	85,	93,	97,	108,	133,	135,	137,	212,	225,	277,

329,	364,	366,	368,	401,	425,	480
gregorian-year-end,	60,	97,	381,	401,	425,	480
gregorian-year-from-fixed,	see	also	alt-gregorian-year-from-fixed,	61,	62,

66,	96,	128–131,	210,	212,	265,	272,	298–301,	306,	322,	324,	326,
401,	425,	480–481

gregorian-year-range,	60,	71,	83,	85,	92,	108,	133,	135,	137,	190,	367,	368,
370,	381,	401,	426,	480

Gregory	XIII,	Pope	(=	Ugo	Boncompagni),	55,	57	Gregory,	Ruth	W.,	72
Greswell,	Edward,	318



Guatemala,	see	also	Tikal,	169,	171,	174
Guðnason,	Eysteinn	Guðni,	xxxviii
Guinot,	Bernard,	254
Guy,	Richard	K.,	139,	152
Guyot,	Laurent,	280
Gyatso,	Tenzin	(=	Dalai	Lama),	375

haab	(Mayan	calendar),	171–173,	176–177,	179
Hai	ben	Sherira	(=	Hai	Gaon),	113
Haifa	(Israel),	297
Haile,	Getatchew,	xxxviii
ḥalaqim	(Hebrew	calendar),	116,	246
Hale,	Wayne,	xxxii
Halevy,	Schulamith	C.,	xxxviii
Halkin,	Abraham	S.,	xli
Halmos,	Paul,	20
Hamer,	Mick,	286
Hania	(Crete),	388
Hannah,	Robert,	xli
Hanoi	(Vietnam),	329
Hansch,	Michael	G.,	150
hanukkah,	134,	401,	500
Hanukkah	(Jewish	holiday),	128,	129,	134,	454–466
Hardy,	Godfrey	H.,	50
Harris,	Andrea	K.,	170
Harris,	Mitchell	A.,	xxxviii,	50
Harvey,	Oswald	L.,	50
Haryana	(India),	337
Hastings,	James,	50,	51,	72,	141
Heaslet,	Maxwell	A.,	73,	153



Hebrew	calendar,	xxxv,	1,	5–7,	11,	12,	40,	42,	43,	47,	113–141,	155,	212,	246
bar	mitzvah,	134
bat	mitzvah,	134
birthdays,	134–135
classical,	253,	297–300
days,	4,	14,	113
delays,	116–118,	120–122,	124–125
drift,	133–134
epoch,	17,	116,	119
history,	113,	117–119
holidays	and	fast	days,	127–133
implementation,	119–125
Karaite,	297
leap-year	rule,	115
Lisp	code,	494–502,	547–548
lo	iddo	rosh,	117,	137,	138
molad,	116,	119–121,	125–127
months,	114
naḥala,	134–137
New	Year,	see	Rosh	ha-Shanah
possible	weekdays,	137–139
sabbatical	year,	115
sample	dates,	448
seasons,	132–133
structure,	114–117
week,	113–114
weekdays,	113
yahrzeit,	134–137

hebrew-birthday,	135,	135,	401,	426,	500–501



hebrew-birthday-in-gregorian,	135,	401,	501
hebrew-calendar-elapsed-days,	121,	122,	124,	401,	426,	496
hebrew-date,	401,	494
hebrew-epoch,	119,	119,	121–123,	126,	128–131,	410,	426,	495
hebrew-from-fixed,	123,	127,	133,	135,	137,	298,	299,	401,	426,	497–498
hebrew-in-gregorian,	133,	134,	401,	426,	500
hebrew-leap-year?,	115,	115,	122,	136,	401,	426,	495
hebrew-location,	297,	297–300,	410,	426,	547
hebrew-new-year,	122,	123,	401,	427,	496
hebrew-sabbatical-year?,	115,	401,	495
hebrew-year-length-correction,	122,	122,	401,	427,	496
Heilbron,	John	L.,	152
Helfrich-Forster,	Charlotte,	51
Henderson,	Helene,	50,	51
Henning,	Edward,	375,	382
Her	Majesty’s	Nautical	Almanac	Office,	276
Herschel,	John	W.	F.,	18,	51,	58
Herzog,	Erik	D.,	51
Hezekiah	ben	David	da	Silva,	118
Hillel	II	(=	Hillel	ben	Judah),	113
Hillis,	W.	Daniel,	217
Hindu	calendar,	xxxv,	6,	11,	13,	34,	113,	155–166,	199,	212,	218–220,	229,	246,

305,	313,	335–372
astronomical,	358–362
Lisp	code,	564–566
sample	dates,	451

Bengal	rule,	348,	355
days,	4,	14,	156,	336
epoch,	17,	155,	156,	344,	347,	349



holidays,	362–371
karaṇas,	371
lunisolar,	375,	377
holidays,	364–369
Lisp	code,	560–561
lunar	day,	160,	162,	165,	166,	339,	346,	350,	357,	362,	364,	365,	369
New	Year,	165,	345,	365–366,	454–466
sample	dates,	451

Madras	rule,	355
Malayali	rule,	348,	355
modern,	7,	215,	219,	229,	335–372
alternatives,	354–358
expunged	day,	339,	362,	364
expunged	month,	337,	340,	347,	362,	366
history,	335
implementation,	347–354
intercalated	day,	339
leap	day,	339,	349
leap	month,	337,	339,	347,	349,	362,	364,	366
Lisp	code,	557–569
structure,	335–340

nakṣatras,	371
old,	8,	155–166,	199,	336,	337
history,	155–156
leap	month,	155,	160,	162
Lisp	code,	503–505
lunisolar,	44–45,	160–166
solar,	7,	158–159
structure,	155–158

old	lunisolar



implementation,	162–166
Lisp	code,	504–505
sample	dates,	451
structure,	160–162

old	solar
implementation,	158–159
Lisp	code,	503–504
sample	dates,	451
structure,	158

Orissa	rule,	348,	354
panchang,	358,	371
solar
holidays,	364
Lisp	code,	559–560
New	Year,	158,	364,	365
sample	dates,	451

Tamil	rule,	348,	354
tithi,	160,	339,	350,	351,	362,	366,	371
yogas,	371

hindu-anomalistic-month,	345,	346,
410,	427,	558
hindu-anomalistic-year,	344–345,
345,	353,	354,	410,	427,	558
hindu-arcsin,	343,	343–344,	345,	352,	401,	427,	557
hindu-ascensional-difference,	352,	354,	355,	401,	427,	561–562
hindu-calendar-year,	347,	348,	349,	401,	427,	559
hindu-creation,	344,	344,	410,	427,	558
hindu-daily-motion,	352,	353,	353,	401,	427,	562
hindu-date-occur,	367,	368,	401,	427,	567–568



hindu-day-count,	156,	158,	159,	165,	401,	427,	503
hindu-epoch,	156,	156,	158,	165,	344,	347,	348,	350,	352,	360,	361,	410,	427,	

503

hindu-equation-of-time,	353–354,	354,	355,	401,	427,	562–563
hindu-expunged?,	356,	356,	401,	427,	564
hindu-fullmoon-from-fixed,	356,	401,	563
hindu-location,	351,	354,	355,	357,	359,	360,	410,	427,	561
hindu-lunar-date,	401,	560
hindu-lunar-day,	401,	560
hindu-lunar-day-at-or-after,	365,	366,	368–370,	401,	428,	567
hindu-lunar-day-from-moment,	346,	349,	350,	365,	401,	428,	558–559
hindu-lunar-era,	349,	349,	350,	361,	410,	428,	560
hindu-lunar-event,	368,	369,	401,	428,	568–569
hindu-lunar-from-fixed,	349,	350,	356,	367,	368,	371,	401,	428,	560–561
hindu-lunar-holiday,	367–368,	368,	401,	428,	568
hindu-lunar-leap-day,	402,	560
hindu-lunar-leap-month,	402,	560
hindu-lunar-longitude,	346,	346,	369,	402,	428,	558
hindu-lunar-month,	402,	560
hindu-lunar-new-year,	365–366,	402,	567
hindu-lunar-on-or-before?,	367,	367,	402,	428,	567
hindu-lunar-phase,	346,	346,	365,	368,	402,	428,	558
hindu-lunar-station,	369,	402,	569
hindu-lunar-year,	402,	560
hindu-mean-position,	344,	345,	353,	354,	402,	428,	557–558
hindu-new-moon,	365
hindu-new-moon-before,	346,	349,	402,	428,	559
hindu-rising-sign,	352,	353,	402,	428,	562
hindu-sidereal-month,	336,	346,	410,	428,	557



hindu-sidereal-year,	336,	344,	345,	347,	348,	350,	353,	362,	364,	410,	428,	557
hindu-sine,	342–343,	343,	345,	352–354,	402,	429,	557
hindu-sine-table,	342,	342–344,	353,	402,	429,	557
hindu-solar-date,	402,	559
hindu-solar-era,	347,	348,	360,	410,	429,	559
hindu-solar-from-fixed,	347–348,	402,	559
hindu-solar-longitude,	345,	345–348,	350,	352,	364,	369,	402,	429,	558
hindu-solar-longitude-at-or-after,	364,	364,	366,	402,	429,	566
hindu-solar-sidereal-difference,	352,	354,	355,	402,	429,	562
hindu-standard-from-sundial,	355,	355,	402,	563
hindu-sunrise,	see	also	alt-hindu-sunrise,	347–350,	354,	355,	357,	365,	366,

369,	402,	429,	563
hindu-sunset,	354–355,	355,	402,	429,	563
hindu-synodic-month,	336,	346,	365,	410,	429,	557
hindu-tithi-occur,	368,	368,	402,	429,	568
hindu-tropical-longitude,	352,	352,	353,	402,	429,	562
hindu-true-position,	345,	345,	346,	402,	430,	558
hindu-zodiac,	345–346,	346–349,	402,	430,	558
Hồ	Ngọc	Đức,	329,	330,	331
Hoang,	Peter	(Pierre),	331,	385
Hoare,	C.	Anthony	R.,	22
Hoffman,	Roy	E.,	253
Hogarth,	William,	74
Hohenkerk,	Catherine	Y.,	255
Holford-Strevens,	Leofranc,	49,	85
Holi	(Hindu	holiday),	366
holidays
Bahá’í,	277–278
Balinese,	189–190



Chinese,	322–324
Christian,	84–85,	143–153,	292–293
Coptic,	92–93
Easter,	58,	84,	143–153,	292–293
Ethiopic,	93
Gregorian,	69–71
Hindu,	362–371
Islamic,	108–109
Jewish,	127–133,	298
Julian,	84–85
Korean,	329
Orthodox,	84–85,	152
Persian,	265
sample	dates,	454–466
Tibetan,	379–382

Homans,	Benjamin,	94
Hoot,	Charles	G.,	Jr.,	xxxviii
Horace	(=	Quintus	Horatius	Flaccus),
xxxvii
horæ	temporales,	see	hour,	temporal
horizon
geometric,	240
visible,	242

Horowitz,	Wayne,	51
Hoshana	Rabba	(Jewish	holiday),	117,	128
Hoskin,	Michael	A.,	72
hour,	402,	474
hour,	temporal	(=	seasonal),	116,	246,	247,	300,	366
hour	angle,	218
Howse,	Derek,	253



hr,	402,	514
Huángdì	(Chinese	emperor),	321
Hube,	Douglas	P.,	254
Hungary,	39
Hungry	Ghosts	(Chinese	holiday),	323
Husain,	Muzhar,	108

Ibn	Simeon,	Joseph	ben	Judah,	445
Ibn	Tibbon,	Judah	ben	Saul,	15
Iceland,	see	also	Reykjavik,	99
Icelandic	calendar,	12,	99–102
epoch,	100
Lisp	code,	491–493
months,	100,	101
sample	dates,	448
summer,	100,	454–466
weekdays,	99
winter,	100,	454–466

icelandic-date,	402,	491
icelandic-epoch,	100,	100,	101,	410,	430,	491–492
icelandic-from-fixed,	101,	402,	492
icelandic-leap-year?,	101,	402,	492
icelandic-month,	101–102,	402,	492–493
icelandic-season,	402,	491
icelandic-summer,	100,	100–102,	402,	430,	492
icelandic-week,	402,	491
icelandic-weekday,	402,	491
icelandic-winter,	100,	101,	102,	403,	430,	492
icelandic-year,	403,	491



ides,	77–79
ides,	77,	80,	410,	430,	485–486
ides-of-month,	77,	78,	80,	403,	430,	486
if	(Lisp	function),	472
Ilyas,	Mohammad,	109,	253,	254,	302
in-range?,	403,	475
Independence	Day	(U.S.	holiday),	69,	454–466
independence-day,	69,	403,	482–483
India,	see	also	Andhra	Pradesh,	Bengal,	Bihar,	Bombay,	Dharamsala,	Haryana,

Kashmir,	Madhya	Pradesh,	Madras,	Nadia,	Rajasthan,	Ujjain,	Uttar
Pradesh	and	Vārānāsii,	6,	107,	154,	155,	160,	293,	334,	335,	358

Ingerman,	Peter	Zilahy,	xxxviii
International	Astronomical	Union
(IAU),	204
International	Organization	for
Standardization	(ISO),	95,	97
International	Telecommunications
Union,	206
interpolation,	342,	344,	357
interval,	403,	475
interval	modulus,	22
interval	remainder	function,	xxvi
interval-closed,	403,	475
Inui,	Shiho,	xxxviii
invert-angular,	403,	473
Iran,	see	also	Balkh,	Isfahan,	Khurasan,	Shiraz,	and	Tehran,	273
Ise	(Japan),	444
Isfahan	(Iran),	259
Ishigami,	Yoshiyasu,	xxxviii



Islamic	calendar,	xxxv,	6,	7,	11,	12,	40–43,	105–110,	212,	257,	262,	277,	335
days,	4,	14,	105,	113
epoch,	17,	106
holidays,	108–109
implementation,	107–108
Kuwaiti	algorithm,	107
leap-year	rule,	107
Lisp	code,	493–494,	545–547
months,	106
New	Year,	108,	109,	322
observational,	12,	108,	253,	293–297
sample	dates,	448
structure,	105–107
Umm	al-Qura,	296–297
week,	105–106

Islamic	Shura	Council	of	North	America,	293
islamic-date,	403,	493
islamic-epoch,	106,	107,	108,	293–297,	410,	430,	493
islamic-from-fixed,	107,	108,	109,	403,	430,	493
islamic-in-gregorian,	108–109,	109,	403,	430,	493–494
islamic-leap-year?,	107,	107,	403,	493
islamic-location,	293,	293–295,	410,	430,	545
ISO	calendar,	6,	12,	95–97,	99,	100
epoch,	17,	95
Lisp	code,	490–491
sample	dates,	448

iso-date,	403,	490
iso-day,	403,	490–491
iso-from-fixed,	96,	96,	403,	491



iso-long-year?,	97,	403,	491
iso-week,	403,	490
iso-year,	403,	491
Israel,	see	also	Acre,	Cæsarea,	Gezer,	Haifa,	Jerusalem,	Mount	Carmel,	Negev,

Qumran,	and	Tel	‘Aroer,	118,	131,	268,	273,	278
Israel	Independence	Day,	130
Israeli,	Isaac,	125,	140
Istanbul	(Turkey),	113
Italian	time,	see	time,	Italian
italian-from-local,	247,	403,	532
Italy,	see	Padua	and	Rome,	57
iyyar,	114,	122,	131,	410,	430,	494



j2000,	212,	212,	219,	229,	230,	410,	517
Jacob	ben	Meir	(=	Rabbenu	Tam),	244
Jacobi,	Hermann	G.,	166,	350,	351,	371
Jacobson,	Howard,	xxxviii,	xli,	11
J.A.D.	(=	julian	astronomical	day),	16
Jalālī	calendar,	257
Janmāshṭamī,	see	Birthday	of	Krishna
Janson,	Svante,	xxxviii,	102,	375,	382
january,	59,	60,	71,	76,	210,	328,	410,	430,	479
Japan,	see	also	Ise	and	Tokyo,	5,	326
Japanese	calendar,	326–327
age	of	a	person,	327
eras,	327
kigen,	327
Lisp	code,	556
nengō,	326,	327

japanese-location,	326,	327,	403,	556
Jaritz,	Gerhard,	56
Jarry,	Alfred,	xxxix
JD	(=	julian	day),	xxiv,	16
jd-epoch,	18,	18,	410,	431,	470–471
jd-from-fixed,	20,	403,	471–472
jd-from-moment,	18,	20,	403,	431,	471
jerusalem,	204,	292,	410,	431,	515
Jerusalem	(Israel),	8,	84,	112,	116,	118,	120,	130,	204,	210,	292,	445,	452
Jesus’s	Circumcision	(Coptic	holiday),	93
Jesus’s	Transfiguration	(Coptic	holiday),	93
Jethabhai,	Jagjivan	G.,	372
Jewish	calendar,	see	Hebrew	calendar



jewish-dusk,	243,	403,	531
jewish-morning-end,	248,	403,	533
jewish-sabbath-ends,	243,	403,	530–531
jiéqì	(Chinese	calendar),	306,	307
Jimmu	Tennō	(Japanese	Emperor),	327
Johnson,	Samuel,	xxxix
Jones,	Alexander,	82
Jones,	T.	Todd,	50
Jones,	William,	362
Joshi,	Murli	Manohar,	155
Jovian	cycle	(Hindu	calendar),	157–158,	376
jovian-year,	157–158,	403,	503–504
julian	astronomical	day,	see	julian	day	numbers
Julian	calendar,	6,	7,	10–12,	15,	39–43,	56,	58,	68,	75–86,	131,	258,	301
days,	14,	56
epoch,	17,	76
history,	56–57
holidays,	84–85
implementation,	75–77
leap-year	rule,	75
Lisp	code,	484–489
months,	55
revised,	57,	84
Roman	nomenclature,	77–81
sample	dates,	447
seasons,	82–84
structure,	75

Julian	century,	212,	217,	221,	234
julian	day	numbers,	10,	12,	16–18



modified,	12,	17,	19
sample	dates,	447

julian-centuries,	212,	215,	220,	223,	225,	232,	234,	236,	238,	403,	431,	517
julian-date,	403,	484
julian-epoch,	76,	76,	410,	431,	485
julian-from-fixed,	76–77,	77,	80,	85,	403,	431,	485
julian-in-gregorian,	85,	85,	301,	403,	431,	489
julian-leap-year?,	75,	76,	77,	80,	403,	431,	484–485
julian-season-in-gregorian,	84,	403,	488–489
julian-year-from-auc,	81,	403,	487
julian-year-from-olympiad,	82,	403,	488
Julius	Cæsar,	see	Cæsar,	Julius
july,	59,	69,	77,	106,	210,	322,	410,	431,	479
june,	59,	410,	479
Jupiter,	5,	156,	157,	232,	341
Justeson,	John	S.,	181

Kajeng	Keliwon	(Balinese	holiday),	190,	454–466
kajeng-keliwon,	190,	403,	513
Kak,	Subhash,	xxxviii
Kālacakra	calendar,	see	Tibetan	calendar
kalends,	77–79,	81,	84
kalends,	77,	80,	81,	410,	431,	485
Kaler,	James	B.,	254
Kali	Yuga	(Hindu	calendar),	17,	155,	156,	162,	344,	347,	349
Kamasan	(Bali),	184
Kaneko,	Hikotaro,	444
Kāng	Xī	(Chinese	emperor),	616
Kantor,	Mattis,	116



Karaite	calendar,	297
karaṇa
Hindu,	369,	371
Tibetan,	379,	380

karana,	369,	370,	403,	569
Karso,	Kaboel,	xxxviii
Karthikai	Deepam	(Hindu	holiday),	366
Kasher,	Menahem	M.,	140
Kashmir	(India),	337
Kathmundu	(Nepal),	351
Kazoe	doshi	(Japanese	age),	327
kday-after,	34,	34,	69,	146–148,	292,	403,	431,	478
kday-before,	34,	34,	69,	131,	403,	431,	477–478
kday-nearest,	34,	34,	70,	403,	432,	477
kday-on-or-after,	34,	34,	71,	100,	371,	403,	432,	477
kday-on-or-before,	34,	34,	320,	403,	432,	477
Keiper,	Jerry	B.,	52
Kepler,	Johannes,	xxxix,	150,	202,	341,	342
Khayyam,	Omar,	see	Omar	Khayyam
Khinchin,	Aleksandr	Ya.,	51
Khowārizmī,	Abu	Ja‘far	Mohammed	ibn	Mūsā	al-,	113,	140
Khurasan	(Iran),	256
Kielhorn,	Franz,	372
Kigen	(Japanese	calendar),	327
Kingston,	Eric,	xxxviii
Kinkelin,	Hermann,	153
Kirchner,	Claude,	xxxviii
kislev,	115,	122,	134,	136,	139,	411,	432,	495
Klapper,	Deborah	R.,	xxxviii



Klein,	Hyman,	141,	303
Kleinerman,	Eve	R.,	xxxviii
Klotz,	Irene,	xxxii
Knuth,	Donald	E.,	xxxvi,	xxxvii,	xxxix,	xl,	27,	50,	51,	57,	153,	469
Konadu,	Kwasi,	xxxviii,	51
Koncebovski,	Stanislav,	xxxviii
Koran,	105,	293
Korea,	see	also	Go-Chosun	and	Seoul,	327
Korea	Astronomy	Observatory,	330
Korean	calendar,	327–329
celestial	stem	names,	328
holidays,	329
Lisp	code,	556
solar	terms,	328
terrestrial	branch	names,	329

korean-location,	327,	328,	403,	556
korean-year,	328,	403,	556
Kratesis	(Roman	festival),	84
Kronfeld-Schor,	Noga,	51
Krupp,	Edwin	C.,	170
kshaya	month	(Hindu	calendar),	see	month,	expunged
Kudlek,	Manfred,	192
Kuhlmann,	Kai,	xxxviii
Kull-i-Shay	(Bahá’í	calendar),	271
Kuningan	Day	(Balinese	holiday),	190
Kuwaiti	algorithm	(Islamic	calendar),	107
K.Y.	(=	Kali	Yuga),	xxiv,	156

Labor	Day	(U.S.	holiday),	69,	454–466
labor-day,	69,	404,	483



Lagash	(Babylonia),	288
Lagrenée,	Jean-Jacques,	the	younger,
280
Lahiri,	Nirmal	C.,	357
Lailat-al-Barā’a	(Islamic	holiday),	109
Lailat-al-Kadr	(Islamic	holiday),	109
Lailat-al-Mi‘rāj	(Islamic	holiday),	109
Lalla,	158
lambda	(Lisp	function),	473
Lamport,	Leslie,	72
Langermann,	Tzvi,	140
Lantern	Festival	(Chinese	holiday),	323
last-day-of-gregorian-month,	63,	404,	481–482
last-day-of-hebrew-month,	122,	123,	404,	432,	496–497
last-kday,	69,	70,	404,	432,	483
last-month-of-hebrew-year,	115,	123,	127,	129,	135,	136,	404,	432,	495
last-quarter,	236,	411,	526
Lata,	335
latitude
celestial,	205,	221
lunar,	445,	453
terrestrial,	204,	205,	352

latitude,	404,	514
Lauds	(Christian	prayer	time),	248
Laufer,	Berthold,	382
lcm	function,	see	least	common	multiple	function
Lê	Thành	Lân,	331
leap	days
Gregorian,	60



Hindu,	339,	340,	349,	362
Julian,	60,	76,	78
Tibetan,	377

leap	months,	7–8,	42
Babylonian,	291
Chinese,	311–313,	315,	320,	321
Hebrew,	114,	115
Hindu,	155,	160,	162–165,	337,
339,	347,	349,	362,	364,	366
Samaritan,	301
Tibetan,	377

leap	seconds,	210
leap	years,	7,	39–47
Babylonian,	291
Coptic,	89,	90,	131
French	Revolutionary,	282,	284,	285
Gregorian,	xxxiii,	55,	59,	118,	335
Hebrew,	114–118,	121,	124,	129,	131,	135,	136,	138
Icelandic,	99–101
Islamic,	106
Julian,	55,	60,	75
Persian,	258,	262
Samaritan,	301

least	common	multiple	function,	xxvi,	21
Lee,	Jungmin,	xxxviii
Leffler,	Jonathan,	xxxviii
Leiden	(Netherlands),	194
length	(Lisp	function),	475
Lent	(Christian	fast),	152



let*	(Lisp	construct),	471
Levi,	Leo,	140,	254
Levin,	Daniel	Z.,	254
Levy,	Oren,	51
Lĭ	Yăn,	331
License,	xli–xliii
Lilius,	Aloysius	(=	Luigi	Lilio	Ghiraldi),	55,	147
line	drawing,	39
Linnæus,	see	von	Linne,	Carl
Linz	(Austria),	xxxix
Lisp	(computer	language),	xxxi,	xl,	2,	52,	469–473,	498,	557,	572
list-of-fixed-from-moments,	26,	26,	404,	474–475
list-range,	404,	475
lists,	25–27
concatenation	of	(	 	),	26
construction	of	(	 	),	25
element	selection	(	 	),	25
empty,	26

Liú	Băolín,	305,	331,	332
Liu,	Chung	Laung,	72,	331
Lo	iddo	rosh	(Hebrew	calendar	rule),	117,	137,	138
local-from-apparent,	218,	218,	240,	404,	432,	518
local-from-italian,	247,	404,	532
local-from-standard,	208–210,	246,	404,	432,	516
local-from-universal,	208,	208,	218,	404,	432,	515–516
local-zero-hour,	246–247,	247,	404,	432,	532
location,	404,	514
Loewinger,	Yaaqov,	xxxviii
London	(England),	74,	204,	212,	246,



288,	384,	616
long	count	(Mayan	calendar),	170–171
Long	Now	Foundation,	217
longitude
celestial,	205,	219,	221,	336,	339,	342,	344,	346,	352
lunar,	232,	235,	343,	346,	369,	445,	453
sidereal,	220,	225,	359
solar,	221–227,	229,	235,	306–308,	345,	359,	364,	369,	445,	452
terrestrial,	204–206

longitude,	404,	514–515
long-marheshvan?,	122,	122,	136,	404,	432,	497
loop	(Lisp	construct),	472
Los	Angeles	(California),	293
losar,	381,	381,	404,	432,	572
Losar	(Tibetan	holiday),	381–382,	454–466
Lotus®	1-2-3®,	xxxiii
Lounsbury,	Floyd	G.,	169,	181,	182
Lovering,	Joseph,	281
Lozowski,	Edward	P.,	254
Luang	(Balinese	calendar),	188
Lun,	Anthony	W.-C.,	331
lunar	mansions,	see	lunar	stations
lunar	stations,	256,	339,	369
lunar-altitude,	237–238,	238,	239,	250–252,	404,	432,	527–528
lunar-anomaly,	232,	234,	236,	238,	377,	404,	432,	525
lunar-diameter,	252,	404,	535
lunar-distance,	238,	238,	252,	404,	432,	528
lunar-elongation,	232,	234,	236,	238,	404,	433,	524
lunar-latitude,	236,	238,	250,	404,	433,	526–527



lunar-longitude,	232,	234,	235,	238,	404,	433,	523–524
lunar-node,	234,	404,	525
lunar-parallax,	238–239,	239,	252,	404,	433,	528–529
lunar-phase,	231,	232,	235,	235,	244,	245,	250,	251,	290,	296,	359,	361,	404,

433,	525
lunar-phase-at-or-after,	235,	236,	292,	404,	433,	526
lunar-phase-at-or-before,	235,	236,	252,	290,	296,	404,	433,	525–526
lunar-semi-diameter,	251,	251–252,	404,	433,	535
lunation,	see	month
Lunel	(France),	xxxv

Macler,	Frédéric,	51
Madhya	Pradesh	(India),	337
Madras	(India),	348
Madras	rule	(Hindu	calendar),	355
Maha	Shivaratri,	see	Great	Night	of	Shiva
Mahler,	Eduard,	110
Maimonides,	Moses	(=	Rambam),
xxxi,	xxxv,	xli,	113,	116,	117,	119,	141,	244,	302,	445
major-solar-term-on-or-after,	308,	404,	550
Malayali	rule	(Hindu	calendar),	348,	355
Mandean	calendar,	32
Mandel,	Rachel	R.,	xxxviii
mapcar	(Lisp	function),	473
march,	59,	62,	66,	68,	70,	77,	80,	84,	258,	271,	272,	277,	301,	324,	328,	411,

433,	479
Marchant,	Jo,	82
Mardi	Gras	(Christian	holiday),	152
marheshvan,	115,	122,	136,	139,	411,	434,	494–495



marriage	auguries	(Chinese	calendar),	325–326
Mars,	xxxvi,	xxxix,	5,	156,	341
Marshack,	Alexander,	51
Martial	(=	Marcus	Valerius	Martialis),	617
Martian	Calendar,	xxxvi
Martinez-Hernandez,	Juan,	169,	170
Martyrdom	of	the	Bāb	(Bahá’í	holiday),	277,	278
Martzloff,	Jean-Claude,	331
Mary’s	Announcement	(Coptic	holiday),	93
Mason,	Charles	W.,	51
Matins	(Christian	prayer	time),	248
Maundy	Thursday	(Christian	holiday),	152
mawlid,	109,	404,	494
Mawlid	(Islamic	holiday),	109,	454–466
MAX,	xxvii,	24,	123,	230,	301,	378,	379,	473
may,	59,	70,	77,	411,	434,	479
Mayan	calendar,	xxxv,	11,	12,	34,	169–182
epoch,	17,	171
Goodman–Martinez–Thompson	correlation,	169
haab,	171–173,	176–177,	179
Lisp	code,	505–508
long	count,	170–171
New	Year,	168
round,	176–177,	180
sample	dates,	450
Spinden’s	correlation,	171
tzolkin,	5,	35–37,	173–177,	179
year	bearer,	176,	180

mayan-baktun,	404,	505–506



mayan-calendar-round-on-or-after,	177
mayan-calendar-round-on-or-before,	176–177,	404,	508
mayan-epoch,	171,	171,	173,	175,	411,	434,	506
mayan-haab-date,	404,	506
mayan-haab-day,	404,	506
mayan-haab-epoch,	173,	173,	176,	177,	411,	434,	506
mayan-haab-from-fixed,	173,	176,	404,	434,	506–507
mayan-haab-month,	404,	506
mayan-haab-on-or-before,	173,	176,	404,	434,	507
mayan-haab-ordinal,	173,	173,	176,	177,	404,	434,	506
mayan-katun,	404,	506
mayan-kin,	404,	506
mayan-long-count-date,	405,	505
mayan-long-count-from-fixed,	171,	405,	506
mayan-tun,	405,	506
mayan-tzolkin-date,	405,	507
mayan-tzolkin-epoch,	175,	175–177,	411,	434,	507
mayan-tzolkin-from-fixed,	175,	176,	405,	434,	507
mayan-tzolkin-name,	405,	507
mayan-tzolkin-number,	405,	507
mayan-tzolkin-on-or-before,	175–176,	405,	507
mayan-tzolkin-ordinal,	175,	175,	176,	177,	405,	434,	507
mayan-uinal,	405,	506
mayan-year-bearer-from-fixed,	176,	405,	507–508
Mayr,	Joachim,	110
McCarthy,	Daniel	P.,	56
McCarthy,	Dennis	D.,	254
McCune,	George	M.,	327
mean-lunar-longitude,	232,	233–234,	236,	405,	434,	524



mean-sidereal-year,	221,	360,	361,	411,	434,	519
mean-synodic-month,	227,	229,	231,	232,	235,	291–297,	316,	317,	411,	434,	

522

mean-tropical-year,	221,	224,	226,	260,	275,	284,	317,	318,	411,	435,	519
mecca,	204,	296,	411,	435,	515
Mecca	(Saudi	Arabia),	106,	204,	293,	445,	453
Medina	(Saudi	Arabia),	106
Meeus,	Jean,	72,	153,	254
Meletios	IV,	84
Melhado,	Evan	M.,	282
member	(Lisp	relation),	469
memoization,	47
Memorial	Day	(U.S.	holiday),	xxxiv,	69,	70,	454–466
memorial-day,	70,	405,	483
Meng,	Zhuo,	xxxviii
Mercury,	5,	156,	341
meridian,	205,	206,	218
lower,	215
upper,	215

Mershon,	Katharane	E.,	192
Mesha	saṃkrānti	(Hindu	vernal	equinox),	see	New	Year,	Hindu	solar
mesha-samkranti,	359,	364,	405,	435,	566–567
Meton,	7
Metonic	cycle,	7,	115,	145–147,	289,	325
Mexico,	169,	177
Mexico	City	(Mexico),	177
Michels,	Agnes	K.,	49,	72,	86
Microsoft,	107
Office®,	xxxiii



Outlook®,	xxxiv
Vista®,	xxxiv
Windows®,	xxxiv

Mid-Autumn	Festival	(Chinese	holiday),	323
midday
sample	times,	452

midday,	218,	248,	249,	259,	300,	405,	435,	518
midday-in-tehran,	259,	259,	405,	435,	536
midnight,	18,	56,	206,	215,	246,	248
civil,	18,	305
true	(=	apparent),	4,	218,	283

midnight,	218,	248,	283,	405,	435,	518
midnight-in-china,	308,	309,	309,	310,	405,	435,	551
midnight-in-paris,	283,	283,	405,	435,	541
Midrash	Tanḥuma,	xli
Milankovitch,	Milutin,	57
Milbrath,	Susan,	xxxviii,	182
Milford-Lutzker,	Mary-Ann,	184
Mills,	John,	300
MIN,	xxvii,	23–25,	123,	227,	231,	244,	245,	252,	259,	274,	283,	290,	296,	309,

344,	346,	348,	350,	360,	362,	367,	473
Mīna	(Hindu	month),	162,	165
minor-solar-term-on-or-after,	308–309,	324,	405,	435,	551
mins,	405,	514
minute,	405,	474
Mitrophanow,	Igor,	331
mixed-radix	notation,	27–29,	66
Mizner,	Wilson,	52
MJD	(=	modified	julian	day),	xxv,	19



mjd-epoch,	19,	19,	411,	435,	471
mjd-from-fixed,	19,	405,	471
mn,	405,	514
mod	(Lisp	function),	472
mod	function,	see	modulus	function
mod3,	405,	472
modified	julian	day	numbers,	19
sample	dates,	447

modulus	function	(mod),	xxvi,	21
Mohammed,	104,	106
Mohan,	Man,	371
molad,	119–120,	120,	121,	126,	127,	405,	435,	495–496
molad	(Hebrew	calendar),	see	also	moon,	new,	116,	119–121,	125–127,	138
moment,	11
moment-from-jd,	18,	20,	405,	435,	471
moment-from-unix,	19,	405,	471
moment-of-depression,	241,	241,	242,	405,	435,	529–530
monday,	33,	69,	70,	139,	411,	435,	470
Mongolian	calendar,	375
Monroe,	Marilyn	(=	Norma	Jeane	Mortenson),	133
Montezuma	II	(=	Moctezuma	Xocoyotzin),	35
month,	4–6,	227–239
anomalistic,	229
Armenian,	31
Babylonian,	289
Bahá’í,	270
bright	fortnight,	162,	337
Chinese,	309–316,	320
Coptic,	89–90



dark	fortnight,	162,	337
Ethiopic,	91
expunged,	337,	340,	347,	362,	366
French	Revolutionary,	281
Gregorian,	55
Hebrew,	114
Icelandic,	100,	101
Islamic,	106
Korean,	328
leap,	7–8,	42,	115,	155,	162–165,	229,	311–313,	320,	321,	330,	347,	349,	362,

364,	366,	377
lunar,	7,	155,	156,	160,	162,	165,	305,	306,	310–313,	336,	337,	339,	340,	362,

375
Persian,	258
sidereal,	229,	336,	339,	343
solar,	158–160,	162,	165,	229,	305,	311,	336,	337,	340,	351
synodic,	227,	229,	305,	336,	340
Tibetan,	375
Vietnamese,	330

month-length,	294,	295,	299,	405,	436,	545
moon,	5,	119,	205,	212,	221,	229,	243–245,	289,	294,	339,	343
blue,	227
diameter,	251–252
first	quarter,	236
full,	6,	143,	145,	146,	150,	227,	236,	292,	365
harvest,	227
last	quarter,	236
moonrise/moonset,	243–245
sample	times,	453



new,	5,	108,	116,	117,	119,	120,	145,	155,	160,	162,	169,	203,	227,	229–236,
297,	305,	309,	311,	321,	337,	339,	349,	351,	365

sample	dates,	453
paschal	moon,	146
phase,	339
position,	232–239
sample	positions,	453
semi-diameter,	251–252
visibility,	249–252

moon-node,	232,	234,	234,	236,	238,	405,	436,	525
moonlag,	290,	290,	296,	405,	436,	543
moonrise,	243–245
sample	times,	453

moonrise,	244–245,	405,	531
moonset,	243–245
sample	times,	453

moonset,	245,	245,	251,	290,	405,	436,	531–532
Moore,	George	F.,	575
Moreno-Riaño,	Gerson,	56
Morley,	Sylvanus	G.,	182
morning,	241,	241,	411,	436,	530
Morse,	Daniel	E.,	49
Moshe	ben	Maimon,	see	Maimonides,	Moses
Mosshammer,	Alden	A.,	153
Mount	Carmel	(Israel),	268
Mount	Gerizim	(Palestine),	300
Moyer,	Gordon,	72,	153
mt,	405,	514
Müller,	Josua,	xxxviii



Mumm,	Christine,	xxxviii

Nabonassar	(Chaldean	king),	30
Nabonassar	era,	30
Nadia	(India),	362
Nāga	Panchamī	(Hindu	holiday),	365
naḥala	(Jewish	event),	134–137
Nakayama,	Shigeru,	331
nakṣatras,	see	also	lunar	stations
Hindu,	371
Tibetan,	379,	380

Nanjing	(China),	305
Napoleon,	see	Bonaparte,	Napoleon
Napoleon	III,	see	Bonaparte,	Louis	Napoleon
NASA,	xxxii
Naser	El-deen,	Nabeel,	xxxviii
National	Spiritual	Assembly,	273
Native	American	calendar,	6,	281
Nativity	of	the	Virgin	Mary	(Orthodox	holiday),	85
naw-ruz,	277,	277,	278,	405,	436,	540–541
Needham,	Joseph,	305,	309,	332
negative	years,	15
Negev	(Israel),	8
nemontemi	(Aztec	calendar),	177
nengō	(Japanese	calendar),	326,	327
Nepal,	374
Nepalese	calendar,	351
Netherlands,	see	Leiden
Neugebauer,	Otto,	29,	51,	91,	93,	140,	141,	302
Neumann,	Peter	G.,	xl



new,	236,	250–252,	290,	296,	411,	436,	526
New	Calendarists,	57
new	moon,	see	moon,	new
New	Year
Bahá’í,	see	Feast	of	Naw-Rūz
Chinese,	xxxiv,	306,	321–324,	329,	454–466,	616
Gregorian,	xxxii,	xxxiii,	58,	329
Hebrew,	see	Rosh	ha-Shanah
Hindu	lunisolar,	165,	345,	365–366,	454–466
Hindu	solar,	158,	364,	365,	454–466
Islamic,	108,	109,	322
Jewish,	see	Rosh	ha-Shanah
Korean,	329
Mayan,	168
Persian,	see	Nowruz,	454–466
Tibetan,	see	Losar

New	York	City	(New	York),	xxxiii,	304
New	Zealand,	xxxiii,	58
new-moon-at-or-after,	231–232,	278,	300,	309,	361,	405,	436,	523
new-moon-before,	230–231,	290,	300,	310,	361,	405,	436,	523
Newton,	Isaac,	58,	71,	352
next,	405,	473
Nián	(Chinese	calendar),	306
Nicæa,	Council	of,	143–145
nighttime-temporal-hour,	248,	248,	405,	436,	532
nil	(Lisp	constant),	469,	470
Nineteen	Day	Feast	(Bahá’í	holiday),	277
ninth	(Lisp	function),	469
nisan,	114,	123,	129,	139,	298,	300,	411,	436,	494



Nisan	(Hebrew	month),	114,	297,	298,	454–466
Nishizawa,	Yūsō,	332
Nizamiah	Observatory,	108
None	(Christian	prayer	time),	248
nones,	77–79
nones,	77,	80,	411,	436,	485
nones-of-month,	78,	80,	406,	437,	486
noon,	16,	215,	248,	258,	277	true	(=	apparent),	218
North	Pole,	343
Norway,	see	Oslo	and	Sarpsborg,	468
Nothmann,	Gerhard	A.,	xxxviii
november,	59,	70,	411,	437,	479–480
nowruz,	265,	406,	537–538
Nowruz	(Persian	holiday),	155,	265,	277,	454–466
nth	(Lisp	function),	469
nth-kday,	69,	69,	70,	95,	96,	406,	437,	483
nth-new-moon,	229–230,	230–232,	234,	235,	406,	437,	522–523
Numa	(=	Numa	Pompilius),	75
Nunavut	(Canada),	243
nutation,	220,	221,	223
nutation,	223,	223,	232,	406,	437,	520
Nyatri	Tsenpo,	376
nychthemeron,	see	Day
Nyepi	(Balinese	holiday),	185

O’Beirne,	Thomas	H.,	150,	153
Obermann,	Julian,	141,	302
obliquity,	215,	217,	220
obliquity,	216,	220,	220,	406,	437,	519
observational-hebrew-first-of-nisan,	297–298,	298–300,	406,	437,	547



observational-hebrew-from-fixed,	see	also	alt-observational-hebrew-from-
fixed,	298,	406,	547

observational-islamic-from-fixed,	see	also	alt-observational-islamic-from-
fixed,	294,	296,	406,	545

observed-lunar-altitude,	243,	244,	245,	406,	437,	531
october,	59,	77,	119,	411,	437,	479
October	Revolution,	57
Odeh,	Mohammad	Sh.,	252,	254
Okuda,	Denise,	xl
Okuda,	Michael,	xl
old-hindu-lunar-date,	406,	504
old-hindu-lunar-day,	406,	504
old-hindu-lunar-from-fixed,	165,	406,	505
old-hindu-lunar-leap,	406,	504
old-hindu-lunar-leap-year?,	163,	406,	505
old-hindu-lunar-month,	406,	504
old-hindu-lunar-year,	406,	504
old-hindu-solar-from-fixed,	159,	406,	504
Olson,	Donald	W.,	254
Olympiad,	82
olympiad,	406,	487
olympiad-cycle,	406,	487
olympiad-from-julian-year,	82,	406,	488
olympiad-start,	82,	82,	411,	437,	488
olympiad-year,	406,	487–488
O’Malley,	Michael,	254
Omar	Khayyam,	257
O’Meara,	Stephen	J.,	303
omer,	129,	406,	498



omer	(Jewish	period),	129
Ore,	Øystein,	51,	182
Orgogozo,	Fabrice,	xxxviii
Orissa	rule	(Hindu	calendar),	348,	354
orthodox-easter,	see	also	alt-orthodox-easter,	146,	406,	502
Osei,	Osafo	K.,	51
Oslo	(Norway),	288
Ottoman	Empire,	105
Ovid	(=	Publius	Ovidius	Naso),	xli,	259
Oxford	(England),	256
Oznam,	Jacques,	246

padua,	246,	246,	411,	437,	532
Padua	(Italy),	246,	247
Pakistan,	293
Palaioemerologitai,	84
Palestine,	see	Mount	Gerizim
Palm	Sunday	(Christian	day	of	observance),	152
Panchang	(Hindu	calendar),	358,	371
parallax,	226,	238
paris,	283,	283,	411,	437,	541
Paris	(France),	xxxix,	104,	206,	207,	280,	281,	283,	445,	452
Paris	Commune,	281
Parise,	Frank,	xxxiv,	xl,	10,	51,	332
Parker,	Richard	A.,	51,	303
Parkinson,	Susan	S.,	xxxviii
Pascal,	Blaise,	xl
Pascal	(computer	language),	21
Passion	Sunday	(Christian	day	of	observance),	152
passover,	129,	129,	406,	437,	498



Passover	(holiday)
Jewish,	xxxiv,	84,	113,	124–125,	128,	129,	133,	134,	143,	293,	298,	454–466
Samaritan,	302

pataphysique	calendar,	xxxvi
Patashnik,	Oren,	50
Pawukon	(Balinese	calendar),	185–192
Pedersen,	Olaf,	72
Pelliot,	Paul,	382
Pengembang	(Balinese	holiday),	190
Pentateuch,	302
pentecost,	152,	406,	503
Pentecost	(Christian	feast	day),	152,	454–466
Pepperdine,	Andy,	xxxviii
perigee,	229,	377
perihelion,	321,	337
Persia,	see	Iran
Persian	calendar,	xxxv,	6,	7,	10,	11,	13,	40,	257–266
arithmetic,	261–264
arithmetic	leap	year	rule,	261–262
astronomical,	215,	221,	226,	227,	259–261,	274,	284
days,	14,	32,	258
epagomenæ,	32
epoch,	17,	258
holidays,	265
Lisp	code,	535–538
months,	258
New	Year,	265
sample	dates,	449
structure,	257–261



week,	258
Persian	Gulf,	273
persian-date,	406,	535
persian-epoch,	258,	260,	262,	265,	411,	437,	535
persian-from-fixed,	260,	406,	536
persian-new-year-on-or-before,	259,	260,	406,	437,	536
Peters,	Francis	E.,	467
Peterson,	Arthur	E.,	254
Petri,	Winfried	W.	E.	E.,	382
phasis-on-or-after,	252–253,	294,	297,	406,	437,	535
phasis-on-or-before,	252,	290,	293–295,	298–300,	406,	438,	535
Philippines,	58
Phug-lugs	calendar,	see	Tibetan	calendar
Phug-pa	calendar,	see	Tibetan	calendar
Phukluk	calendar,	see	Tibetan	calendar
pigeon-hole	principle,	311
Pillai,	Dewan	Bahadur	L.	D.
Swamikannu,	337,	347,	372

Pingree,	David,	166,	372
Pirkei	Avoth,	226
Pisces	(constellation),	219,	336
Plautus,	Titus	Maccius,	245
Pleiades	(star	cluster),	6
Plofker,	Kim,	379
Plutarch,	81
p.m.	(=	post	meridiem),	xxv
Polaris	(star),	220
poly,	406,	473,	473
Pongal,	see	Ayyappa	Jyothi	Darshanam



Poole,	Robert,	72
Portugal,	57
position,	204–205
positions-in-range,	27,	27,	83,	190,	406,	438,	475
possible-hebrew-days,	139,	139,	406,	502
Potrzebie	calendar,	xxxvi
Powels,	Sylvia,	303
Powers,	John,	xxxviii
Poznański,	Samuel	A.,	141
Prague	(Czech	Republic),	618
precession,	225,	225,	234,	359,	407,	438,	520–521
precession	of	the	equinoxes,	218–220,	352,	359
Presentation	of	Christ	in	the	Temple	(Orthodox	holiday),	85
Presentation	of	the	Virgin	Mary	in	the	Temple	(Orthodox	holiday),	85
pridie	(=	day	before),	78
Prime	(Christian	prayer	time),	248
prod,	407,	472,	472–473
product	operator	(	 	),	xxvii,	23
pseudepigrapha
Enoch	I,	198
Jubilees,	198

Ptolemy	(Claudius	Ptolmæus),	30,	89,	116,	341
Ptolemy	III	Euergetes,	xli,	92
Puckett,	Barry,	50
Purewal,	Pal	Singh,	357,	372
purim,	129,	130,	407,	438,	498
Purim	(Jewish	holiday),	129,	130,	454–466
Purple	Mountain	Observatory	(Nanjing),	305,	332

qibla,	205



Qīng	dynasty,	246,	305
qing-ming,	324,	407,	555
Qīngmíng	(Chinese	solar	term	or	holiday),	324,	454–466
Qĭqiăo	(Chinese	holiday),	323
Qīxī	(Chinese	holiday),	323
Quadragesima,	see	Lent
Quah,	Eugene,	xxxviii
Quartodecimans,	143
Quiché	Mayans,	171
Quinn,	Terry	J.,	254
Quintus	Curtius	Rufus,	xli,	257
Qumran	(Israel),	99,	198
Qumran	calendar,	198
quotient,	407,	472

Rabbenu	Tam,	see	Jacob	ben	Meir
radians-from-degrees,	407,	513
Rajasthan	(India),	337
rama,	369,	407,	569
Rāma	Navamī,	see	Birthday	of	Rāma
Ramadan	(Islamic	fast),	109,	293
Rambam,	see	Maimonides,	Moses
Ramshaw,	Lyle,	22
Rashi,	see	Solomon	ben	Isaac
rata	die,	11
Raziel,	Ilit,	xli
rd,	12,	407,	471
R.D.	(=	Rata	Die),	xxv,	11
rd	(Lisp	function),	471
Read,	Kay,	177,	182



recursion,	48
Reese,	Ronald	L.,	51
refraction,	242
refraction,	242,	242,	243,	407,	438,	530
Reingold,	Edward	M.,	ii,	xxxix–xli50,	253,	266,	371,	572
Reingold,	Lester	A.,	xxxviii
Reingold,	Ruth	N.,	xxxviii
remainder	function,	see	modulus	function
Repose	of	the	Virgin	Mary	(Orthodox	holiday),	85
Resnikoff,	Louis	A.,	141
rest	(Lisp	function),	469
Revatī	(star),	336,	340
Reykjavik	(Iceland),	98
Rhodes,	Ida,	xl
Richards,	Edward	G.,	51,	86
Rickey,	V.	Frederick,	72
right	ascension,	205,	206,	220
right-ascension,	220,	226,	238,	407,	438,	519
Ritchie,	Dennis	M.,	19
Roegel,	Denis,	144,	153
Rogation	Sunday	(Christian	day	of	prayer),	152
Rolf,	John	C.,	xli
Roman	calendar
days	of	the	month,	77–81
ides,	77–78
kalends,	77–78
Lisp	code,	485–487
nones,	77–78
pridie,	78



sample	dates,	447
years,	81

Roman	Republic,	5
roman-count,	407,	486
roman-date,	407,	486
roman-event,	407,	486
roman-from-fixed,	78,	80–81,	407,	487
roman-leap,	407,	486
roman-month,	407,	486
roman-year,	407,	486
Rome	(Italy),	55,	56,	90
Romme,	Gilbert,	284
Rosenblum,	Barbara	A.,	607
Rosh	ha-Shanah	(Jewish	holiday),	xxxiv,	114,	116–118,	122–125,	128,	137
Rosh	ḥodesh	(Jewish	holiday),	131
Roth,	Cecil,	140,	141,	467
round,	29
round	(Mayan	calendar),	176–177,	180
round	function,	xxvi,	20
Routh,	Martin,	200
Ruggles,	Clive	L.	N.,	102
Russia,	5,	57,	84

Sa’adia	Gaon,	see	Fayyūmi,	Sa’adia	ben	Joseph	al-
Sabbath	(Jewish),	243
Sachau,	C.	Edward,	139,	155,	166
Sacred	Wednesday	(Hindu	event),	370,	454–466
sacred-wednesdays,	370,	407,	569
sacred-wednesdays-in-range,	370,	371,	371,	407,	438,	569
Sahillioğlu,	Halil,	105



Śaka	Era	(Hindu	calendar),	347
Sakai,	Kō,	xxxviii
Salama,	Ahmed,	253
saltus	lunae,	147
Salvin,	Osbert,	181
Samaritan	calendar,	300–302
epoch,	17
Lisp	code,	548–549
sample	dates,	450

samaritan-epoch,	301,	301,	302,	411,	438,	549
samaritan-from-fixed,	302,	407,	549
samaritan-location,	300,	300,	411,	438,	548
samaritan-new-moon-after,	300,	301,	407,	438,	548
samaritan-new-moon-at-or-before,	300,	301,	302,	407,	438,	548–549
samaritan-new-year-on-or-before,	301,	301,	302,	407,	438,	549
samaritan-noon,	300,	301,	302,	407,	438,	548
Saṃkrānti	(Hindu	calendar),	364
Samoa,	57,	58
Sampson,	Russell	D.,	254
Samuel,	Alan	E.,	86
Samuel	of	Nehardea,	131
samuel-season-in-gregorian,	132,	132,	407,	438,	499–500
samvatsara,	see	Jovian	cycle
Sansculottides	(French	Revolutionary
calendar),	282
Sarasvatī	(Hindu	deity),	366
Sarasvatī	Puja	(Hindu	holiday),	366
Sarpsborg	(Norway),	468
Satterwaite,	Linton,	182



saturday,	33,	101,	130,	138,	139,	411,	438,	470
Saturn,	5,	156,	341
Saturnalia	(Roman	festival),	84
Saudi	Arabia,	see	also	Mecca	and	Medina,	293,	296
saudi-criterion,	296,	296,	407,	439,	546
saudi-islamic-from-fixed,	296,	296–297,	407,	547
saudi-new-month-on-or-before,	296,	296,	297,	407,	439,	546
Saulnier,	Stéphane,	102,	198
Savasorda,	see	Bargeloní,	Abraham	bar	Ḥiyya	al-
Savoie,	Denis,	254
Saw,	Swee-Hock,	332
Scaliger,	Joseph	Justus,	xli,	xliv,	16,	75,	114,	194,	574,	575
Scaliger,	Julius	Cæsar,	18
Schram,	Robert	G.,	10,	52,	155,	166,	372
Schreffler,	Lisa,	52
Schuh,	Dieter,	xxxviii,	382
Schvarcz,	Tzvi	(Herman),	39
S.E.	(=	Śaka	Era),	xxv,	348
search,	23–25,	48,	473
binary,	24–25,	346,	364,	473
linear,	23–24

season,	224
season-in-gregorian,	224–225,	225,	292,	297,	407,	439,	520
sec,	407,	514
second	(Lisp	function),	469
Second	Empire	(France),	281
seconds,	407,	474
secs,	407,	514
Seidelmann,	P.	Kenneth,	50,	72,	85,	254,	255,	331



Sengupta,	Prabodh	C.,	371
Seoul	(Korea),	327
september,	59,	69,	283,	411,	439,	479
Septuagesima	Sunday	(Christian	day	of	observance),	150,	152
Serbia,	84
seventh	(Lisp	function),	469
Sewell,	Robert,	166,	337,	366,	372
Sexagesima	Sunday	(Christian	day	of	observance),	150,	152
Sext	(Christian	prayer	time),	248
Sh’ela	(Jewish	event),	131,	454–466
sh-ela,	131,	132,	407,	499
Shakespeare,	William,	23,	33,	46,	77,	195,	292,	297
Shallit,	Jeffery	O.,	72
Shanks,	Thomas	G.,	254,	255
Shaukat,	S.	Khalid,	250,	252,	253,	293,	303
shaukat-criterion,	250,	252,	407,	439,	534
Shavuot	(Jewish	holiday),	84,	128
Sheby,	Matthew,	xxxviii
Shemini	Aẓeret	(Jewish	holiday),	128
Sherpa	calendar,	375
shevat,	115,	136,	139,	411,	439,	495
shift-days,	138,	138,	139,	407,	439,	502
Shiraz	(Iran),	268
shiva,	369,	407,	569
Shiva	(Hindu	deity),	366
short-kislev?,	122,	122,	136,	407,	439,	497
Shrove	Monday	(Christian	holiday),	150,	152
Shrove	Sunday	(Christian	holiday),	150,	152
Shrove	Tuesday	(Christian	holiday),	152



Shushan	Purim	(Jewish	holiday),	130
sidereal-from-moment,	219,	226,	238,	407,	439,	518
sidereal-lunar-longitude,	234,	407,	525
sidereal-solar-longitude,	225,	359,	360,	362,	407,	439,	521
sidereal-start,	225,	234,	359,	411,	439,	564
sidereal-zodiac,	360,	360,	361,	407,	439,	564
sigma,	408,	473,	473
sign,	20,	408,	474
sign	function,	xxvi,	20
Simḥat	Torah	(Jewish	holiday),	128
Simon,	Jean-Louis,	253
simple-best-view,	250,	250,	408,	439,	534
sin-degrees,	408,	513
sine-offset,	240,	241,	241,	408,	439,	529
Singer,	Isaac	Bashevis,	289
Singer,	Isidore,	140,	467
Sinnott,	Roger	W.,	254
Sircar,	Dineschandra,	372
Sirius	(star),	6
sivan,	114,	411,	494
Sivin,	Nathan,	332
Sıvış	year	(Ottoman	Empire),	105
sixth	(Lisp	function),	469
Skeel,	Robert	D.,	52
Skiena,	Steven	S.,	xxxviii
Slonimski,	Ḥayyim	S.,	141
Slonimsky,	Nicolas,	141
Smith,	Adam,	332
Sobel,	Dava,	255



Sodhya	(Hindu	calendar),	345
Sohn,	Sangmo,	327,	332
solar	cycle,	131
solar	terms
Chinese	calendar,	281,	306–309
Japanese	pronunciation,	307
Korean	calendar,	328

solar-altitude,	226,	251,	408,	439,	521
solar-anomaly,	232,	234,	236,	238,	408,	439,	524–525
solar-longitude,	223,	223–227,	234,	235,	241,	249,	259,	274,	283,	306,	308,

309,	359,	408,	439,	445,	519–520
solar-longitude-after,	224,	224,	308,	408,	440,	520
Solomon	ben	Isaac	(=	Rashi),	219
solstice,	6,	25,	195,	203,	221,	223,	224,	445
sample	times,	452
winter,	305,	309,	364

Sony	Playstation	3®,	xxxiv
Sørnes,	Rasmus,	468
Sosigenes,	56
Soviet	Union,	57
Sowramana	Ugadi,	see	New	Year,	Hindu	solar
Spain,	57
spectrum	(of	a	real	number),	42
Speicher,	Darryl,	52
Speicher,	Jackie,	52
Spica	(star),	336
Spier,	Arthur,	141
Spinden,	Herbert	J.,	169,	171,	182
Spinellis,	Diomidis,	82



Spinielli,	Enrico,	xxxviii
spring,	83,	132,	259,	274,	292,	297,	411,	440,	488
Spuler,	Bertold,	110
Stallman,	Richard	M.,	xl,	52
standard-day,	408,	474,	474
standard-from-local,	208,	241,	242,	408,	440,	516
standard-from-sundial,	248,	248,	355,	368,	408,	440,	532–533
standard-from-universal,	208,	208,	225,	244,	245,	308–310,	408,	440,	516
standard-month,	408,	474,	474
standard-year,	408,	474,	474
Stanhope,	Philip	D.	(=	Fourth	Earl	of	Chesterfield),	xxxvii,	203
Star	Trek,	xxxvi
stardate,	xxxvi
Stavroulakis,	Nicholas,	388
Steel,	Duncan,	52
Steele,	Guy	L.,	Jr.,	xl,	52,	572
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The	covers	of	this	book	are	too	far	apart.
Attributed	to	Ambrose	Bierce

	



Blue	and	white	glazed	jar	from	the	reign	of	Kāng	Xī	(1662–1722),	showing
plum	blossoms	against	a	background	of	melting	ice	and	used	to	hold	a	gift	of
fragrant	tea	for	New	Year’s	Day.	(Courtesy	of	the	Victoria	&	Albert	Museum,
London.)



Envoi

Ohe,	iam	satis	est,	ohe,	libelle,
Iam	pervenimus	usque	ad	umbilicos.
Tu	procedere	adhuc	et	ire	quæris,
Nec	summa	potes	in	schida	teneri,
Sic	tamquam	tibi	res	peracta	non	sit,
Quae	prima	quoque	pagina	peracta	est.
Iam	lector	queriturque	deficitque,
Iam	librarius	hoc	et	ipse	dicit
“Ohe,	iam	satis	est,	ohe,	libelle.”

Martial:	Epigrams,	IV,	89	(circa	90	C.E.)
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